1
|
Li H, Madnick S, Zhao H, Hall S, Amin A, Dent MP, Boekelheide K. A novel co-culture model of human prostate epithelial and stromal cells for androgenic and antiandrogenic screening. Toxicol In Vitro 2023; 91:105624. [PMID: 37230229 PMCID: PMC10527365 DOI: 10.1016/j.tiv.2023.105624] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 05/07/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
The risk assessment of endocrine-disrupting chemicals (EDCs) greatly relies on in vitro screening. A 3-dimensional (3D) in vitro prostate model that can reflect physiologically-relevant prostate epithelial and stromal crosstalk can significantly advance the current androgen assessment. This study built a prostate epithelial and stromal co-culture microtissue model with BHPrE and BHPrS cells in scaffold-free hydrogels. The optimal 3D co-culture condition was defined, and responses of the microtissue to androgen (dihydrotestosterone, DHT) and anti-androgen (flutamide) exposure were characterized using molecular and image profiling techniques. The co-culture prostate microtissue maintained a stable structure for up to seven days and presented molecular and morphological features of the early developmental stage of the human prostate. The cytokeratin 5/6 (CK5/6) and cytokeratin 18 (CK18) immunohistochemical staining indicated epithelial heterogeneity and differentiation in these microtissues. The prostate-related gene expression profiling did not efficiently differentiate androgen and anti-androgen exposure. However, a cluster of distinctive 3D image features was identified and could be applied in the androgenic and anti-androgenic effect prediction. Overall, the current study established a co-culture prostate model that provided an alternative strategy for (anti-)androgenic EDC safety assessment and highlighted the potential and advantage of utilizing image features to predict endpoints in chemical screening.
Collapse
Affiliation(s)
- Hui Li
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China; Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| | - Samantha Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - He Zhao
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Susan Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Ali Amin
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Matthew P Dent
- Safety and Environmental Assurance Centre, Unilever, Colworth Science Park, Bedfordshire MK44 1LQ, UK
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA.
| |
Collapse
|
2
|
Higaki S, Koyama Y, Shimada M, Ono Y, Tooyama I, Fujioka Y, Sakai N, Ikeuchi T, Takada T. Response to fish specific reproductive hormones and endocrine disrupting chemicals of a Sertoli cell line expressing endogenous receptors from an endemic cyprinid Gnathopogon caerulescens. Gen Comp Endocrinol 2013; 191:65-73. [PMID: 23770217 DOI: 10.1016/j.ygcen.2013.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 11/25/2022]
Abstract
Fish Sertoli cells play a critical role in spermatogenesis by mediating androgen and progestogen signaling. Their hormonal response, however, considerably differ among species. Therefore it would be ideal to use Sertoli cells originated from the fish of interest to investigate the effects of hormones as well as endocrine disrupting chemicals (EDCs). The aim of this study was to investigate the responses to reproductive hormones and EDCs of a Sertoli cell line that we established from an endemic cyprinid Gnathopogon caerulescens. As the Sertoli cell line expressed endogenous androgen and progestogen receptors, we were able to detect hormone responses by transfecting only a reporter vector (pGL4.36) expressing luciferase under the control of the mouse mammary tumor virus-long terminal repeat (MMTV-LTR) promoter into the cell line. Unlike previous reporter gene assays using fish steroid hormone receptors expressed in mammalian cell lines, luciferase activities were induced by the fish specific androgen (11-ketotestosterone) and progestogen (17α,20β-dihydroxy-4-pregnen-3-one), but not by testosterone and progesterone, at physiologically relevant concentrations. Furthermore, we found 4-nonylphenol (NP) but not bisphenol A showed strong anti-androgenic effects, implying that NP may have direct anti-androgenic effects on fish Sertoli cells in vivo. This is the first evidence, to the best of our knowledge, of anti-androgenic effects of NP in a fish Sertoli cell line. In addition, neither NP nor BPA showed anti-progestogenic effects. These results suggest that the Sertoli cell line established from the fish of interest can be a useful in vitro tool for investigating the mechanisms of reproductive hormones and EDCs in the specific fish.
Collapse
Affiliation(s)
- Shogo Higaki
- Ritsumeikan Global Innovation Research Organization, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Persistent organic pollutants have dose and CAG repeat length dependent effects on androgen receptor activity in vitro. Reprod Toxicol 2011; 32:293-7. [PMID: 21729750 DOI: 10.1016/j.reprotox.2011.06.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/09/2011] [Accepted: 06/10/2011] [Indexed: 11/24/2022]
Abstract
Recently, the effect of exposure to persistent organic pollutants (POPs) on sperm concentration was only seen in men with a short androgen receptor (AR) gene CAG repeat. In order to investigate whether these effects could be observed also in vitro, we tested the impact of 2,2',4,4',5,5'-hexachlorobiphenyl (CB-153) and 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (4,4'-DDE) on 5α-dihydrotestosterone activated ARs containing 16, 22 and 28 CAG repeats, respectively. Single exposure to 4,4'-DDE had the most pronounced effect on the AR activity containing 16 CAG repeats, whereas 28 CAG was the most sensitive variant when a mixture of the two compounds was added. Thus, our in vitro results have confirmed the in vivo data indicating a CAG repeat length dependent effect of endocrine disrupters on the AR activity.
