1
|
Pandey P, Khan F, Seifeldin SA, Alshaghdali K, Siddiqui S, Abdelwadoud ME, Vyas M, Saeed M, Mazumder A, Saeed A. Targeting Wnt/β-Catenin Pathway by Flavonoids: Implication for Cancer Therapeutics. Nutrients 2023; 15:2088. [PMID: 37432240 DOI: 10.3390/nu15092088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/17/2023] [Accepted: 04/20/2023] [Indexed: 07/12/2023] Open
Abstract
The Wnt pathway has been recognized for its crucial role in human development and homeostasis, but its dysregulation has also been linked to several disorders, including cancer. Wnt signaling is crucial for the development and metastasis of several kinds of cancer. Moreover, members of the Wnt pathway have been proven to be effective biomarkers and promising cancer therapeutic targets. Abnormal stimulation of the Wnt signaling pathway has been linked to the initiation and advancement of cancer in both clinical research and in vitro investigations. A reduction in cancer incidence rate and an improvement in survival may result from targeting the Wnt/β-catenin pathway. As a result, blocking this pathway has been the focus of cancer research, and several candidates that can be targeted are currently being developed. Flavonoids derived from plants exhibit growth inhibitory, apoptotic, anti-angiogenic, and anti-migratory effects against various malignancies. Moreover, flavonoids influence different signaling pathways, including Wnt, to exert their anticancer effects. In this review, we comprehensively evaluate the influence of flavonoids on cancer development and metastasis by focusing on the Wnt/β-catenin signaling pathway, and we provide evidence of their impact on a number of molecular targets. Overall, this review will enhance our understanding of these natural products as Wnt pathway modulators.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering and Technology, Greater Noida 201306, India
| | - Sara A Seifeldin
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
| | - Khalid Alshaghdali
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
| | - Samra Siddiqui
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
- Department of Public Health, College of Health Sciences, University of Ha'il, Hail 55476, Saudi Arabia
| | - Mohamed Elfatih Abdelwadoud
- Department of Histopathology and Cytology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 11115, Sudan
| | - Manish Vyas
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab 144411, India
| | - Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Ha'il 34464, Saudi Arabia
| | - Avijit Mazumder
- Department of Pharmacology, Noida Institute of Engineering and Technology (Pharmacy Institute), Greater Noida 201306, India
| | - Amir Saeed
- Department of Medical Laboratory Science, College of Applied Medical Sciences, University of Ha'il, Hail 55476, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Hail, Ha'il 55473, Saudi Arabia
- Department of Medical Microbiology, Faculty of Medical Laboratory Sciences, University of Medical Sciences & Technology, Khartoum 11115, Sudan
| |
Collapse
|
2
|
Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. Int J Mol Sci 2022; 24:ijms24010340. [PMID: 36613784 PMCID: PMC9820274 DOI: 10.3390/ijms24010340] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
(‒)-Epigallocatechin-3-gallate (EGCG) is the most abundant polyphenol in green tea. Thanks to multiple interactions with cell surface receptors, intracellular signaling pathways, and nuclear transcription factors, EGCG possesses a wide variety of anti-inflammatory, antioxidant, antifibrotic, anti-remodelation, and tissue-protective properties which may be useful in the treatment of various diseases, particularly in cancer, and neurological, cardiovascular, respiratory, and metabolic disorders. This article reviews current information on the biological effects of EGCG in the above-mentioned disorders in relation to molecular pathways controlling inflammation, oxidative stress, and cell apoptosis.
Collapse
|
3
|
Subbaraj GK, Kumar YS, Kulanthaivel L. Antiangiogenic role of natural flavonoids and their molecular mechanism: an update. THE EGYPTIAN JOURNAL OF INTERNAL MEDICINE 2021. [DOI: 10.1186/s43162-021-00056-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Background
Angiogenesis is the development of new blood vessels from the existing vasculature, which is important in normal developmental processes. Angiogenesis is a key step in tumor growth, invasion, and metastasis. Angiogenesis is necessary for the proper nourishment and removal of metabolic wastes from tumor sites. Therefore, modulation of angiogenesis is considered a therapeutic strategy of great importance for human health.
Main body
Numerous bioactive plant compounds are recently tested for their antiangiogenic potential. Among the most frequently studied are flavonoids which are abundantly present in fruits and vegetables. Flavonoids inhibit angiogenesis and metastasis through the regulation of multiple signaling pathways. Flavonoids regulate the expression of VEGF, matrix metalloproteinases (MMPs), EGFR, and inhibit NFB, PI3-K/Akt, and ERK1/2 signaling pathways, thereby causing strong antiangiogenic effects. This present review aimed to provide up-to-date information on the molecular mechanisms of antiangiogenic properties of natural flavonoids.
Conclusion
Presently developed antiangiogenic drugs in malignant growth treatment do not meet assumptions about adequacy and safety. So further investigations are needed in this field in the future. More recently, flavonoids are the most effective antiangiogenic agent, by inhibition of signaling pathways.
