1
|
Chang CH, Han DE, Ji YY, Wang MY, Li DH, Xu ZL, Li JH, Huang SN, Zhu XL, Jia YY. Folate-chitosan Coated Quercetin Liposomes for Targeted Cancer Therapy. Curr Pharm Biotechnol 2024; 25:924-935. [PMID: 37861012 DOI: 10.2174/0113892010264479231006045014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/23/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Although quercetin exhibits promising anti-tumor properties, its clinical application is limited due to inherent defects and a lack of tumor targeting. OBJECTIVES This study aimed to prepare and characterize active targeting folate-chitosan modified quercetin liposomes (FA-CS-QUE-Lip), and its antitumor activity in vitro and in vivo was also studied. MATERIALS AND METHODS Box-Behnken Design (BBD) response surface method was used to select the optimal formulation of quercetin liposomes (QUE-LP). On this basis, FA-CS-QUE-LP was obtained by connecting folic acid chitosan complex (FA-CS) and QUE-LP. The release characteristics in vitro of QUE-LP and FA-CS-QUE-LP were studied. Its inhibitory effects on HepG2 cells were studied by the MTT method. The pharmacokinetics and pharmacodynamics in vivo were studied in healthy Wistar mice and S180 tumor-bearing mice, respectively. RESULTS The average particle size, zeta potential and encapsulation efficiency of FA-CS-QUELP were 261.6 ± 8.5 nm, 22.3 ± 1.7 mV, and 98.63 ± 1.28 %, respectively. FA-CS-QUE-LP had a sustained release effect and conformed to the Maloid-Banakar release model (R2=0.9967). The results showed that FA-CS-QUE-LP had higher inhibition rates on HepG2 cells than QUE-Sol (P < 0.01). There was a significant difference in AUC, t1/2, CL and other pharmacokinetic parameters among QUE-LP, FA-CS-QUE-LP, and QUE-Sol (P < 0.05). In in vivo antitumor activity study, the weight inhibition rate and volume inhibition rate of FA-CS-QUE-LP were 30.26% and 37.35%, respectively. CONCLUSION FA-CS-QUE-LP exhibited a significant inhibitory effect on HepG2 cells, influenced the pharmacokinetics of quercetin in mice, and demonstrated a certain inhibitory effect on S180 tumor-bearing mice, thus offering novel avenues for cancer treatment.
Collapse
Affiliation(s)
- Chun-Hui Chang
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - De-En Han
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yu-Ying Ji
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Meng-Yan Wang
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Dong-Hong Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Zhi-Ling Xu
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Jia-Hao Li
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Sheng-Nan Huang
- Academy of Chinese Medical Sciences, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Xia-Li Zhu
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yong-Yan Jia
- College of Pharmacy, Henan University of Traditional Chinese Medicine, Zhengzhou, 450046, P.R. China
- Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment & Chinese Medicine Development of Henan Province, Zhengzhou, 450046, P.R. China
| |
Collapse
|
2
|
Palomino O, García-Aguilar A, González A, Guillén C, Benito M, Goya L. Biological Actions and Molecular Mechanisms of Sambucus nigra L. in Neurodegeneration: A Cell Culture Approach. Molecules 2021; 26:molecules26164829. [PMID: 34443417 PMCID: PMC8399386 DOI: 10.3390/molecules26164829] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 12/03/2022] Open
Abstract
Sambucus nigra flowers (elderflower) have been widely used in traditional medicine for the relief of early symptoms of common cold. Its chemical composition mainly consists of polyphenolic compounds such as flavonoids, hydroxycinnamic acids, and triterpenes. Although the antioxidant properties of polyphenols are well known, the aim of this study is to assess the antioxidant and protective potentials of Sambucus nigra flowers in the human neuroblastoma (SH-SY5Y) cell line using different in vitro approaches. The antioxidant capacity is first evaluated by the oxygen radical absorbance capacity (ORAC) and the free radical scavenging activity (DPPH) methods. Cell viability is assessed by the crystal violet method; furthermore, the intracellular ROS formation (DCFH-DA method) is determined, together with the effect on the cell antioxidant defenses: reduced glutathione (GSH) and antioxidant enzyme activities (GPx, GR). On the other hand, mTORC1 hyperactivation and autophagy blockage have been associated with an increase in the formation of protein aggregates, this promoting the transference and expansion of neurodegenerative diseases. Then, the ability of Sambucus nigra flowers in the regulation of mTORC1 signaling activity and the reduction in oxidative stress through the activation of autophagy/mitophagy flux is also examined. In this regard, search for different molecules with a potential inhibitory effect on mTORC1 activation could have multiple positive effects either in the molecular pathogenic events and/or in the progression of several diseases including neurodegenerative ones.
Collapse
Affiliation(s)
- Olga Palomino
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (O.P.); (A.G.-A.); (A.G.)
| | - Ana García-Aguilar
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (O.P.); (A.G.-A.); (A.G.)
| | - Adrián González
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (O.P.); (A.G.-A.); (A.G.)
| | - Carlos Guillén
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (C.G.); (M.B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Benito
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, University Complutense of Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (C.G.); (M.B.)
