1
|
Lin C, Lin P, Lin H, Yao H, Liu S, He R, Chen H, Teng Z, Hoffman RM, Ye J, Zhu G. SLC26A3/NHERF2-IκB/NFκB/p65 feedback loop suppresses tumorigenesis and metastasis in colorectal cancer. Oncogenesis 2023; 12:41. [PMID: 37573425 PMCID: PMC10423209 DOI: 10.1038/s41389-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/25/2023] [Accepted: 07/28/2023] [Indexed: 08/14/2023] Open
Abstract
Colorectal cancer (CRC) is a formidable disease due to the intricate mechanisms that drive its proliferation and metastasis. Despite significant progress in cancer research, the integration of these mechanisms that influence cancer cell behavior remains elusive. Therefore, it is imperative to comprehensively elucidate the underlying mechanisms driving CRC proliferation and metastasis. In this study, we reported a novel role of SLC26A3 in suppressing CRC progression. We found that SLC26A3 expression was downregulated in CRC, which was proportionally correlated with survival. Our in vivo and in vitro experiments demonstrated that up-regulation of SLC26A3 inhibited CRC proliferation and metastasis, while down-regulation of SLC26A3 promoted CRC progression by modulating the expression level of IκB. Furthermore, we identified NHERF2 as a novel interacting protein of SLC26A3 responsible for stabilizing the IκB protein and removing ubiquitination modification. Mechanistically, SLC26A3 augmented the interaction between NHERF2 and IκB, subsequently reducing its degradation. This process inhibited the dissociation of p65 from the IκB/p65/p50 complex and reduced the translocation of p65 from the cytoplasm to the nucleus. Moreover, our investigation revealed that NF-κB/p65 directly bound to the promoter of SLC26A3, leading to a decline in its mRNA expression. Thus, SLC26A3 impeded the nuclear translocation of NF-κB/p65, enhancing the transcription of SLC26A3 and establishing a positive regulatory feedback loop in CRC cells. Collectively, these results suggest that a SLC26A3/NHERF2-IκB/NF-κB/p65 signaling loop suppresses proliferation and metastasis in CRC cells. These findings propose a novel SLC26A3-driven signaling loop that regulates proliferation and metastasis in CRC, providing promising therapeutic interventions and prognostic targets for the management of CRC.
Collapse
Affiliation(s)
- Chunlin Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Penghang Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Huayan Lin
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Hengxin Yao
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Songyi Liu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Ruofan He
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Hui Chen
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Zuhong Teng
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, 350000, China
| | - Robert M Hoffman
- AntiCancer, Inc, San Diego, CA, USA
- Department of Surgery, University of California, San Diego, CA, USA
| | - Jianxin Ye
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| | - Guangwei Zhu
- Department of Gastrointestinal Surgery 2 Section, Institute of Abdominal Surgery, Key Laboratory of accurate diagnosis and treatment of cancer, The First Hospital Affiliated to Fujian Medical University, Fuzhou, 350005, China.
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Yu XT, Chen M, Guo J, Zhang J, Zeng T. Noninvasive detection and interpretation of gastrointestinal diseases by collaborative serum metabolite and magnetically controlled capsule endoscopy. Comput Struct Biotechnol J 2022; 20:5524-5534. [PMID: 36249561 PMCID: PMC9550535 DOI: 10.1016/j.csbj.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 09/15/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal diseases are complex diseases that occur in the gastrointestinal tract. Common gastrointestinal diseases include chronic gastritis, peptic ulcers, inflammatory bowel disease, and gastrointestinal tumors. These diseases may manifest a long course, difficult treatment, and repeated attacks. Gastroscopy and mucosal biopsy are the gold standard methods for diagnosing gastric and duodenal diseases, but they are invasive procedures and carry risks due to the necessity of sedation and anesthesia. Recently, several new approaches have been developed, including serological examination and magnetically controlled capsule endoscopy (MGCE). However, serological markers lack lesion information, while MGCE images lack molecular information. This study proposes combining these two technologies in a collaborative noninvasive diagnostic scheme as an alternative to the standard procedures. We introduce an interpretable framework for the clinical diagnosis of gastrointestinal diseases. Based on collected blood samples and MGCE records of patients with gastrointestinal diseases and comparisons with normal individuals, we selected serum metabolite signatures by bioinformatic analysis, captured image embedding signatures by convolutional neural networks, and inferred the location-specific associations between these signatures. Our study successfully identified five key metabolite signatures with functional relevance to gastrointestinal disease. The combined signatures achieved discrimination AUC of 0.88. Meanwhile, the image embedding signatures showed different levels of validation and testing accuracy ranging from 0.7 to 0.9 according to different locations in the gastrointestinal tract as explained by their specific associations with metabolite signatures. Overall, our work provides a new collaborative noninvasive identification pipeline and candidate metabolite biomarkers for image auxiliary diagnosis. This method should be valuable for the noninvasive detection and interpretation of gastrointestinal and other complex diseases.