Collapse
|
4
|
Targeting the crosstalk between canonical Wnt/β-catenin and inflammatory signaling cascades: A novel strategy for cancer prevention and therapy. Pharmacol Ther 2021; 227:107876. [PMID: 33930452 DOI: 10.1016/j.pharmthera.2021.107876] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Emerging scientific evidence indicates that inflammation is a critical component of tumor promotion and progression. Most cancers originate from sites of chronic irritation, infections and inflammation, underscoring that the tumor microenvironment is largely orchestrated by inflammatory cells and pro-inflammatory molecules. These inflammatory components are intimately involved in neoplastic processes which foster proliferation, survival, invasion, and migration, making inflammation the primary target for cancer prevention and treatment. The influence of inflammation and the immune system on the progression and development of cancer has recently gained immense interest. The Wnt/β-catenin signaling pathway, an evolutionarily conserved signaling strategy, has a critical role in regulating tissue development. It has been implicated as a major player in cancer development and progression with its regulatory role on inflammatory cascades. Many naturally-occurring and small synthetic molecules endowed with inherent anti-inflammatory properties inhibit this aberrant signaling pathway, making them a promising class of compounds in the fight against inflammatory cancers. This article analyzes available scientific evidence and suggests a crosslink between Wnt/β-catenin signaling and inflammatory pathways in inflammatory cancers, especially breast, gastrointestinal, endometrial, and ovarian cancer. We also highlight emerging experimental findings that numerous anti-inflammatory synthetic and natural compounds target the crosslink between Wnt/β-catenin pathway and inflammatory cascades to achieve cancer prevention and intervention. Current challenges, limitations, and future directions of research are also discussed.
Collapse
|
5
|
Prakash MD, Stojanovska L, Feehan J, Nurgali K, Donald EL, Plebanski M, Flavel M, Kitchen B, Apostolopoulos V. Anti-cancer effects of polyphenol-rich sugarcane extract. PLoS One 2021; 16:e0247492. [PMID: 33690618 PMCID: PMC7946306 DOI: 10.1371/journal.pone.0247492] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/07/2021] [Indexed: 11/25/2022] Open
Abstract
Plant polyphenols have an array of health benefits primarily thought to be related to their high content of anti-oxidants. These are commonly undervalued and knowledge of their biological properties have grown exponentially in the last decade. Polyphenol-rich sugarcane extract (PRSE), a natural extract from sugar cane, is marketed as high in anti-oxidants and polyphenols, but its anti-cancer activity has not been reported previously. We show that, PRSE exerts anti-cancer properties on a range of cancer cells including human (LIM2045) and mouse (MC38, CT26) colon cancer cells lines; human lung cancer (A549), human ovarian cancer (SKOV-3), pro-monocytic human leukemia (U937) and to mouse melanoma (B16) cell lines; whereas no effects were noted on human breast (ZR-75-1) and human colon (HT29) cancer cell lines, as well as to human normal colon epithelial cell line (T4056). Anti-proliferative effects were shown to be mediated via alteration in cytokines, VEGF-1 and NF-κB expression.
Collapse
Affiliation(s)
- Monica D. Prakash
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Lily Stojanovska
- College of Food and Agriculture, Department of Nutrition and Health, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Medicine–Western Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Elizabeth L. Donald
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Matthew Flavel
- Bioactives Division, The Product Makers, Melbourne, Victoria, Australia
| | - Barry Kitchen
- Bioactives Division, The Product Makers, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- * E-mail:
| |
Collapse
|
6
|
Abstract
Healthy vascular endothelial cells regulate vascular tone and permeability, prevent vessel wall inflammation, enhance thromboresistance, and contribute to general vascular health. Furthermore, they perform important functions including the production of vasoactive substances such as nitric oxide (NO) and endothelium-derived hyperpolarizing factors, as well as the regulation of smooth muscle cell functions. Conversely, vascular endothelial dysfunction leads to atherosclerosis, thereby enhancing the risk of stroke, myocardial infarction, and other cardiovascular diseases (CVDs). Observational studies and randomized trials showed that green tea intake was inversely related to CVD risk. Furthermore, evidence indicates that epigallocatechin gallate (EGCG) found in green tea might exert a preventive effect against CVDs. EGCG acts as an antioxidant, inducing NO release and reducing endothelin-1 production in endothelial cells. EGCG enhances the bioavailability of normal NO by reducing levels of the endogenous NO inhibitor asymmetric dimethylarginine. Furthermore, it inhibits the enhanced expression of adhesion molecules such as vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 and attenuates monocyte adhesion. In addition, EGCG prevents enhanced oxidative stress through the Nrf2/HO-1 pathway. These effects indicate that it might prevent the production of reactive oxygen species, inhibit inflammation, and reduce endothelial cell apoptosis during the initial stages of atherosclerosis. The current review summarizes recent research in this area and discusses novel findings regarding the protective effect of EGCG on endothelial dysfunction and CVDs in general.