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Luis Goya
- Department of Metabolism and Nutrition, Institute of Science and Food Technology and Nutrition (ICTAN—CSIC), 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-91-549-2300
| |
Collapse
|
3
|
Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA. Dietary polyphenols suppress chronic inflammation by modulation of multiple inflammation-associated cell signaling pathways. J Nutr Biochem 2021; 93:108634. [PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/20/2021] [Accepted: 03/10/2021] [Indexed: 02/06/2023]
Abstract
The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, Bangladesh
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abdi Wira Septama
- Research Center for Chemistry, Indonesian Institute of Sciences, Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Banten, Indonesia
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia; Department of Applied Physics, Faculty of Science & Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor
| |
Collapse
|
4
|
Krstić L, González-García MJ, Diebold Y. Ocular Delivery of Polyphenols: Meeting the Unmet Needs. Molecules 2021; 26:molecules26020370. [PMID: 33445725 PMCID: PMC7828190 DOI: 10.3390/molecules26020370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/14/2022] Open
Abstract
Nature has become one of the main sources of exploration for researchers that search for new potential molecules to be used in therapy. Polyphenols are emerging as a class of compounds that have attracted the attention of pharmaceutical and biomedical scientists. Thanks to their structural peculiarities, polyphenolic compounds are characterized as good scavengers of free radical species. This, among other medicinal effects, permits them to interfere with different molecular pathways that are involved in the inflammatory process. Unfortunately, many compounds of this class possess low solubility in aqueous solvents and low stability. Ocular pathologies are spread worldwide. It is estimated that every individual at least once in their lifetime experiences some kind of eye disorder. Oxidative stress or inflammatory processes are the basic etiological mechanisms of many ocular pathologies. A variety of polyphenolic compounds have been proved to be efficient in suppressing some of the indicators of these pathologies in in vitro and in vivo models. Further application of polyphenolic compounds in ocular therapy lacks an adequate formulation approach. Therefore, more emphasis should be put in advanced delivery strategies that will overcome the limits of the delivery site as well as the ones related to the polyphenols in use. This review analyzes different drug delivery strategies that are employed for the formulation of polyphenolic compounds when used to treat ocular pathologies related to oxidative stress and inflammation.
Collapse
Affiliation(s)
- Luna Krstić
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
| | - María J. González-García
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yolanda Diebold
- Insituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, 47011 Valladolid, Spain; (L.K.); (M.J.G.-G.)
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-883423274
| |
Collapse
|
5
|
Kumar S, Fayaz F, Pottoo FH, Bajaj S, Manchanda S, Bansal H. Nanophytomedicine Based Novel Therapeutic Strategies in Liver Cancer. Curr Top Med Chem 2020; 20:1999-2024. [DOI: 10.2174/1568026619666191114113048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Liver cancer is the fifth (6.3% of all cancers i.e., 548,000 cases/year) and ninth (2.8% of all
cancers i.e., 244,000 cases/year) most prevalent cancer worldwide in men and women, respectively. Although
multiple choices of therapies are offered for Hepatocellular Carcinoma (HCC) like liver resection
or transplant, radiofrequency ablation, transarterial chemoembolization, radioembolization, and systemic
targeted agent, by the time of diagnosis, most of the cases of HCC are in an advanced stage, which
renders therapies like liver transplant or resection and local ablation impractical; and targeted therapy
has its shortcomings like general toxicity, imprecise selectivity, several adversative reactions, and resistance
development. Therefore, novel drugs with specificity and selectivity are needed to provide the potential
therapeutic response. Various researches have shown the potential of phytomedicines in liver
cancer by modulating cell growth, invasion, metastasis, and apoptosis. However, their therapeutic potential
is held up by their unfavorable properties like stability, poor water solubility, low absorption, and
quick metabolism. Nonetheless, the advancement of nanotechnology-based innovative nanocarrier formulations
has improved the phytomedicines’ profile to be used in the treatment of liver cancer. Nanocarriers
not only improve the solubility and stability of phytomedicines but also extend their residence in
plasma and accomplish specificity. In this review, we summarize the advancements introduced by
nanotechnology in the treatment of liver cancer. In particular, we discuss quite a few applications of
nanophytomedicines like curcumin, quercetin, epigallocatechin-3-gallate, berberine, apigenin, triptolide,
