1
|
Li W, Baliu-Rodriguez D, Premathilaka SH, Thenuwara SI, Kimbrel JA, Samo TJ, Ramon C, Kiledal EA, Rivera SR, Kharbush J, Isailovic D, Weber PK, Dick GJ, Mayali X. Microbiome processing of organic nitrogen input supports growth and cyanotoxin production of Microcystis aeruginosa cultures. THE ISME JOURNAL 2024; 18:wrae082. [PMID: 38718148 PMCID: PMC11126159 DOI: 10.1093/ismejo/wrae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
Nutrient-induced blooms of the globally abundant freshwater toxic cyanobacterium Microcystis cause worldwide public and ecosystem health concerns. The response of Microcystis growth and toxin production to new and recycled nitrogen (N) inputs and the impact of heterotrophic bacteria in the Microcystis phycosphere on these processes are not well understood. Here, using microbiome transplant experiments, cyanotoxin analysis, and nanometer-scale stable isotope probing to measure N incorporation and exchange at single cell resolution, we monitored the growth, cyanotoxin production, and microbiome community structure of several Microcystis strains grown on amino acids or proteins as the sole N source. We demonstrate that the type of organic N available shaped the microbial community associated with Microcystis, and external organic N input led to decreased bacterial colonization of Microcystis colonies. Our data also suggest that certain Microcystis strains could directly uptake amino acids, but with lower rates than heterotrophic bacteria. Toxin analysis showed that biomass-specific microcystin production was not impacted by N source (i.e. nitrate, amino acids, or protein) but rather by total N availability. Single-cell isotope incorporation revealed that some bacterial communities competed with Microcystis for organic N, but other communities promoted increased N uptake by Microcystis, likely through ammonification or organic N modification. Our laboratory culture data suggest that organic N input could support Microcystis blooms and toxin production in nature, and Microcystis-associated microbial communities likely play critical roles in this process by influencing cyanobacterial succession through either decreasing (via competition) or increasing (via biotransformation) N availability, especially under inorganic N scarcity.
Collapse
Affiliation(s)
- Wei Li
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - David Baliu-Rodriguez
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sanduni H Premathilaka
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Sharmila I Thenuwara
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Jeffrey A Kimbrel
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Ty J Samo
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Christina Ramon
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Erik Anders Kiledal
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Sara R Rivera
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Jenan Kharbush
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
| | - Dragan Isailovic
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, United States
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48104, United States
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI 48104, United States
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, United States
| |
Collapse
|
2
|
Yang Y, Zhou J. Unveiling the hidden world of microorganisms and their impact on the Earth's ecosystems. MLIFE 2023; 2:339-340. [PMID: 38818265 PMCID: PMC10989080 DOI: 10.1002/mlf2.12100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 06/01/2024]
Affiliation(s)
- Yunfeng Yang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua UniversityShenzhenChina
| | - Jizhong Zhou
- Institute for Environmental GenomicsUniversity of OklahomaNormanOklahomaUSA
- School of Biological SciencesUniversity of OklahomaNormanOklahomaUSA
- School of Civil Engineering and Environmental SciencesUniversity of OklahomaNormanOklahomaUSA
- School of Computer SciencesUniversity of OklahomaNormanOklahomaUSA
- Earth and Environmental SciencesLawrence Berkeley National LaboratoryBerkeleyCalifoniaUSA
| |
Collapse
|