Collapse
|
7
|
Park C, Lee J, Son C, Lee N. A survey of herbal medicines as tumor
microenvironment‐modulating
agents. Phytother Res 2020; 35:78-94. [PMID: 32658314 DOI: 10.1002/ptr.6784] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/24/2020] [Accepted: 06/06/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Chan‐Ran Park
- Dept. of Clinical Oncology Cheonan Korean Medicine Hospital of Daejeon University Cheonan‐si Republic of Korea
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| | - Jin‐Seok Lee
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| | - Chang‐Gue Son
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| | - Nam‐Hun Lee
- Dept. of Clinical Oncology Cheonan Korean Medicine Hospital of Daejeon University Cheonan‐si Republic of Korea
- Liver and Immunology Research Center Dunsan Korean Medicine Hospital of Daejeon University Daejeon‐si Republic of Korea
- Dept. of Internal Medicine Graduated School of Korean Medicine, University of Daejeon Daejeon‐si Republic of Korea
| |
Collapse
|
8
|
Eckol Alleviates Intestinal Dysfunction during Suckling-to-Weaning Transition via Modulation of PDX1 and HBEGF. Int J Mol Sci 2020; 21:ijms21134755. [PMID: 32635412 PMCID: PMC7370175 DOI: 10.3390/ijms21134755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/14/2022] Open
Abstract
Maintaining intestinal health in livestock is critical during the weaning period. The precise mechanisms of intestinal dysfunction during this period are not fully understood, although these can be alleviated by phlorotannins, including eckol. This question was addressed by evaluating the changes in gene expression and intestinal function after eckol treatment during suckling-to-weaning transition. The biological roles of differentially expressed genes (DEGs) in intestinal development were investigated by assessing intestinal wound healing and barrier functions, as well as the associated signaling pathways and oxidative stress levels. We identified 890 DEGs in the intestine, whose expression was altered by eckol treatment, including pancreatic and duodenal homeobox (PDX)1, which directly regulate heparin-binding epidermal growth factor-like growth factor (HBEGF) expression in order to preserve intestinal barrier functions and promote wound healing through phosphoinositide 3-kinase (PI3K)/AKT and P38 signaling. Additionally, eckol alleviated H2O2-induced oxidative stress through PI3K/AKT, P38, and 5’-AMP-activated protein kinase (AMPK) signaling, improved growth, and reduced oxidative stress and intestinal permeability in pigs during the weaning period. Eckol modulates intestinal barrier functions, wound healing, and oxidative stress through PDX/HBEGF, and improves growth during the suckling-to-weaning transition. These findings suggest that eckol can be used as a feed supplement in order to preserve the intestinal functions in pigs and other livestock during this process.
Collapse
|
9
|
Aggarwal V, Tuli HS, Tania M, Srivastava S, Ritzer EE, Pandey A, Aggarwal D, Barwal TS, Jain A, Kaur G, Sak K, Varol M, Bishayee A. Molecular mechanisms of action of epigallocatechin gallate in cancer: Recent trends and advancement. Semin Cancer Biol 2020; 80:256-275. [PMID: 32461153 DOI: 10.1016/j.semcancer.2020.05.011] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
Abstract
Epigallocatechin gallate (EGCG), also known as epigallocatechin-3-gallate, is an ester of epigallocatechin and gallic acid. EGCG, abundantly found in tea, is a polyphenolic flavonoid that has the potential to affect human health and disease. EGCG interacts with various recognized cellular targets and inhibits cancer cell proliferation by inducing apoptosis and cell cycle arrest. In addition, scientific evidence has illustrated the promising role of EGCG in inhibiting tumor cell metastasis and angiogenesis. It has also been found that EGCG may reverse drug resistance of cancer cells and could be a promising candidate for synergism studies. The prospective importance of EGCG in cancer treatment is owed to its natural origin, safety, and low cost which presents it as an attractive target for further development of novel cancer therapeutics. A major challenge with EGCG is its low bioavailability which is being targeted for improvement by encapsulating EGCG in nano-sized vehicles for further delivery. However, there are major limitations of the studies on EGCG, including study design, experimental bias, and inconsistent results and reproducibility among different study cohorts. Additionally, it is important to identify specific EGCG pharmacological targets in the tumor-specific signaling pathways for development of novel combined therapeutic treatments with EGCG. The present review highlights the ongoing development to identify cellular and molecular targets of EGCG in cancer. Furthermore, the role of nanotechnology-mediated EGCG combinations and delivery systems will also be discussed.
Collapse
Affiliation(s)
- Vaishali Aggarwal
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160 012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India.
| | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka 1205, Bangladesh
| | - Saumya Srivastava
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Erin E Ritzer
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA
| | - Anjana Pandey
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211 004, Uttar Pradesh, India
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala 133 207, Haryana, India
| | - Tushar Singh Barwal
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda 151 001, Punjab, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, Mumbai 400 056, Maharastra, India
| | | | - Mehmet Varol
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, Muğla TR48000, Turkey
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton 34211, FL, USA.
| |
Collapse
|
10
|
Abstract
Metastasis of cells from primary site to distant organs involves a series of sequential steps, and molecules responsible for all these events are understandably considered as potential targets for metastasis management. Tea polyphenols, the secondary metabolites of the tea leaf Camellia sinensis, are increasingly being studied for their antimetastatic properties. In this article, effects of green tea polyphenols (GTP) and black tea polyphenols (BTP) on the molecules and events involved in metastasis are discussed in detail. As tea is a very popular beverage, tea polyphenols are expected to be potential chemopreventive agents that can be taken with normal diet and can be nontoxic due to their natural origin. However, individual variations in metabolic pathways, bioavailability, dose, and toxicity are some important factors that can modify the effectiveness of tea polyphenols within the human system.