and resveratrol in liver cancer treatment.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Pharmacology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faizana Fayaz
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Sakshi Bajaj
- Department of Herbal Drug Technology, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Satish Manchanda
- Department of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| | - Himangini Bansal
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research, Sector-III, MB Road, PushpVihar, New Delhi-110017, India
| |
Collapse
|
6
|
Xiong Q, Wang Y, Wan J, Yuan P, Chen H, Zhang L. Facile preparation of hyaluronic acid-based quercetin nanoformulation for targeted tumor therapy. Int J Biol Macromol 2020; 147:937-945. [DOI: 10.1016/j.ijbiomac.2019.10.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/01/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
|
7
|
Harikrishnan H, Jantan I, Alagan A, Haque MA. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: potential role in the prevention and treatment of inflammation and cancer. Inflammopharmacology 2019; 28:1-18. [PMID: 31792765 DOI: 10.1007/s10787-019-00671-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Abstract
The causal and functional connection between inflammation and cancer has become a subject of much research interest. Modulation of cell signaling pathways, such as those involving mitogen activated protein kinases (MAPKs), nuclear factor kappa β (NF-κB), phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt), and Wnt, and their outcomes play a fundamental role in inflammation and cancer. Activation of these cell signaling pathways can lead to various aspects of cancer-related inflammation. Hence, compounds able to modulate inflammation-related molecular targets are sought after in anticancer drug development programs. In recent years, plant extracts and their metabolites have been documented with potential in the prevention and treatment of cancer and inflammatory ailments. Plants possessing anticancer and anti-inflammatory properties due to their bioactive constituents have been reported to modulate the molecular and cellular pathways which are related to inflammation and cancer. In this review we focus on the flavonoids (astragalin, kaempferol, quercetin, rutin), lignans (phyllanthin, hypophyllanthin, and niranthin), tannins (corilagin, geraniin, ellagic acid, gallic acid), and triterpenes (lupeol, oleanolic acid, ursolic acid) of Phyllanthus amarus, which exert various anticancer and anti-inflammatory activities via perturbation of the NF-κB, MAPKs, PI3K/Akt, and Wnt signaling networks. Understanding the underlying mechanisms involved may help future research to develop drug candidates for prevention and new treatment for cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hemavathy Harikrishnan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ibrahim Jantan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Lakeside Campus, 47500, Subang Jaya, Selangor, Malaysia. .,Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia.
| | - Akilandeshwari Alagan
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, 600 048, India
| | - Md Areeful Haque
- Department of Pharmacy, International Islamic University Chittagong, Chittagong, 4318, Bangladesh
| |
Collapse
|
8
|
Andreucci M, Faga T, Pisani A, Serra R, Russo D, De Sarro G, Michael A. Quercetin protects against radiocontrast medium toxicity in human renal proximal tubular cells. J Cell Physiol 2017; 233:4116-4125. [PMID: 29044520 DOI: 10.1002/jcp.26213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/12/2017] [Indexed: 11/08/2022]
Abstract
Radiocontrast media (RCM)-induced acute kidney injury (CI-AKI) is a major clinical problem whose pathophysiology is not well understood. Direct toxic effects on renal cells, possibly mediated by reactive oxygen species, have been postulated as contributing to CI-AKI. We investigated the effect of quercetin on human renal proximal tubular (HK-2) cells treated with the radiocontrast medium (RCM) sodium diatrizoate. Quercetin is the most widely studied flavonoid, and the most abundant flavonol present in foods. It has been suggested to have many health benefits, including angioprotective properties and anti-cancer effects. These beneficial effects have been attributed to its antioxidant properties and its ability to modulate cell signaling pathways. Incubation of HK-2 cells with 100 μM quercetin caused a decrease in cell viability and pre-treatment of HK-2 cells with 100 μM quercetin followed by incubation with 75 mgI/ml sodium diatrizoate for 2 hr caused a decrease in cell viability which was worse than in cells treated with diatrizoate alone. However, further incubation of the cells (for 22 hr) after removal of the diatrizoate and quercetin caused a recovery in cell viability in those cells previously treated with quercetin + diatrizoate and quercetin alone. Analysis of signaling molecules by Western blotting showed that in RCM-treated cells receiving initial pre-treatment with quercetin, followed by its removal, an increase in phosphorylation of Akt (Ser473), pSTAT3 (Tyr705), and FoxO3a (Thr32) as well as an induction of Pim-1 and decrease in PARP1 cleavage were observed. Quercetin may alleviate the longer-term toxic effects of RCM toxicity and its possible beneficial effects should be further investigated.