Collapse
Affiliation(s)
- Xiang-Tian Yu
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,Corresponding authors at: Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai, China (X.-T. Yu); Guangzhou Laboratory, Guangzhou, China (T. Zeng).
| | - Ming Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jingyi Guo
- Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tao Zeng
- Guangzhou Laboratory, Guangzhou, China,Corresponding authors at: Clinical Research Center, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Yishan Road 600, Shanghai, China (X.-T. Yu); Guangzhou Laboratory, Guangzhou, China (T. Zeng).
| |
Collapse
|
3
|
Xi Y, Liu M, Xu S, Hong H, Chen M, Tian L, Xie J, Deng P, Zhou C, Zhang L, He M, Chen C, Lu Y, Reiter RJ, Yu Z, Pi H, Zhou Z. Inhibition of SERPINA3N-dependent neuroinflammation is essential for melatonin to ameliorate trimethyltin chloride-induced neurotoxicity. J Pineal Res 2019; 67:e12596. [PMID: 31332839 DOI: 10.1111/jpi.12596] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/10/2019] [Accepted: 07/12/2019] [Indexed: 12/14/2022]
Abstract
Trimethyltin chloride (TMT) is a potent neurotoxin that causes neuroinflammation and neuronal cell death. Melatonin is a well-known anti-inflammatory agent with significant neuroprotective activity. Male C57BL/6J mice were intraperitoneally injected with a single dose of melatonin (10 mg/kg) before exposure to TMT (2.8 mg/kg, ip). Thereafter, the mice received melatonin (10 mg/kg, ip) once a day for another three consecutive days. Melatonin dramatically alleviated TMT-induced neurotoxicity in mice by attenuating hippocampal neuron loss, inhibiting epilepsy-like seizures, and ameliorating memory deficits. Moreover, melatonin markedly suppressed TMT-induced neuroinflammatory responses and astrocyte activation, as shown by a decrease in inflammatory cytokine production as well as the downregulation of neurotoxic reactive astrocyte phenotype markers. Mechanistically, serine peptidase inhibitor clade A member 3N (SERPINA3N) was identified as playing a central role in the protective effects of melatonin based on quantitative proteome and bioinformatics analysis. Most importantly, melatonin significantly suppressed TMT-induced SERPINA3N upregulation at both the mRNA and protein levels. The overexpression of Serpina3n in the mouse hippocampus abolished the protective effects of melatonin on TMT-induced neuroinflammation and neurotoxicity. Melatonin protected cells against TMT-induced neurotoxicity by inhibiting SERPINA3N-mediated neuroinflammation. Melatonin may be a promising and practical agent for reducing TMT-induced neurotoxicity in clinical practice.
Collapse
Affiliation(s)
- Yu Xi
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyu Liu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Shuzhen Xu
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huihui Hong
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyan Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Li Tian
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Jia Xie
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Ping Deng
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chao Zhou
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Lei Zhang
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Mindi He
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Chunhai Chen
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Yonghui Lu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, USA
| | - Zhengping Yu
- Department of Occupational Health, Third Military Medical University, Chongqing, China
| | - Huifeng Pi
- Department of Occupational Health, Third Military Medical University, Chongqing, China
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Zhou Zhou
- Department of Environmental Medicine, and Department of Emergency Medicine of First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Allen JM, Jaggers RM, Solden LM, Loman BR, Davies RH, Mackos AR, Ladaika CA, Berg BM, Chichlowski M, Bailey MT. Dietary Oligosaccharides Attenuate Stress-Induced Disruptions in Immune Reactivity and Microbial B-Vitamin Metabolism. Front Immunol 2019; 10:1774. [PMID: 31417554 PMCID: PMC6681768 DOI: 10.3389/fimmu.2019.01774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/15/2019] [Indexed: 01/12/2023] Open
Abstract