Collapse
Affiliation(s)
- Niladri Bag
- Department of Horticulture, Sikkim University, Gangtok, India
| | - Arundhati Bag
- Department of Medical Biotechnology, Sikkim Manipal Institute of Medical Sciences, Sikkim Manipal University, Gangtok, India
| |
Collapse
|
11
|
Mirzaaghaei S, Foroughmand AM, Saki G, Shafiei M. Combination of Epigallocatechin-3-gallate and Silibinin: A Novel Approach for Targeting Both Tumor and Endothelial Cells. ACS OMEGA 2019; 4:8421-8430. [PMID: 31459931 PMCID: PMC6648523 DOI: 10.1021/acsomega.9b00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/30/2019] [Indexed: 05/05/2023]
Abstract
Despite promising benefits, anti-angiogenic strategies have revealed several drawbacks, which necessitate development of novel approaches in cancer therapy strategies including non-small-cell lung cancer, as one of the leading causes of cancer death, all over the world. Combination of flavonoids could be a safe and effective option to synergize their impact on mechanisms controlling tumor angiogenesis. In this study, we have investigated the plausible synergism of epigallocatechin-3-gallate (EGCG) and silibinin on endothelial cells, for the first time. Cell viability and migration were evaluated by survival and wound healing assays, respectively. Then, we assessed the expression of VEGF, VEGFR2, and miR-17-92 cluster using real-time polymerase chain reaction in endothelial-tumor cell and endothelial-fibroblast coculture models. EGCG ± silibinin suppressed endothelial and lung tumor cell migration in lower than 50% toxic doses. VEGF, VEGFR2, and pro-angiogenic members of the miR-17-92 cluster were downregulated upon treatments. Specifically, the combination treatment upregulated an anti-angiogenic member of the cluster, miR-19b. Our data provides evidence to utilize the EGCG and silibinin combination as a novel approach to target tumor angiogenesis in the future.
Collapse
Affiliation(s)
- Somaye Mirzaaghaei
- Department
of Genetics, Faculty of Science, Shahid
Chamran University of Ahvaz, Golestan Boulevard, Ahvaz 6135783151, Iran
| | - Ali M. Foroughmand
- Department
of Genetics, Faculty of Science, Shahid
Chamran University of Ahvaz, Golestan Boulevard, Ahvaz 6135783151, Iran
| | - Ghasem Saki
- Department
of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6135715794, Iran
| | - Mohammad Shafiei
- Department
of Genetics, Faculty of Science, Shahid
Chamran University of Ahvaz, Golestan Boulevard, Ahvaz 6135783151, Iran
| |
Collapse
|
12
|
Antiangiogenic Effect of Flavonoids and Chalcones: An Update. Int J Mol Sci 2017; 19:ijms19010027. [PMID: 29271940 PMCID: PMC5795978 DOI: 10.3390/ijms19010027] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/11/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022] Open
Abstract
Chalcones are precursors of flavonoid biosynthesis in plants. Both flavonoids and chalcones are intensively investigated because of a large spectrum of their biological activities. Among others, anticancer and antiangiogenic effects account for the research interest of these substances. Because of an essential role in cancer growth and metastasis, angiogenesis is considered to be a promising target for cancer treatment. Currently used antiangiogenic agents are either synthetic compounds or monoclonal antibodies. However, there are some limitations of their use including toxicity and high price, making the search for new antiangiogenic compounds very attractive. Nowadays it is well known that several natural compounds may modulate basic steps in angiogenesis. A lot of studies, also from our lab, showed that phytochemicals, including polyphenols, are potent modulators of angiogenesis. This review paper is focused on the antiangiogenic effect of flavonoids and chalcones and discusses possible underlying cellular and molecular mechanisms.
Collapse
|
13
|
Park SA, Surh YJ. Modulation of tumor microenvironment by chemopreventive natural products. Ann N Y Acad Sci 2017. [DOI: 10.1111/nyas.13395] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sin-Aye Park
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences; Seoul National University; Seoul South Korea
- Cancer Research Institute; Seoul National University; Seoul South Korea
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy; Seoul National University; Seoul South Korea
| |
Collapse
|
14
|
Farahmand L, Darvishi B, Majidzadeh‐A K, Madjid Ansari A. Naturally occurring compounds acting as potent anti-metastatic agents and their suppressing effects on Hedgehog and WNT/β-catenin signalling pathways. Cell Prolif 2017; 50:e12299. [PMID: 27669681 PMCID: PMC6529111 DOI: 10.1111/cpr.12299] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/28/2016] [Indexed: 12/19/2022] Open
Abstract
Despite numerous remarkable achievements in the field of anti-cancer therapy, tumour relapse and metastasis still remain major obstacles in improvement of overall cancer survival, which may be at least partially owing to epithelial-mesenchymal transition (EMT). Multiple signalling pathways have been identified in EMT; however, it appears that the role of the Hedgehog and WNT/β-catenin pathways are more prominent than others. These are well-known preserved intracellular regulatory pathways of different cellular functions including proliferation, survival, adhesion and differentiation. Over the last few decades, several naturally occurring compounds have been identified to significantly obstruct several intermediates in Hedgehog and WNT/β-catenin signalling, eventually resulting in suppression of signal transduction. This article highlights the current state of knowledge associated with Hedgehog and WNT/β-catenin, their involvement in metastasis through EMT processes and introduction of the most potent naturally occurring agents with capability of suppressing them, eventually overcoming tumour relapse, invasion and metastasis.
