1
|
Tao Y, Zeng Z, Deng Y, Zhang M, Wang F, Wang Y. Phylogeny and evolution of dissimilatory sulfite reduction in prokaryotes. Mol Phylogenet Evol 2024; 201:108208. [PMID: 39343112 DOI: 10.1016/j.ympev.2024.108208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Sulfate is the second most common nonmetallic ion in modern oceans, as its concentration dramatically increased alongside tectonic activity and atmospheric oxidation in the Proterozoic. Microbial sulfate/sulfite metabolism, involving organic carbon or hydrogen oxidation, is linked to sulfur and carbon biogeochemical cycles. However, the coevolution of microbial sulfate/sulfite metabolism and Earth's history remains unclear. Here, we conducted a comprehensive phylogenetic analysis to explore the evolutionary history of the dissimilatory sulfite reduction (Dsr) pathway. The phylogenies of the Dsr-related genes presented similar branching patterns but also some incongruencies, indicating the complex origin and evolution of Dsr. Among these genes, dsrAB is the hallmark of sulfur-metabolizing prokaryotes. Our detailed analyses suggested that the evolution of dsrAB was shaped by vertical inheritance and multiple horizontal gene transfer events and that selection pressure varied across distinct lineages. Dated phylogenetic trees indicated that key evolutionary events of dissimilatory sulfur-metabolizing prokaryotes were related to the Great Oxygenation Event (2.4-2.0 Ga) and several geological events in the "Boring Billion" (1.8-0.8 Ga), including the fragmentation of the Columbia supercontinent (approximately 1.6 Ga), the rapid increase in marine sulfate (1.3-1.2 Ga), and the Neoproterozoic glaciation event (approximately 1.0 Ga). We also proposed that the voluminous iron formations (approximately 1.88 Ga) might have induced the metabolic innovation of iron reduction. In summary, our study provides new insights into Dsr evolution and a systematic view of the coevolution of dissimilatory sulfur-metabolizing prokaryotes and the Earth's environment.
Collapse
Affiliation(s)
- Yuxin Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, School of Life Science, Fudan University, Shanghai 200438, China
| | - Zichao Zeng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuhui Deng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Menghan Zhang
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200438, China
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Sumner DY. Oxygenation of Earth's atmosphere induced metabolic and ecologic transformations recorded in the Lomagundi-Jatuli carbon isotopic excursion. Appl Environ Microbiol 2024; 90:e0009324. [PMID: 38819147 PMCID: PMC11218651 DOI: 10.1128/aem.00093-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
The oxygenation of Earth's atmosphere represents the quintessential transformation of a planetary surface by microbial processes. In turn, atmospheric oxygenation transformed metabolic evolution; molecular clock models indicate the diversification and ecological expansion of respiratory metabolisms in the several hundred million years following atmospheric oxygenation. Across this same interval, the geological record preserves 13C enrichment in some carbonate rocks, called the Lomagundi-Jatuli excursion (LJE). By combining data from geologic and genomic records, a self-consistent metabolic evolution model emerges for the LJE. First, fermentation and methanogenesis were major processes remineralizing organic carbon before atmospheric oxygenation. Once an ozone layer formed, shallow water and exposed environments were shielded from UVB/C radiation, allowing the expansion of cyanobacterial primary productivity. High primary productivity and methanogenesis led to preferential removal of 12C into organic carbon and CH4. Extreme and variable 13C enrichments in carbonates were caused by 13C-depleted CH4 loss to the atmosphere. Through time, aerobic respiration diversified and became ecologically widespread, as did other new metabolisms. Respiration displaced fermentation and methanogenesis as the dominant organic matter remineralization processes. As CH4 loss slowed, dissolved inorganic carbon in shallow environments was no longer highly 13C enriched. Thus, the loss of extreme 13C enrichments in carbonates marks the establishment of a new microbial mat ecosystem structure, one dominated by respiratory processes distributed along steep redox gradients. These gradients allowed the exchange of metabolic by-products among metabolically diverse organisms, providing novel metabolic opportunities. Thus, the microbially induced oxygenation of Earth's atmosphere led to the transformation of microbial ecosystems, an archetypal example of planetary microbiology.IMPORTANCEThe oxygenation of Earth's atmosphere represents the most extensive known chemical transformation of a planetary surface by microbial processes. In turn, atmospheric oxygenation transformed metabolic evolution by providing oxidants independent of the sites of photosynthesis. Thus, the evolutionary changes during this interval and their effects on planetary-scale biogeochemical cycles are fundamental to our understanding of the interdependencies among genomes, organisms, ecosystems, elemental cycles, and Earth's surface chemistry through time.