Collapse
Affiliation(s)
- Michele Andreucci
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Teresa Faga
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Antonio Pisani
- Department of Public Health (Nephrology Unit), "Federico II" University, Naples, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, "Magna Graecia" University, Catanzaro, Italy
| | - Domenico Russo
- Department of Public Health (Nephrology Unit), "Federico II" University, Naples, Italy
| | - Giovambattista De Sarro
- Department of Health Sciences (Pharmacology Unit), "Magna Graecia" University, Catanzaro, Italy
| | - Ashour Michael
- Department of Health Sciences (Nephrology Unit), "Magna Graecia" University, Catanzaro, Italy
| |
Collapse
|
9
|
Chae MR, Kang SJ, Lee KP, Choi BR, Kim HK, Park JK, Kim CY, Lee SW. Onion (Allium cepa L.) peel extract (OPE) regulates human sperm motility via protein kinase C-mediated activation of the human voltage-gated proton channel. Andrology 2017; 5:979-989. [PMID: 28805023 DOI: 10.1111/andr.12406] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 06/13/2017] [Accepted: 06/27/2017] [Indexed: 01/14/2023]
Abstract
Onion (Allium cepa L.) and quercetin protect against oxidative damage and have positive effects on multiple functional parameters of spermatozoa, including viability and motility. However, the associated underlying mechanisms of action have not yet been identified. The aim of this study was to investigate the effect of onion peel extract (OPE) on voltage-gated proton (Hv1) channels, which play a critical role in rapid proton extrusion. This process underlies a wide range of physiological processes, particularly male fertility. The whole-cell patch-clamp technique was used to record the changes in Hv1 currents in HEK293 cells transiently transfected with human Hv1 (HVCN1). The effects of OPE on human sperm motility were also analyzed. OPE significantly activated the outward-rectifying proton currents in a concentration-dependent manner, with an EC50 value of 30 μg/mL. This effect was largely reversible upon washout. Moreover, OPE induced an increase in the proton current amplitude and decreased the time constant of activation at 0 mV from 4.9 ± 1.7 to 0.6 ± 0.1 sec (n = 6). In the presence of OPE, the half-activation voltage (V1/2 ) shifted in the negative direction, from 20.1 ± 5.8 to 5.2 ± 8.7 mV (n = 6), but the slope was not significantly altered. The OPE-induced current was profoundly inhibited by 10 μm Zn2+ , the most potent Hv1 channel inhibitor, and was also inhibited by treatment with GF109203X, a specific protein kinase C (PKC) inhibitor. Furthermore, sperm motility was significantly increased in the OPE-treated groups. OPE exhibits protective effects on sperm motility, at least partially via regulation of the proton channel. Moreover, similar effects were exerted by quercetin, the major flavonoid in OPE. These results suggest OPE, which is rich in the potent Hv1 channel activator quercetin, as a possible new candidate treatment for human infertility.
Collapse
Affiliation(s)
- M R Chae
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - S J Kang
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - K P Lee
- Laboratory of Physiology, College of Veterinary Medicine, Chungnam National University, Daejeon, Korea
| | - B R Choi
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - H K Kim
- College of Pharmacy, Kyungsung University, Busan, Korea
| | - J K Park
- Department of Urology, Medical School and Institute for Medical Sciences, Chonbuk National University, Research Institute and Clinical Trial Center of Medical Device of Chonbuk National University Hospital, Jeonju, Korea
| | - C Y Kim
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Korea
| | - S W Lee
- Department of Urology, Samsung Medical Center, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Maalej A, Bouallagui Z, Hadrich F, Isoda H, Sayadi S. Assessment of Olea europaea L. fruit extracts: Phytochemical characterization and anticancer pathway investigation. Biomed Pharmacother 2017; 90:179-186. [DOI: 10.1016/j.biopha.2017.03.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/05/2017] [Accepted: 03/14/2017] [Indexed: 01/23/2023] Open
|
11
|
Amigo-Benavent M, Wang S, Mateos R, Sarriá B, Bravo L. Antiproliferative and cytotoxic effects of green coffee and yerba mate extracts, their main hydroxycinnamic acids, methylxanthine and metabolites in different human cell lines. Food Chem Toxicol 2017; 106:125-138. [PMID: 28506698 DOI: 10.1016/j.fct.2017.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/28/2017] [Accepted: 05/10/2017] [Indexed: 12/18/2022]
Abstract
This work aimed at studying the effects of green coffee bean (GCBE) and yerba mate (YME) extracts, their main phenolic components (5-caffeoylquinic acid, 5-CQA; 3,5-dicaffeoylquinic acid, 3,5-DCQA) and metabolites (ferulic acid, FA; caffeic acid, CA; dihydrocaffeic acid, DHCA; and dihydroferulic acid, DHFA) along with caffeine (CAF) on the viability and proliferation of different human cell lines. Extracts (10-1000 μg/mL) and standards (10-1000 μM) were assayed in colon (Caco-2), lung (A549), oesophageal (OE-33), urinary bladder (T24) human carcinoma cells, and a non-cancer cell line (CCD-18Co). YME significantly reduced viability of cancer cells at all assayed concentrations, the higher doses also reducing cell proliferation. GCBE effects on cell viability were more effective at 100 and 1000 μg/mL, showing modest effects on cell proliferation. The highest doses of 5-CQA and 3,5-DCQA reduced cell viability and proliferation in all cell lines, whereas FA, DHCA and DHFA had lower and variable effects. Caffeine had no effect. Dietary-attainable concentrations (0.1, 1 and 10 μg/mL) of YME were tested for cytotoxicity and reactive oxygen species generation, showing no cytotoxic effect. Low concentrations of all tested compounds were non-cytotoxic to CCD-18Co cells. CONCLUSION YME and to a lower degree GCBE, their phenolic components and metabolites may decrease cancer cell viability and proliferation.