Collapse
Affiliation(s)
- L. Farahmand
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
| | - B. Darvishi
- Recombinant Proteins DepartmentBreast Cancer Research CenterACECRTehranIran
| | - K. Majidzadeh‐A
- Cancer Genetics DepartmentBreast Cancer Research CenterACECRTehranIran
- Tasnim Biotechnology Research Center (TBRC)school of medicineAJA University of Medical SciencesTehranIran
| | - A. Madjid Ansari
- Cancer Alternative and Complementary Medicine DepartmentBreast Cancer Research CenterACECRTehranIran
| |
Collapse
|
15
|
Guo J, Yu W, Su H, Pang X. Genomic landscape of gastric cancer: molecular classification and potential targets. SCIENCE CHINA-LIFE SCIENCES 2016; 60:126-137. [PMID: 27460193 DOI: 10.1007/s11427-016-0034-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 04/06/2016] [Indexed: 12/11/2022]
Abstract
Gastric cancer imposes a considerable health burden worldwide, and its mortality ranks as the second highest for all types of cancers. The limited knowledge of the molecular mechanisms underlying gastric cancer tumorigenesis hinders the development of therapeutic strategies. However, ongoing collaborative sequencing efforts facilitate molecular classification and unveil the genomic landscape of gastric cancer. Several new drivers and tumorigenic pathways in gastric cancer, including chromatin remodeling genes, RhoA-related pathways, TP53 dysregulation, activation of receptor tyrosine kinases, stem cell pathways and abnormal DNA methylation, have been revealed. These newly identified genomic alterations await translation into clinical diagnosis and targeted therapies. Considering that loss-of-function mutations are intractable, synthetic lethality could be employed when discussing feasible therapeutic strategies. Although many challenges remain to be tackled, we are optimistic regarding improvements in the prognosis and treatment of gastric cancer in the near future.
Collapse
Affiliation(s)
- Jiawei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weiwei Yu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hui Su
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Xiufeng Pang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
16
|
Dandawate P, Padhye S, Ahmad A, Sarkar FH. Novel strategies targeting cancer stem cells through phytochemicals and their analogs. Drug Deliv Transl Res 2015; 3:165-82. [PMID: 24076568 DOI: 10.1007/s13346-012-0079-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer stem cells (CSCs) are cells that exist within a tumor with a capacity of self-renewal and an ability to differentiate, giving rise to heterogeneous populations of cancer cells. These cells are increasingly being implicated in resistance to conventional therapeutics and have also been implicated in tumor recurrence. Several cellular signaling pathways including Notch, Wnt, phosphoinositide-3-kinase-Akt-mammalian target of rapamycin pathways, and known markers such as CD44, CD133, CD166, ALDH, etc. have been associated with CSCs. Here, we have reviewed our current understanding of self-renewal pathways and factors that help in the survival of CSCs with special emphasis on those that have been documented to be modulated by well characterized natural agents such as curcumin, sulforaphane, resveratrol, genistein, and epigallocatechin gallate. With the inclusion of a novel derivative of curcumin, CDF, we showcase how natural agents can be effectively modified to increase their efficacy, particularly against CSCs. We hope that this article will generate interest among researchers for further mechanistic and clinical studies exploiting the cancer preventive and therapeutic role of nutraceuticals by targeted elimination of CSCs.
Collapse
Affiliation(s)
- Prasad Dandawate
- ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune, Pune 411001, India
| | | | | | | |
Collapse
|
17
|
Bao B, Li Y, Ahmad A, Azmi AS, Bao G, Ali S, Banerjee S, Kong D, Sarkar FH. Targeting CSC-related miRNAs for cancer therapy by natural agents. Curr Drug Targets 2013; 13:1858-68. [PMID: 23140295 DOI: 10.2174/138945012804545515] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/09/2012] [Accepted: 11/03/2012] [Indexed: 12/22/2022]
Abstract
The theory of cancer stem cells (CSCs) has provided evidence on fundamental clinical implications because of the involvement of CSCs in cell migration, invasion, metastasis, and treatment resistance, which leads to the poor clinical outcome of cancer patients. Therefore, targeting CSCs will provide a novel therapeutic strategy for the treatment and/or prevention of tumors. However, the regulation of CSCs and its signaling pathways during tumorigenesis are not well understood. MicroRNAs (miRNAs) have been proved to act as key regulators of the post-transcriptional regulation of genes, which involve in a wide array of biological processes including tumorigenesis. The altered expressions of miRNAs are associated with poor clinical outcome of patients diagnosed with a variety of tumors. Therefore, emerging evidence strongly suggest that miRMAs play critical roles in tumor development and progression. Emerging evidence also suggest that miRNAs participate in the regulation of tumor cell growth, migration, invasion, angiogenesis, drug resistance, and metastasis. Moreover, miRNAs such as let-7, miR-21, miR-22, miR-34, miR-101, miR-146a, and miR-200 have been found to be associated with CSC phenotype and function mediated through targeting oncogenic signaling pathways. In this article, we will discuss the role of miRNAs in the regulation of CSC phenotype and function during tumor development and progression. We will also discuss the potential role of naturally occurring agents (nutraceuticals) as potent anti-tumor agents that are believed to function by targeting CSC-related miRNAs.