Collapse
|
4
|
Thiel A, Guth S, Böhm S, Eisenbrand G. Dicofol degradation to p,p′-dichlorobenzophenone – A potential antiandrogen. Toxicology 2011; 282:88-93. [DOI: 10.1016/j.tox.2011.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 01/21/2011] [Accepted: 01/22/2011] [Indexed: 10/18/2022]
|
5
|
Akram ON, Bursill C, Desai R, Heather AK, Kazlauskas R, Handelsman DJ, Lambert G. Evaluation of androgenic activity of nutraceutical-derived steroids using mammalian and yeast in vitro androgen bioassays. Anal Chem 2011; 83:2065-74. [PMID: 21329390 DOI: 10.1021/ac102845y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Androgenic steroids marketed online as nutraceuticals are a growing concern in sport doping. The inability of conventional mass spectrometry (MS)-based techniques to detect structurally novel androgens has led to the development of in vitro androgen bioassays to identify such designer androgens by their bioactivity. The objective of this study was to determine the androgenic bioactivity of novel steroidal compounds isolated from nutraceuticals using both yeast and mammalian cell-based androgen bioassays. We developed two new in vitro androgen bioassays by stably transfecting HEK293 and HuH7 cells with the human androgen receptor (hAR) expression plasmid together with a novel reporter gene vector (enhancer/ARE/SEAP). The yeast β-galactosidase androgen bioassay was used for comparison. Our new bioassay featuring the enhancer/ARE/SEAP construct (-S) displayed simpler assay format and higher specificity with lower sensitivity compared with the commonly used mouse mammary tumour virus (MMTV)-luciferase. The relative potencies (RP), defined as [EC(50)] of testosterone/[EC(50)] of steroid, of nutraceutical extracts in the yeast, HEK293-S, and HuH7-S, were 34, 333, and 80,000 for Hemapolin; 208, 250, and 80 for Furazadrol; 0.38, 10, and 106 for Oxyguno; 2.7, 0.28, and 15 for Trena; and 4.5, 0.1, and 0.4 for Formadrol, respectively. The wide discrepancies in rank RP of these compounds was reconciled into a consistent potency ranking when the cells were treated with meclofenamic acid, a nonselective inhibitor of steroid metabolizing enzymes. These findings indicate that steroids extracted from nutraceuticals can be converted in vitro into more or less potent androgens in mammalian but not in yeast cells. We conclude that the putative androgenic bioactivity of a new compound may depend on the bioassay cellular format and that mammalian cell bioassays may have an added benefit in screening for proandrogens but sacrifice specificity for sensitivity in quantitation.
Collapse
Affiliation(s)
- Omar N Akram
- Lipid Research Group, The Heart Research Institute, Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
6
|
Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod 2008; 80:685-95. [PMID: 19074005 DOI: 10.1095/biolreprod.107.067280] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Androgens have distinct physiological functions within the ovary. The biological action of androgens is primarily exerted through transcriptional regulation by the nuclear androgen receptor (AR), but the molecular cascades governed by AR remain largely unknown. At present, there is imminent concern that environmental man-made chemicals with antiandrogenic properties, among others, are capable of modulating hormonal responses, thereby interfering with normal physiological processes that are critical to fertility. In the present study, we aimed to further characterize a standardized and reproducible follicle culture system in terms of AR expression during in vitro folliculogenesis to be able to use it as a bioassay to study effects of antiandrogens on follicular and oocyte growth, steroid secretion profile, and oocyte meiotic maturation capacity. Immunohistochemical analysis revealed that cytoplasmic AR protein was translocated to the nucleus of granulosa and theca cells in response to endogenous androgen production in theca cells during preantral follicular development. During the antral phase in vitro, AR was differentially expressed in mural and cumulus cells, implying an oocyte-mediated regulation. Treatment of follicles with hydroxyflutamide or bicalutamide, two model antiandrogenic compounds, resulted in reduced follicular growth during the preantral phase, altered steroidogenic environment, and arrest in oocyte meiotic maturation in response to human chorionic gonadotropin. Androgen receptor expression in the culture model corresponded well to what is described in vivo, and this system revealed several ovarian functions targeted by AR antagonists that can be further investigated using more in-depth molecular techniques.
Collapse
Affiliation(s)
- Sandy Lenie
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Brussels, Belgium.
| | | |
Collapse
|
7
|
Roy P, Alevizaki M, Huhtaniemi I. In vitro bioassays for androgens and their diagnostic applications. Hum Reprod Update 2007; 14:73-82. [DOI: 10.1093/humupd/dmm038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
8
|
Zhang S, Zhang D, Zhu Y, Guo H, Zhao X, Sun B. Clusterin expression and univariate analysis of overall survival in human breast cancer. Technol Cancer Res Treat 2007; 5:573-8. [PMID: 17121433 DOI: 10.1177/153303460600500604] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The aim of this research is to investigate the significance of clusterin (CLU) expression as a risk factor for breast cancer through tissue microarray technology and univariate analysis of overall survival. Formalin-fixed, paraffin-embedded tissues from 158 cases of breast cancer and 31 cases of normal adjacent tissues assembled into a tissue microarray. Cytoplasmic CLU expression in tumor tissues was measured by immunochemistry. Survival analysis was used to investigate the relationship between CLU expression and prognosis, tumor volume, pathological classification, and recurrence. Survival time of patients with CLU expression, lymph node metastasis, and limited post-surgery chemotherapy (<6 cycles of treatment) was significantly shorter than that of patients with no detectable CLU expression (P=0.000), without lymph node metastasis (P=0.000) and more comprehensive post-surgery chemotherapy (>/=6 cycles of treatment) (P=0.035). CLU expression in tumor cells was higher than in normal adjacent breast epithelial cells (P=0.03). The CLU expression staining coefficient of cancer tissues with lymph node metastasis was higher than those without lymph node metastasis (P=0.000). Cytoplasmic CLU expression was found to be a prognostic factor for human breast cancer.
Collapse
Affiliation(s)
- Shiwu Zhang
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China.
| | | | | | | | | | | |
Collapse
|
9
|
Eisenbrand G. Food chemistry and environmental toxicology. Biotechnol J 2006; 1:135-6. [PMID: 16892242 DOI: 10.1002/biot.200690024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|