Collapse
Affiliation(s)
- M Amigo-Benavent
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain
| | - S Wang
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain
| | - R Mateos
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain
| | - B Sarriá
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain.
| | - L Bravo
- Institute of Food Science, Technology and Nutrition (ICTAN), Spanish National Research Council (CSIC), C/ Jose Antonio Nováis 10, 28040 Madrid, Spain.
| |
Collapse
|
12
|
Dell'Albani P, Di Marco B, Grasso S, Rocco C, Foti MC. Quercetin derivatives as potent inducers of selective cytotoxicity in glioma cells. Eur J Pharm Sci 2017; 101:56-65. [DOI: 10.1016/j.ejps.2017.01.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 12/25/2022]
|
13
|
Xavier CP, Pereira-Wilson C. Medicinal plants of the genuses Salvia and Hypericum are sources of anticolon cancer compounds: Effects on PI3K/Akt and MAP kinases pathways. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2015.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Novel Investigations of Flavonoids as Chemopreventive Agents for Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2015; 2015:840542. [PMID: 26858957 PMCID: PMC4695650 DOI: 10.1155/2015/840542] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/19/2015] [Indexed: 12/16/2022]
Abstract
We would like to highlight the application of natural products to hepatocellular carcinoma (HCC). We will focus on the natural products known as flavonoids, which target this disease at different stages of hepatocarcinogenesis. In spite of the use of chemotherapy and radiotherapy in treating HCC, patients with HCC still face poor prognosis because of the nature of multidrug resistance and toxicity derived from chemotherapy and radiotherapy. Flavonoids can be found in many vegetables, fruits, and herbal medicines that exert their different anticancer effects via different intracellular signaling pathways and serve as antioxidants. In this review, we will discuss seven common flavonoids that exert different biological effects against HCC via different pathways.
Collapse
|
15
|
Maurya AK, Vinayak M. Modulation of PKC signaling and induction of apoptosis through suppression of reactive oxygen species and tumor necrosis factor receptor 1 (TNFR1): key role of quercetin in cancer prevention. Tumour Biol 2015; 36:8913-24. [DOI: 10.1007/s13277-015-3634-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 06/01/2015] [Indexed: 02/06/2023] Open
|
16
|
Sahpazidou D, Geromichalos GD, Stagos D, Apostolou A, Haroutounian SA, Tsatsakis AM, Tzanakakis GN, Hayes AW, Kouretas D. Anticarcinogenic activity of polyphenolic extracts from grape stems against breast, colon, renal and thyroid cancer cells. Toxicol Lett 2014; 230:218-24. [PMID: 24508987 DOI: 10.1016/j.toxlet.2014.01.042] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/23/2013] [Accepted: 01/27/2014] [Indexed: 11/19/2022]
Abstract
A major part of the wineries' wastes is composed of grape stems which are discarded mainly in open fields and cause environmental problems due mainly to their high polyphenolic content. The grape stem extracts' use as a source of high added value polyphenols presents great interest because this combines a profitable venture with environmental protection close to wine-producing zones. In the present study, at first, the Total Polyphenolic Content (TPC) and the polyphenolic composition of grape stem extracts from four different Greek Vitis vinifera varieties were determined by HPLC methods. Afterwards, the grape stem extracts were examined for their ability to inhibit growth of colon (HT29), breast (MCF-7 and MDA-MB-23), renal (786-0 and Caki-1) and thyroid (K1) cancer cells. The cancer cells were exposed to the extracts for 72 h and the effects on cell growth were evaluated using the SRB assay. The results indicated that all extracts inhibited cell proliferation, with IC₅₀ values of 121-230 μg/ml (MCF-7), 121-184 μg/ml (MDA-MD-23), 175-309 μg/ml (HT29), 159-314 μg/ml (K1), 180-225 μg/ml (786-0) and 134->400 μg/ml (Caki-1). This is the first study presenting the inhibitory activity of grape stem extracts against growth of colon, breast, renal and thyroid cancer cells.
Collapse
Affiliation(s)
- Despina Sahpazidou
- Cell Culture, Molecular Modelling and Drug Design Lab., Symeonidion Research Center, Theagenion Cancer Hospital, Thessaloniki 54639, Greece
| | - George D Geromichalos
- Cell Culture, Molecular Modelling and Drug Design Lab., Symeonidion Research Center, Theagenion Cancer Hospital, Thessaloniki 54639, Greece
| | - Dimitrios Stagos
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Aiolou, Larissa 41221, Greece
| | - Anna Apostolou
- Chemistry Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Serkos A Haroutounian
- Chemistry Laboratory, Agricultural University of Athens, Iera Odos 75, Athens 11855, Greece
| | - Aristidis M Tsatsakis
- Department of Forensic Sciences and Toxicology, Medical School, University of Crete, Heraklion 71003, Greece
| | - George N Tzanakakis
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, Heraklion 71003, Greece
| | - A Wallace Hayes
- Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA; Spherix Consulting, Inc., 6430 Rockledge Drive #503, Bethesda, MD 20817, USA
| | - Dimitrios Kouretas
- Department of Biochemistry and Biotechnology, University of Thessaly, Ploutonos 26 & Aiolou, Larissa 41221, Greece.