Collapse
Affiliation(s)
- Bin Bao
- Departments of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yu Y, Deng Y, Lu BM, Liu YX, Li J, Bao JK. Green tea catechins: a fresh flavor to anticancer therapy. Apoptosis 2013; 19:1-18. [DOI: 10.1007/s10495-013-0908-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Bao B, Azmi AS, Ali S, Ahmad A, Li Y, Banerjee S, Kong D, Sarkar FH. The biological kinship of hypoxia with CSC and EMT and their relationship with deregulated expression of miRNAs and tumor aggressiveness. BIOCHIMICA ET BIOPHYSICA ACTA 2012; 1826:272-96. [PMID: 22579961 PMCID: PMC3788359 DOI: 10.1016/j.bbcan.2012.04.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/25/2012] [Accepted: 04/28/2012] [Indexed: 12/13/2022]
Abstract
Hypoxia is one of the fundamental biological phenomena that are intricately associated with the development and aggressiveness of a variety of solid tumors. Hypoxia-inducible factors (HIF) function as a master transcription factor, which regulates hypoxia responsive genes and has been recognized to play critical roles in tumor invasion, metastasis, and chemo-radiation resistance, and contributes to increased cell proliferation, survival, angiogenesis and metastasis. Therefore, tumor hypoxia with deregulated expression of HIF and its biological consequence lead to poor prognosis of patients diagnosed with solid tumors, resulting in higher mortality, suggesting that understanding of the molecular relationship of hypoxia with other cellular features of tumor aggressiveness would be invaluable for developing newer targeted therapy for solid tumors. It has been well recognized that cancer stem cells (CSCs) and epithelial-to-mesenchymal transition (EMT) phenotypic cells are associated with therapeutic resistance and contribute to aggressive tumor growth, invasion, metastasis and believed to be the cause of tumor recurrence. Interestingly, hypoxia and HIF signaling pathway are known to play an important role in the regulation and sustenance of CSCs and EMT phenotype. However, the molecular relationship between HIF signaling pathway with the biology of CSCs and EMT remains unclear although NF-κB, PI3K/Akt/mTOR, Notch, Wnt/β-catenin, and Hedgehog signaling pathways have been recognized as important regulators of CSCs and EMT. In this article, we will discuss the state of our knowledge on the role of HIF-hypoxia signaling pathway and its kinship with CSCs and EMT within the tumor microenvironment. We will also discuss the potential role of hypoxia-induced microRNAs (miRNAs) in tumor development and aggressiveness, and finally discuss the potential effects of nutraceuticals on the biology of CSCs and EMT in the context of tumor hypoxia.
Collapse
Affiliation(s)
- Bin Bao
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Asfar S. Azmi
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Shadan Ali
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Aamir Ahmad
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Yiwei Li
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Sanjeev Banerjee
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Dejuan Kong
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - Fazlul H. Sarkar
- Department of Pathology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
20
|
Karki R, Kang YR, Kim CH, Kwak KS, Kim JA, Lee ES. Hydroxychalcones as Potential Anti-Angiogenic Agent. B KOREAN CHEM SOC 2012. [DOI: 10.5012/bkcs.2012.33.9.2925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Chang CM, Chang PY, Tu MG, Lu CC, Kuo SC, Amagaya S, Lee CY, Jao HY, Chen MY, Yang JS. Epigallocatechin gallate sensitizes CAL-27 human oral squamous cell carcinoma cells to the anti-metastatic effects of gefitinib (Iressa) via synergistic suppression of epidermal growth factor receptor and matrix metalloproteinase-2. Oncol Rep 2012; 28:1799-807. [PMID: 22923287 DOI: 10.3892/or.2012.1991] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/30/2012] [Indexed: 11/06/2022] Open
Abstract
Human head and neck squamous cell carcinoma (HNSCC) is a major cause of cancer-related death during the last decade due to its related metastasis and poor treatment outcomes. Gefitinib (Iressa), a tyrosine kinase inhibitor has been reported to reduce the metastatic abilities of oral cancer. Previous studies have shown that epigallocatechin gallate (EGCG), a green tea polyphenol, possesses cancer chemopreventive and anticancer activity. However, the mechanisms involved in the suppression of invasion and metastasis of human oral cancer cells following co-incubation with gefitinib and EGCG remain poorly understood. In the present study, we attempted to investigate the synergistic effects of a combined treatment of gefitinib and EGCG in CAL-27 cells in vitro and to elucidate the underlying molecular mechanisms associated with the supression of cell migration and invasion. In the present study, we found that the individual treatments or the combined treatment of gefitinib and EGCG synergistically inhibited the invasion and migration of CAL-27 cells using Transwell invasion and wound-healing scratch assays, respectively. Similarly, gefitinib in combination with EGCG synergistically attenuated enzymatic activity and the protein expression of MMP-2 in CAL-27 cells. Furthermore, individual or combined treatment with EGCG and gefitinib suppressed the protein expression of p-EGFR and the phosphorylated protein levels of ERK, JNK, p38 and AKT and displayed inhibitory effects on metastatic ability of CAL-27 cells. Combined effects of EGCG and gefitinib-altered anti-metastatic actions for related gene expression were observed using DNA microarray analysis. Importantly, EGCG sensitizes CAL-27 cells to gefitinib-suppressed phosphorylation of epidermal growth factor receptor (EGFR in vitro. Taken together, our results suggest that the synergistic suppression of the metastatic ability of CAL-27 cells after EGCG and gefitinib individual or combined treatment are mediated through mitogen-activated protein kinase (MAPK) signaling. Our novel findings provide potential insights into the mechanism involved with synergistic responses of gefitinib and EGCG against the progression of oral cancer.