Background: Exposure to stressful stimuli dysregulates inflammatory processes and alters the gut microbiota. Prebiotics, including long-chain fermentable fibers and milk oligosaccharides, have the potential to limit inflammation through modulation of the gut microbiota. To determine whether prebiotics attenuate stress-induced inflammation and microbiota perturbations, mice were fed either a control diet or a diet supplemented with galactooligosaccharides, polydextrose and sialyllactose (GOS+PDX+SL) or sialyllactose (SL) for 2 weeks prior to and during a 6-day exposure to a social disruption stressor. Spleens were collected for immunoreactivity assays. Colon contents were examined for stressor- and diet- induced changes in the gut microbiome and metabolome through 16S rRNA gene sequencing, shotgun metagenomic sequencing and UPLC-MS/MS. Results: Stress increased circulating IL-6 and enhanced splenocyte immunoreactivity to an ex vivo LPS challenge. Diets containing GOS+PDX+SL or SL alone attenuated these responses. Stress exposure resulted in large changes to the gut metabolome, including robust shifts in amino acids, peptides, nucleotides/nucleosides, tryptophan metabolites, and B vitamins. Multiple B vitamins were inversely associated with IL-6 and were augmented in mice fed either GOS+PDX+SL or SL diets. Stressed mice exhibited distinct microbial communities with lower abundances of Lactobacillus spp. and higher abundances of Bacteroides spp. Diet supplementation with GOS+PDX+SL, but not SL alone, orthogonally altered the microbiome and enhanced the growth of Bifidobacterium spp. Metagenome-assembled genomes (MAGs) from mice fed the GOS+PDX+SL diet unveiled genes in a Bifidobacterium MAG for de novo B vitamin synthesis. B vitamers directly attenuated the stressor-induced exacerbation of cytokine production in LPS-stimulated splenocytes. Conclusions: Overall, these data indicate that colonic metabolites, including B vitamins, are responsive to psychosocial stress. Dietary prebiotics reestablish colonic B vitamins and limit stress-induced inflammation.
Collapse
Affiliation(s)
- Jacob M Allen
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Lindsey M Solden
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Brett R Loman
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Ronald H Davies
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Amy R Mackos
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Christopher A Ladaika
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States
| | - Brian M Berg
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, United States
| | - Maciej Chichlowski
- Mead Johnson Pediatric Nutrition Institute, Evansville, IN, United States
| | - Michael T Bailey
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
5
|
Bessler H, Djaldetti M. Vitamin B6 Modifies the Immune Cross-Talk between Mononuclear and Colon Carcinoma Cells. Folia Biol (Praha) 2016; 62:47-52. [PMID: 27085010 DOI: 10.14712/fb2016062010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The role of vitamin B6 as a key component in a number of biological events has been well established. Based on the relationship between chronic inflammation and carcinogenesis on the one hand, and the interaction between immune and cancer cells expressed by modulated cytokine production on the other hand, the aim of the present work was to examine the possibility that vitamin B6 affects cancer development by an interference in the cross-talk between human peripheral blood mononuclear cells (PBMC) and those from two colon carcinoma cell lines. Both non-stimulated PBMC and mononuclear cells induced for cytokine production by HT-29 and RKO cells from human colon carcinoma lines were incubated without and with 4, 20 and 100 μg/ml of pyridoxal hydrochloride (vitamin B6) and secretion of TNF-α, IL-1β, IL-6, IFN-γ, IL-10, and IL-1ra was examined. Vit B6 caused a dose-dependent decrease in production of all cytokines examined, except for that of IL-1ra. The results indicate that vitamin B6 exerts an immunomodulatory effect on human PBMC. The finding that production of inflammatory cytokines is more pronounced when PBMC are in contact with malignant cells and markedly inhibited by the vitamin suggests an additional way by which vitamin B6 may exert its carcinopreventive effect.