| |
Collapse
|
17
|
Panzella L, Verotta L, Goya L, Ramos S, Martín MA, Bravo L, Napolitano A, d'Ischia M. Synthesis and bioactivity profile of 5-s-lipoylhydroxytyrosol-based multidefense antioxidants with a sizeable (poly)sulfide chain. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1710-1717. [PMID: 23256907 DOI: 10.1021/jf302690c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Novel polyfunctionalized antioxidants, 5-S-lipoylhydroxytyrosol (1) and its disulfide 2, trisulfide 3, and tetrasulfide 4, were prepared from tyrosol and dihydrolipoic acid in the presence, when appropriate, of sulfur. Compound 1 exhibited significant activity in the ferric reducing/antioxidant power (FRAP) assay (1.60 Trolox equiv), whereas polysulfides 2-4 were more efficient in the DPPH reduction assay (88-93% reduction vs 68% by Trolox). At 10 μM concentration, all compounds 1-4 proved to be efficient hydroxyl radical scavengers (56-69% inhibition) in a Fenton reaction assay. When administered to human HepG2 cells, 1-4 proved to be nontoxic and exhibited marked protective effects against reactive oxygen species (ROS) generation (60-84% inhibition at 1 μM concentration) and cell damage induced by 400 μM tert-butylhydroperoxide. All compounds 1-4 exhibited overall greater antioxidant activity than hydroxytyrosol.
Collapse
Affiliation(s)
- Lucia Panzella
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Dajas F. Life or death: neuroprotective and anticancer effects of quercetin. JOURNAL OF ETHNOPHARMACOLOGY 2012; 143:383-96. [PMID: 22820241 DOI: 10.1016/j.jep.2012.07.005] [Citation(s) in RCA: 231] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Quercetin is a ubiquitous flavonoid that is present in numerous plants that are utilized in many different cultures for their nervous system and anticancer effects. To better understand the neuroprotective and antiproliferative activities of quercetin, we present a comprehensive review of the divergent actions that contribute to the ethnopharmacological profile of these plants. RESULTS The pharmacological activities of quercetin that modulate antioxidation/oxidation/kinase-signaling pathways might be differentially elicited in neurons compared with malignant cells, ultimately promoting cell survival or death in a cell type- and metabolism-specific manner. Whereas the broad antioxidation and anti-inflammatory activities of quercetin are important for neuronal survival, the oxidative, kinase- and cell cycle-inhibitory, apoptosis-inducing effects of quercetin are essential for its anticancer effects. The diverse mechanistic interactions and activities of quercetin that modulate the phosphorylation state of molecules as well as gene expression would alter the interconnected and concerted intracellular signaling equilibrium, either inhibiting or strengthening survival signals. These mechanisms, which have been mainly observed in in vitro studies, cannot be easily translated into an explanation of the divergent simultaneous neuroprotective and anticancer effects observed in vivo. This is in part due to low bioavailability in plasma and in the brain, as well as the nature of the actual active molecules. CONCLUSIONS Numerous studies have demonstrated the beneficial effects of chronic quercetin intake, which is ethnopharmacologically meaningful, as many plants that are chronically ingested by people contain quercetin. Although quercetin and quercetin-containing plants exhibit potential as therapeutic modalities in neuropathology and in cancer, the data collectively highlight the need to elucidate issues such as bioavailability as well as its correlation with effectiveness at biomarkers in vivo. There would be an increased potentential of these plants for chemoprevention and neuropathology prevention.
Collapse
Affiliation(s)
- Federico Dajas
- UNESCO CHAIR Neuroactive natural products, Department of Neurochemistry, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| |
Collapse
|
19
|
Stagos D, Amoutzias GD, Matakos A, Spyrou A, Tsatsakis AM, Kouretas D. Chemoprevention of liver cancer by plant polyphenols. Food Chem Toxicol 2012; 50:2155-70. [DOI: 10.1016/j.fct.2012.04.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 03/31/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
|
20
|
Granado-Serrano AB, Martín MÁ, Bravo L, Goya L, Ramos S. Quercetin Attenuates TNF-Induced Inflammation in Hepatic Cells by Inhibiting the NF-κB Pathway. Nutr Cancer 2012; 64:588-98. [DOI: 10.1080/01635581.2012.661513] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
21
|
Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin modulates Nrf2 and glutathione-related defenses in HepG2 cells: Involvement of p38. Chem Biol Interact 2011; 195:154-64. [PMID: 22197970 DOI: 10.1016/j.cbi.2011.12.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 11/16/2011] [Accepted: 12/08/2011] [Indexed: 02/06/2023]
Abstract
Dietary flavonoid quercetin has been suggested as a cancer chemopreventive agent, but the mechanisms of action remain unclear. This study investigated the influence of quercetin on p38-MAPK and the potential regulation of the nuclear transcription factor erythroid-2p45-related factor (Nrf2) and the cellular antioxidant/detoxifying defense system related to glutathione (GSH) by p38 in HepG2 cells. Incubation of HepG2 cells with quercetin at a range of concentrations (5-50μM) for 4 or 18h induced a differential effect on the modulation of p38 and Nrf2 in HepG2 cells, 50μM quercetin showed the highest activation of p38 at 4h of treatment and values of p38 similar to those of control cells after 18 h of incubation, together with the inhibition of Nrf2 at both incubation times. Quercetin (50μM) induced a time-dependent activation of p38, which was in concert with a transient stimulation of Nrf2 to provoke its inhibition afterward. Quercetin also increased GSH content, mRNA levels of glutamylcysteine-synthetase (GCS) and expression and/or activity of glutathione-peroxidase, glutathione-reductase and GCS after 4h of incubation, and glutathione-S-transferase after 18h of exposure. Further studies with the p38 specific inhibitor SB203580 showed that the p38 blockage restored the inhibited Nrf2 transcription factor and the enzymatic expression and activity of antioxidant/detoxificant enzymes after 4h exposure. In conclusion, p38-MAPK is involved in the mechanisms of the cell response to quercetin through the modulation of Nrf2 and glutathione-related enzymes in HepG2 cells.