Collapse
Affiliation(s)
- Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, Davis, California, USA
- Microbiology Graduate Group, University of California, Davis, Davis, California, USA
- Feminist Research Institute, University of California, Davis, Davis, California, USA
| |
Collapse
|
3
|
Zhao P, Bi X, Wang X, Feng X, Shen Y, Yuan G, She Q. Rational design of unrestricted pRN1 derivatives and their application in the construction of a dual plasmid vector system for Saccharolobus islandicus. MLIFE 2024; 3:119-128. [PMID: 38827506 PMCID: PMC11139203 DOI: 10.1002/mlf2.12107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/25/2023] [Indexed: 06/04/2024]
Abstract
Saccharolobus islandicus REY15A represents one of the very few archaeal models with versatile genetic tools, which include efficient genome editing, gene silencing, and robust protein expression systems. However, plasmid vectors constructed for this crenarchaeon thus far are based solely on the pRN2 cryptic plasmid. Although this plasmid coexists with pRN1 in its original host, early attempts to test pRN1-based vectors consistently failed to yield any stable host-vector system for Sa. islandicus. We hypothesized that this failure could be due to the occurrence of CRISPR immunity against pRN1 in this archaeon. We identified a putative target sequence in orf904 encoding a putative replicase on pRN1 (target N1). Mutated targets (N1a, N1b, and N1c) were then designed and tested for their capability to escape the host CRISPR immunity by using a plasmid interference assay. The results revealed that the original target triggered CRISPR immunity in this archaeon, whereas all three mutated targets did not, indicating that all the designed target mutations evaded host immunity. These mutated targets were then incorporated into orf904 individually, yielding corresponding mutated pRN1 backbones with which shuttle plasmids were constructed (pN1aSD, pN1bSD, and pN1cSD). Sa. islandicus transformation revealed that pN1aSD and pN1bSD were functional shuttle vectors, but pN1cSD lost the capability for replication. These results indicate that the missense mutations in the conserved helicase domain in pN1c inactivated the replicase. We further showed that pRN1-based and pRN2-based vectors were stably maintained in the archaeal cells either alone or in combination, and this yielded a dual plasmid system for genetic study with this important archaeal model.
Collapse
Affiliation(s)
- Pengpeng Zhao
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xiaonan Bi
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xiaoning Wang
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Xu Feng
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Yulong Shen
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Guanhua Yuan
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, State Key Laboratory of Microbial Technology and Microbial Technology InstituteShandong UniversityQingdaoChina
| |
Collapse
|
4
|
Gulay A, Fournier G, Smets BF, Girguis PR. Proterozoic Acquisition of Archaeal Genes for Extracellular Electron Transfer: A Metabolic Adaptation of Aerobic Ammonia-Oxidizing Bacteria to Oxygen Limitation. Mol Biol Evol 2023; 40:msad161. [PMID: 37440531 PMCID: PMC10415592 DOI: 10.1093/molbev/msad161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
Many aerobic microbes can utilize alternative electron acceptors under oxygen-limited conditions. In some cases, this is mediated by extracellular electron transfer (or EET), wherein electrons are transferred to extracellular oxidants such as iron oxide and manganese oxide minerals. Here, we show that an ammonia-oxidizer previously known to be strictly aerobic, Nitrosomonas communis, may have been able to utilize a poised electrode to maintain metabolic activity in anoxic conditions. The presence and activity of multiheme cytochromes in N. communis further suggest a capacity for EET. Molecular clock analysis shows that the ancestors of β-proteobacterial ammonia oxidizers appeared after Earth's atmospheric oxygenation when the oxygen levels were >10-4pO2 (present atmospheric level [PAL]), consistent with aerobic origins. Equally important, phylogenetic reconciliations of gene and species trees show that the multiheme c-type EET proteins in Nitrosomonas and Nitrosospira lineages were likely acquired by gene transfer from γ-proteobacteria when the oxygen levels were between 0.1 and 1 pO2 (PAL). These results suggest that β-proteobacterial EET evolved during the Proterozoic when oxygen limitation was widespread, but oxidized minerals were abundant.
Collapse
Affiliation(s)
- Arda Gulay
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Greg Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Barth F Smets
- Department of Environmental and Resource Engineering, Technical University of Denmark, Lyngby, Denmark
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Hou J, Wang Y, Zhu P, Yang N, Liang L, Yu T, Niu M, Konhauser K, Woodcroft BJ, Wang F. Taxonomic and carbon metabolic diversification of Bathyarchaeia during its coevolution history with early Earth surface environment. SCIENCE ADVANCES 2023; 9:eadf5069. [PMID: 37406125 PMCID: PMC10321748 DOI: 10.1126/sciadv.adf5069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/01/2023] [Indexed: 07/07/2023]
Abstract
Bathyarchaeia, as one of the most abundant microorganisms on Earth, play vital roles in the global carbon cycle. However, our understanding of their origin, evolution, and ecological functions remains poorly constrained. Here, we present the largest dataset of Bathyarchaeia metagenome assembled genome to date and reclassify Bathyarchaeia into eight order-level units corresponding to the former subgroup system. Highly diversified and versatile carbon metabolisms were found among different orders, particularly atypical C1 metabolic pathways, indicating that Bathyarchaeia represent overlooked important methylotrophs. Molecular dating results indicate that Bathyarchaeia diverged at ~3.3 billion years, followed by three major diversifications at ~3.0, ~2.5, and ~1.8 to 1.7 billion years, likely driven by continental emergence, growth, and intensive submarine volcanism, respectively. The lignin-degrading Bathyarchaeia clade emerged at ~300 million years perhaps contributed to the sharply decreased carbon sequestration rate during the Late Carboniferous period. The evolutionary history of Bathyarchaeia potentially has been shaped by geological forces, which, in turn, affected Earth's surface environment.
Collapse
Affiliation(s)
- Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Pengfei Zhu
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Na Yang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| | - Lewen Liang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tiantian Yu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Mingyang Niu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Kurt Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Ben J. Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Fengping Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|