Collapse
Affiliation(s)
- Chia-Ming Chang
- Department of Dentistry, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chan JYW, Koon JCM, Liu X, Detmar M, Yu B, Kong SK, Fung KP. Polyphyllin D, a steroidal saponin from Paris polyphylla, inhibits endothelial cell functions in vitro and angiogenesis in zebrafish embryos in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:64-69. [PMID: 21658438 DOI: 10.1016/j.jep.2011.04.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 02/08/2011] [Accepted: 04/11/2011] [Indexed: 05/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Angiogenesis, the process of blood vessel formation, is critical to tumour growth. The importance of angiogenesis in tumour development has lead to the development of anti-angiogenic strategies to inhibit tumour growth. In this study, polyphyllin D (PD), an active component in Chinese herb, Paris polyphylla, was evaluated for its potential anti-angiogenic effects. MATERIALS AND METHODS The inhibitory effects of PD on three important processes involved in angiogenesis, i.e. proliferation, migration and differentiation were examined using human microvascular endothelial cell line HMEC-1 by MTT assay, scratch assay and tube formation assay, respectively. Using zebrafish embryos as an animal model of angiogenesis, the anti-angiogenic effect of PD was further verified in vivo. RESULTS PD suppressed the growth of HMEC-1 cells at 0.1-0.4 μM without toxic effects. At 0.3 μM and 0.4 μM, PD significantly inhibited endothelial cell migration and capillary tube formation. About 70% of the zebrafish embryos showed defects in intersegmental vessel formation upon treatment with PD at concentrations of 0.156 μM and 0.313 μM. CONCLUSION The anti-angiogenic effects of PD have been explored in the study which implied a potential therapeutic development of PD in cancer treatment.
Collapse
Affiliation(s)
- Judy Yuet-Wa Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Multiple cellular signaling pathways have been involved in the processes of cancer cell invasion and metastasis. Among many signaling pathways, Wnt and Hedgehog (Hh) signaling pathways are critically involved in embryonic development, in the biology of cancer stem cells (CSCs) and in the acquisition of epithelial to mesenchymal transition (EMT), and thus this article will remain focused on Wnt and Hh signaling. Since CSCs and EMT are also known to be responsible for cancer cell invasion and metastasis, the Wnt and Hedgehog signaling pathways are also intimately associated with cancer invasion and metastasis. Emerging evidence suggests the beneficial role of chemopreventive agents commonly known as nutraceutical in cancer. Among many such agents, soy isoflavones, curcumin, green tea polyphenols, 3,3'-diindolylmethane, resveratrol, lycopene, vitamin D, etc. have been found to prevent, reverse, or delay the carcinogenic process. Interestingly, these agents have also shown to prevent or delay the progression of cancer, which could in part be due to their ability to attack CSCs or EMT-type cells by attenuating the Wnt and Hedgehog signaling pathways. In this review, we summarize the current state of our knowledge on the role of Wnt and Hedgehog signaling pathways, and their targeted inactivation by chemopreventive agents (nutraceuticals) for the prevention of tumor progression and/or treatment of human malignancies.
Collapse
|
24
|
Examining the genomic influence of skin antioxidants in vitro. Mediators Inflamm 2010; 2010. [PMID: 20706672 PMCID: PMC2913633 DOI: 10.1155/2010/230450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/13/2010] [Indexed: 12/24/2022] Open
Abstract
A series of well-known, purified antioxidants including: Resveratrol, Epigallocatechin Gallate (EGCG), Genistein, Rosavin, Puerarin, Chlorogenic Acid, Propolis and two newer unexplored isoflavonoids isolated from Maclura pomifera (Osage Orange) including Pomiferin and Osajin, were applied to Normal Human Dermal Fibroblasts (NHDF) and Normal Human Dermal Keratinocytes (NHEK) for 24 hours. The resulting treated cells were then examined using human gene microarrays supplied by Agilent. These chips typically have somewhere on the order of 30,000 individual genes which are expressed in the human genome. For our study, this large list of genes was reduced to 205 principal genes thought to be important for skin and each individual ingredient was examined for its influence on the culled list of genes. Working on a hypothesis that there may be some common genes which are either upregulated or downregulated by all or most of these ingredients, a short list of genes for each cell line was developed. What appears to emerge from these studies is that several genes in the gene pool that was screened are influenced by most or all of the molecules of interest. Genes that appear to be upregulated in both cell lines by all the ingredients include: ACLY, AQP3, COX1, NOS3, and PLOD3. Genes that appear to be downregulated in both cell lines by all ingredients include only PGR.