Collapse
Affiliation(s)
- Ana Belén Granado-Serrano
- Department of Metabolism and Nutrition, Institute of Food Science, Technology and Nutrition-ICTAN (Former Instituto del Frío), Consejo Superior de Investigaciones Científicas (CSIC), José Antonio Novais 10, Ciudad Universitaria, Madrid, Spain
| | | | | | | | | |
Collapse
|
22
|
Samuel T, Fadlalla K, Turner T, Yehualaeshet TE. The flavonoid quercetin transiently inhibits the activity of taxol and nocodazole through interference with the cell cycle. Nutr Cancer 2011; 62:1025-35. [PMID: 21058190 DOI: 10.1080/01635581.2010.492087] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Quercetin is a flavonoid with anticancer properties. In this study, we examined the effects of quercetin on cell cycle, viability, and proliferation of cancer cells, either singly or in combination with the microtubule-targeting drugs taxol and nocodazole. Although quercetin induced cell death in a dose-dependent manner, 12.5-50 μM quercetin inhibited the activity of both taxol and nocodazole to induce G2/M arrest in various cell lines. Quercetin also partially restored drug-induced loss in viability of treated cells for up to 72 h. This antagonism of microtubule-targeting drugs was accompanied by a delay in cell cycle progression and inhibition of the buildup of cyclin-B1 at the microtubule organizing center of treated cells. However, quercetin did not inhibit the microtubule targeting of taxol or nocodazole. Despite the short-term protection of cells by quercetin, colony formation and clonogenicity of HCT116 cells were still suppressed by quercetin or quercetin-taxol combination. The status of cell adherence to growth matrix was critical in determining the sensitivity of HCT116 cells to quercetin. We conclude that although long-term exposure of cancer cells to quercetin may prevent cell proliferation and survival, the interference of quercetin with cell cycle progression diminishes the efficacy of microtubule-targeting drugs to arrest cells at G2/M.
Collapse
Affiliation(s)
- Temesgen Samuel
- Pathobiology Department, Tuskegee University, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee, Alabama 36088, USA.
| | | | | | | |
Collapse
|
23
|
Leonarduzzi G, Sottero B, Poli G. Targeting tissue oxidative damage by means of cell signaling modulators: The antioxidant concept revisited. Pharmacol Ther 2010; 128:336-74. [DOI: 10.1016/j.pharmthera.2010.08.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 12/25/2022]
|
24
|
Granado-Serrano AB, Martín MA, Bravo L, Goya L, Ramos S. Quercetin modulates NF-kappa B and AP-1/JNK pathways to induce cell death in human hepatoma cells. Nutr Cancer 2010; 62:390-401. [PMID: 20358477 DOI: 10.1080/01635580903441196] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Quercetin, a dietary flavonoid, has been shown to possess anticarcinogenic properties, but the precise molecular mechanisms of action are not thoroughly elucidated. The aim of this study was to investigate the regulatory effect of quercetin (50 microM) on two main transcription factors (NF-kappa B and AP-1) related to survival/proliferation pathways in a human hepatoma cell line (HepG2) over time. Quercetin induced a significant time-dependent inactivation of the NF-kappa B pathway consistent with a downregulation of the NF-kappa B binding activity (from 15 min onward). These features were in concert with a time-dependent activation (starting at 15 min and maintained up to 18 h) of the AP-1/JNK pathway, which played an important role in the control of the cell death induced by the flavonoid and contributed to the regulation of survival/proliferation (AKT, ERK) and death (caspase-3, p38, unbalance of Bcl-2 proapoptotic and antiapoptotic proteins) signals. These data suggest that NF-kappa B and AP-1 play a main role in the tight regulation of survival/proliferation pathways exerted by quercetin and that the sustained JNK/AP-1 activation and inhibition of NF-kappa B provoked by the flavonoid induced HepG2 death.