Collapse
Affiliation(s)
- H Bessler
- Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Petah Tiqva, and the Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| | - M Djaldetti
- Laboratory for Immunology and Hematology Research, Rabin Medical Center, Hasharon Hospital, Petah Tiqva, and the Sackler School of Medicine, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
6
|
Sanada Y, Kumoto T, Suehiro H, Nishimura F, Kato N, Hata Y, Sorisky A, Yanaka N. RASSF6 expression in adipocytes is down-regulated by interaction with macrophages. PLoS One 2013; 8:e61931. [PMID: 23626755 PMCID: PMC3633988 DOI: 10.1371/journal.pone.0061931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 03/17/2013] [Indexed: 12/13/2022] Open
Abstract
Macrophage infiltration into adipose tissue is associated with obesity and the crosstalk between adipocytes and infiltrated macrophages has been investigated as an important pathological phenomenon during adipose tissue inflammation. Here, we sought to identify adipocyte mRNAs that are regulated by interaction with infiltrated macrophages in vivo. An anti-inflammatory vitamin, vitamin B6, suppressed macrophage infiltration into white adipose tissue and altered mRNA expression. We identified >3500 genes whose expression is significantly altered during the development of obesity in db/db mice, and compared them to the adipose tissue mRNA expression profile of mice supplemented with vitamin B6. We identified PTX3 and MMP3 as candidate genes regulated by macrophage infiltration. PTX3 and MMP3 mRNA expression in 3T3-L1 adipocytes was up-regulated by activated RAW264.7 cells and these mRNA levels were positively correlated with macrophage number in adipose tissue in vivo. Next, we screened adipose genes down-regulated by the interaction with macrophages, and isolated RASSF6 (Ras association domain family 6). RASSF6 mRNA in adipocytes was decreased by culture medium conditioned by activated RAW264.7 cells, and RASSF6 mRNA level was negatively correlated with macrophage number in adipose tissue, suggesting that adipocyte RASSF6 mRNA expression is down-regulated by infiltrated macrophages in vivo. Finally, this study also showed that decreased RASSF6 expression up-regulates mRNA expression of several genes, such as CD44 and high mobility group protein HMGA2. These data provide novel insights into the biological significance of interactions between adipocytes and macrophages in adipose tissue during the development of obesity.
Collapse
Affiliation(s)
- Yohei Sanada
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Takahiro Kumoto
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Haruna Suehiro
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Fusanori Nishimura
- Department of Dental Science for Health Promotion, Hiroshima University Graduate School of Biomedical Sciences, Hiroshima, Japan
| | - Norihisa Kato
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Alexander Sorisky
- Chronic Disease Program, Ottawa Hospital Research Institute, Departments of Medicine and of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Noriyuki Yanaka
- Department of Molecular and Applied Bioscience, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
- * E-mail:
| |
Collapse
|
7
|
Toya K, Hirata A, Ohata T, Sanada Y, Kato N, Yanaka N. Regulation of colon gene expression by vitamin B6 supplementation. Mol Nutr Food Res 2012; 56:641-52. [PMID: 22495988 DOI: 10.1002/mnfr.201100707] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SCOPE Previous studies have shown that vitamin B6 supplementation suppresses the development of colonic aberrant crypt foci (ACF), precursor lesions of colon cancer, and cell proliferation in mice receiving the colonic carcinogen, azoxymethane (AOM). This study investigated the molecular mechanism of these effects of dietary vitamin B6. METHODS AND RESULTS To date, the mechanism by which ACFs develop is not yet fully understood. In a search for factors that play a critical role during ACF development, we examined colon gene expression during early stage of ACF development in AOM-treated mice using DNA microarray analysis. AOM treatment significantly upregulated mRNA closely related to mast cell and cytotoxic T-cell activity. This study also investigated the effect of vitamin B6 supplementation on colon gene expression in AOM-treated mice. We found that vitamin B6 supplementation downregulates Cd8a and Ccl8 mRNA expression, suggesting these candidate genes may play a protective role against colonic ACF development. Furthermore, we examined genomic affects of dietary vitamin B6, and showed that Reg3γ mRNA expression in colons is downregulated by vitamin B6. CONCLUSION This study provides an insight into the genomic activities of dietary vitamin B6 that may be protective against colon tumor development.
Collapse
Affiliation(s)
- Keigo Toya
- Department of Bioresource Science and Technology, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Vitamin B6 is well-known for its role as a cofactor in many enzymatic reactions and recently, several epidemiological studies have highlighted the importance of this vitamin as a protective agent against various cancers: elevated vitamin B6 plasma levels were associated with a lower risk of colorectal cancer development, for example. In vivo studies have shown that vitamin B6 decreased cell proliferation and enhanced the immune response. At the cellular level, antioxidant, pro-apoptotic and anti-angiogenic effects have been identified. At the molecular level, vitamin B6 is able to inhibit the transactivation potential of various nuclear receptors. Interestingly, a recent paper has described the conjugation of vitamin B6 to RIP140 (receptor interacting protein of 140 kDa), a protein that acts as a transcriptional corepressor of nuclear receptors. This post-translational modification increases the transcriptional repression of RIP140 and regulates its subcellular localization and its ability to interact with different protein partners. Finally, vitamin B6 is involved in the methyl donor cycle ant thus, some of the antitumor properties of vitamin B6 may involve an indirect effect on the level of DNA or histone methylation. All of these mechanistic and clinical data justify further studies to decipher the mechanism of action of vitamin B6 and its clinical interest in combination with molecules typically used in chemotherapy or hormonal therapy.
Collapse
|