1
|
Pan J, Zhang X, Xu W, Liu Y, Liu L, Luo Z, Li M. Wood-Ljungdahl pathway found in novel marine Korarchaeota groups illuminates their evolutionary history. mSystems 2023; 8:e0030523. [PMID: 37458475 PMCID: PMC10469681 DOI: 10.1128/msystems.00305-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/29/2023] [Indexed: 07/22/2023] Open
Abstract
Korarchaeota, due to its rarity in common environments, is one of the archaeal phyla that has received the least attention from researchers. It was previously thought to consist solely of strict thermophiles. However, our study provides genetic evidence for the presence of korarchaeal members in temperate subsurface seawater. Furthermore, a systematic reclassification of the Korarchaeota based on 16S rRNA genes and genomes has revealed three novel marine groups (Kor-6 to Kor-8) at the root of the Korarchaeota branch. Kor-6 contains microbes that are present in moderate temperatures. All three novel marine phyla possess genes for the Wood-Ljungdahl pathway, and Kor-7 and Kor-8 possess fewer genes encoding oxygen resistance traits than other korarchaeal groups, suggesting a distinct lifestyle for these novel phyla. Our results, together with estimations of Korarchaeota divergence times, suggest that oxygen availability may be one of the important factors that have influenced the evolution of Korarchaeota. IMPORTANCE Korarchaeota were previously thought to inhabit exclusively high-temperature environments. However, our study provides genetic evidence for their unexpected presence in temperate marine waters. Through analysis of publicly available korarchaeal reference data, we have systematically reclassified Korarchaeota and identified the existence of three previously unknown marine groups (Kor-6, Kor-7, and Kor-8) at the root of the Korarchaeota branch. Comparative analysis of their gene content revealed that these novel groups exhibit a lifestyle distinct from other Korarchaeota. Specifically, they have the ability to fix carbon exclusively via the Wood-Ljungdahl (WL) pathway, and the genomes within Kor-7 and Kor-8 contain few genes encoding antioxidant enzymes, indicating their strictly anaerobic lifestyle. Further studies suggest that the genes related to methane metabolism and the WL pathway may have been inherited from a common ancestor of the Korarchaeota and that oxygen availability may be one of the important evolutionary factors that shaped the diversification of this archaeal phylum.
Collapse
Affiliation(s)
- Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Xbiome Biotech Co. Ltd., Shenzhen, Guangdong, China
| | - Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Lirui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Zhou Z, Liu Y, Anantharaman K, Li M. The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis. MLIFE 2022; 1:374-381. [PMID: 38818484 PMCID: PMC10989744 DOI: 10.1002/mlf2.12048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 06/01/2024]
Abstract
The division of organisms on the Tree of Life into either a three-domain (3D) tree or a two-domain (2D) tree has been disputed for a long time. Ever since the discovery of Archaea by Carl Woese in 1977 using 16S ribosomal RNA sequence as the evolutionary marker, there has been a great advance in our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships between different lineages of living organisms. Here, we present this perspective to summarize the progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest relative of Eukaryotes. Furthermore, we propose three major directions for future research on exploring the "next one" closest Eukaryote relative, deciphering the function of archaeal eukaryotic signature proteins and eukaryogenesis from both genomic and physiological aspects, and understanding the roles of horizontal gene transfer, viruses, and mobile elements in eukaryogenesis.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | | | - Meng Li
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| |
Collapse
|