Collapse
|
25
|
St. John's Wort constituents modulate P-glycoprotein transport activity at the blood-brain barrier. Pharm Res 2010; 27:811-22. [PMID: 20229133 DOI: 10.1007/s11095-010-0074-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/13/2010] [Indexed: 12/24/2022]
Abstract
PURPOSE The purpose of this study was to investigate the short-term signaling effects of St. John's Wort (SJW) extract and selected SJW constituents on the blood-brain barrier transporter P-glycoprotein and to describe the role of PKC in the signaling. METHODS Cultured porcine brain capillary endothelial cells (PBCEC) and freshly isolated brain capillaries from pig were used as in vitro/ex vivo blood-brain barrier model. SJW modulation of P-glycoprotein function was studied in PBCEC using a calcein-AM uptake assay and in isolated pig brain capillaries using the fluorescent cyclosporine A derivative NBD-CSA and confocal microscopy. RESULTS SJW extract and the constituents hyperforin, hypericin, and quercetin decreased P-glycoprotein transport activity in a dose- and time-dependent manner. SJW extract and hyperforin directly inhibited P-glycoprotein activity, whereas hypericin and quercetin modulated transporter function through a mechanism involving protein kinase C. Quercetin at high concentrations decreased P-glycoprotein transport activity, but increased transporter function at low concentrations. This increase in P-glycoprotein activity was likely due to trafficking and membrane insertion of vesicles containing transporter protein. CONCLUSIONS Our findings provide new insights into the short-term interaction of SJW with P-glycoprotein at the blood-brain barrier. They are of potential relevance given the wide use of SJW as OTC medication and the importance P-glycoprotein has for CNS therapy.
Collapse
|
26
|
Martín MA, Ramos S, Granado-Serrano AB, Rodríguez-Ramiro I, Trujillo M, Bravo L, Goya L. Hydroxytyrosol induces antioxidant/detoxificant enzymes and Nrf2 translocation via
extracellular regulated kinases and phosphatidylinositol-3-kinase/protein kinase B pathways in HepG2 cells. Mol Nutr Food Res 2010; 54:956-66. [DOI: 10.1002/mnfr.200900159] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
27
|
Nishida S, Satoh H. Possible Involvement of Ca Activated K Channels, SK Channel, in the Quercetin-Induced Vasodilatation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2009; 13:361-5. [PMID: 19915698 DOI: 10.4196/kjpp.2009.13.5.361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 08/18/2009] [Accepted: 10/17/2009] [Indexed: 11/15/2022]
Abstract
Effects of quercetin, a kind of flavonoids, on the vasodilating actions were investigated. Among the mechanisms for quercetin-induced vasodilatation in rat aorta, the involvement with the Ca(2+) activated K(+) (K(Ca)) channel was examined. Pretreatment with NE (5 microM) or KCl (60 mM) was carried out and then, the modulation by quercetin of the constriction was examined using rat aorta ring strips (3 mm) at 36.5. Quercetin (0.1 to 100 microM) relaxed the NE-induced vasoconstrictions in a concentration-dependent manner. NO synthesis (NOS) inhibitor, NG-monomethyl-L-arginine acetate (L-NMMA), at 100 microM reduced the quercetin (100 microM)-induced vasodilatation from 97.8+/-3.7% (n=10) to 78.0+/-11.6% (n=5, p<0.05). Another NOS inhibitor, L-NG-nitro arginine methyl ester (L-NAME), at 100 microM also had the similar effect. In the presence of both 100 microM L-NMMA and 10 microM indomethacin, the quercetin-induced vasodilatation was further attenuated by 100 microM tetraethylammonium (TEA, a K(Ca) channel inhibitor). Also TEA decreased the quercetin-induced vasodilatation in endothelium-denuded rat aorta. Used other K(Ca) channel inhibitors, the quercetin-induced vasodilatation was attenuated by 0.3 microM apamin (a SK channel inhibitor), but not by 30 nM charybdotoxin (a BK and IK channel inhibitor). Quercetin caused a concentration-dependent vasodilatation, due to the endothelium-dependent and -independent actions. Also quercetin contributes to the vasodilatation selectively with SK channel on smooth muscle.
Collapse
Affiliation(s)
- Seiichiro Nishida
- Department of Pharmacology, Division of Traditional Herbal Medicine, Nara Medical University, Nara 634-8521, Japan
| | | |
Collapse
|
28
|
Hwang EY, Huh JW, Choi MM, Choi SY, Hong HN, Cho SW. Inhibitory effects of gallic acid and quercetin on UDP-glucose dehydrogenase activity. FEBS Lett 2008; 582:3793-7. [PMID: 18930055 DOI: 10.1016/j.febslet.2008.10.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/26/2008] [Accepted: 10/07/2008] [Indexed: 11/17/2022]
Abstract
We have examined polyphenols as potential inhibitors of UDP-glucose dehydrogenase (UGDH) activity. Gallic acid and quercetin decreased specific activities of UGDH and inhibited the proliferation of MCF-7 human breast cancer cells. Western blot analysis showed that gallic acid and quercetin did not affect UGDH protein expression, suggesting that UGDH activity is inhibited by polyphenols at the post-translational level. Kinetics studies using human UGDH revealed that gallic acid was a non-competitive inhibitor with respect to UDP-glucose and NAD+. In contrast, quercetin showed a competitive inhibition and a mixed-type inhibition with respect to UDP-glucose and NAD+, respectively. These results indicate that gallic acid and quercetin are effective inhibitors of UGDH that exert strong antiproliferative activity in breast cancer cells.
Collapse
Affiliation(s)
- Eun Young Hwang
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul 138-736, Republic of Korea
| | | | | | | | | | | |
Collapse
|