Collapse
|
25
|
Abstract
Age-associated changes within an individual are inherently complex and occur at multiple levels of organismal function. The overall decline in function of various tissues is known to play a key role in both aging and the complex etiology of certain age-associated diseases such as Alzheimer's disease (AD) and cancer. Continuing research highlights the dynamic capacity of polyphenols to protect against age-associated disorders through a variety of important mechanisms. Numerous lines of evidence suggest that dietary polyphenols such as resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin have the capacity to mitigate age-associated cellular damage induced via metabolic production of reactive oxygen species (ROS). However, recently acquired evidence also demonstrates a likely role for these polyphenols as anticancer agents capable of preventing formation of new vasculature in neoplastic tissues. Polyphenols have also been shown to possess other anticancer properties such as specific cell-signaling actions that may stimulate the activity of the regulatory protein SIRT1. Additionally, polyphenolic compounds have demonstrated their inhibitory effects against chronic vascular inflammation associated with atherosclerosis. These increasingly well-documented results have begun to provide a basis for considering the use of polyphenols in the development of novel therapies for certain human diseases. And while the mechanisms by which these effects occur are yet to be fully understood, it is evident that further investigation may yield a potential use for polyphenols as pharmacological interventions against specific age-associated diseases.
Collapse
Affiliation(s)
- Brannon L Queen
- Department of Biology, University of Alabama at Birmingham, AL 35294, USA
| | | |
Collapse
|
26
|
Sagara Y, Miyata Y, Nomata K, Hayashi T, Kanetake H. Green tea polyphenol suppresses tumor invasion and angiogenesis in N-butyl-(-4-hydroxybutyl) nitrosamine-induced bladder cancer. Cancer Epidemiol 2010; 34:350-4. [PMID: 20362526 DOI: 10.1016/j.canep.2010.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 03/02/2010] [Accepted: 03/03/2010] [Indexed: 11/25/2022]
Abstract
BACKGROUND Green tea polyphenol (GTP) suppresses malignancy in bladder cancer cell lines. However, the detail of its anti-carcinogenic effect in vivo is not fully understood. This study investigated the effect of GTP on bladder tumor size and angiogenesis in mice given N-butyl-(-4-hydroxybutyl) nitrosamine (BBN), with and without GTP. METHODS Eight-week-old female C3H/He mice were treated with and without 0.05% BBN solution for 14 or 24 weeks. In addition, they were also treated with and without 0.5% GTP solution for the same periods. Histopathological diagnosis was established using hematoxylin and eosin staining, and microvessel density (MVD) was estimated by counting CD34- and von Willebrand factor-positive vessels in the tumor area. RESULTS At 14 weeks, cancer cells were detected in BBN and BBN+GTP mice [5/14 (35.7%) and 3/14 (21.4%), respectively, p=0.678]. At 24 weeks, the incidence of cancer cells was also similar between the groups (BBN+GTP: 61.9% vs. BBN: 82.6%; p=0.179). However, the frequency of invasive tumors in BBN+GTP mice was significantly lower (23.8%; p=0.030) than in those given BBN alone (65.2%). Tumor volume and MVD of intratumoral and stromal region in the BBN+GTP group were also significantly lower than in BBN mice. CONCLUSION The results showed that GTP had no anti-carcinogenic effect, but inhibited tumor growth and invasion in mice with established bladder cancer, at least in part through the regulation of angiogenesis. Our data suggest that GTP seems to suppress tumor development in bladder cancer.
Collapse
Affiliation(s)
- Yuji Sagara
- Department of Urology, Nagasaki University School of Medicine, 1-7-1 Sakamoto, Nagasaki, Japan
| | | | | | | | | |
Collapse
|
27
|
Cui YF, Shi L, Qin H, Liu S. Research progress in mechanisms of the anticancer effects of green tea polyphenol (-)-epigallocatechin-3-gallate. Shijie Huaren Xiaohua Zazhi 2009; 17:229-235. [DOI: 10.11569/wcjd.v17.i3.229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Green tea is a worldwide popular beverage, which is found to have a broad anticancer activity. Polyphenol, one of the major constituents of green tea, is composed of catechins, mainly (-)-epigallocatechin-3-gallate (EGCG). It is known anticancer effects of green tea are associated with this component. It has been well established that EGCG has strong anticancer effects. Studies have shown that the mechanisms through which EGCG exerts its anticarcinogenesis potential are very complex, such as cell division, apoptosis induction, angiogenesis inhibition, and so on. Recently, many new findings have been reported, like the action on 67 kDa Laminin receptors and AKT signaling pathway, which are not well covered by the previous researches. The mechanisms of its anticancer effects are becoming clear. In this paper we mainly discussed the mechanisms of anticancer effects of EGCG, based on the latest findings and proved conclusions, in hope of providing rationale for future cancer managements and giving enlightenment to the design of next-generation chemotherapeutics.
Collapse
|
28
|
Biotech paper watch. Biotechnol J 2008. [DOI: 10.1002/biot.200890101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|