1
|
Sagris M, Vlachakis PK, Simantiris S, Theofilis P, Gerogianni M, Karakasis P, Tsioufis K, Tousoulis D. From a Cup of Tea to Cardiovascular Care: Vascular Mechanisms of Action. Life (Basel) 2024; 14:1168. [PMID: 39337950 PMCID: PMC11433009 DOI: 10.3390/life14091168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Tea consumption is increasingly recognized for its potential benefits to cardiovascular health. This study reviews the available research, concentrating on the major components of tea and their mechanisms of action in the cardiovascular system. Tea is abundant in bioactive compounds, such as flavonoids and polysaccharides, which possess significant antioxidant and anti-inflammatory properties. These compounds play a crucial role in mitigating oxidative stress and inflammation, thereby supporting cardiovascular health. They enhance endothelial function, leading to improved vascular relaxation and reduced arterial stiffness, and exhibit antithrombotic effects. Additionally, regular tea consumption is potentially associated with better regulation of blood pressure, improved cholesterol profiles, and effective blood sugar control. It has been suggested that incorporating tea into daily dietary habits could be a practical strategy for cardiovascular disease prevention and management. Despite the promising evidence, more rigorous clinical trials are needed to establish standardized consumption recommendations and fully understand long-term effects. This review offers a more comprehensive analysis of the current evidence based on endothelium function and identifies the gaps that future research should address.
Collapse
Affiliation(s)
- Marios Sagris
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Panayotis K Vlachakis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Spyridon Simantiris
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Panagiotis Theofilis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Maria Gerogianni
- Endocrine Unit, 2nd Propaedeutic Department of Internal Medicine, School of Medicine, Research Institute and Diabetes Center, Attikon University Hospital, National and Kapodistrian University of Athens, 12641 Athens, Greece
| | - Paschalis Karakasis
- Second Department of Cardiology, Aristotle University of Thessaloniki, General Hospital Hippokration, 54942 Thessaloniki, Greece
| | - Konstantinos Tsioufis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Dimitris Tousoulis
- Hippokration General Hospital, School of Medicine, National and Kapodistrian University of Athens, 15772 Athens, Greece
| |
Collapse
|
2
|
DeBenedictis JN, Murrell C, Hauser D, van Herwijnen M, Elen B, de Kok TM, van Breda SG. Effects of Different Combinations of Phytochemical-Rich Fruits and Vegetables on Chronic Disease Risk Markers and Gene Expression Changes: Insights from the MiBLEND Study, a Randomized Trial. Antioxidants (Basel) 2024; 13:915. [PMID: 39199161 PMCID: PMC11351619 DOI: 10.3390/antiox13080915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/13/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
Adequate fruit and vegetable (F and V) intake, as recommended by the World Health Organization (over 400 g/day), is linked to reduced chronic disease risk. However, human intervention trials, especially with whole F and V and in complex combinations, are lacking. The MiBlend Study explored the effects of various phytochemical-rich F and V combinations on chronic disease risk markers, phytochemical absorption, and gene expression in blood. This randomized cross-over study involved participants consuming two of seven different F and V blends for 2 weeks (450 g/day), following a 2-week low F and V intake period (50 g/day). Each blend represented major phytochemical classes (flavonoids, anthocyanins, carotenoids, and glucosinolates) or combinations thereof. Markers of chronic disease risk, including DNA damage, oxidative stress, and retinal microvasculature, were measured. Increasing F and V intake significantly improved plasma antioxidant capacity, DNA damage protection, and retinal arteriolar dilation. Flavonoid-rich, carotenoid-rich, and complex blends notably reduced DNA damage susceptibility. Anthocyanin-rich and carotenoid-rich interventions were most effective in boosting antioxidant capacity, while blends high in flavonoids, especially combined with anthocyanins, significantly improved retinal microvasculature. Gene expression analysis revealed changes in DNA repair, signal transduction, and transcription processes, indicating mechanisms for these health benefits. The study suggests specific F and V blends can provide targeted health improvements, emphasizing the importance of both overall F and V intake and the specific phytochemical composition for personalized preventive strategies.
Collapse
Affiliation(s)
- Julia N. DeBenedictis
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Courtney Murrell
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Duncan Hauser
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marcel van Herwijnen
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Bart Elen
- Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Theo M. de Kok
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Simone G. van Breda
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
3
|
Adokwe JB, Waeyeng D, Suwan K, Camsanit K, Kaiduong C, Nuanrat P, Pouyfung P, Yimthiang S, Petchoo J, Satarug S, Khamphaya T. Plant-Based Diet and Glycemic Control in Type 2 Diabetes: Evidence from a Thai Health-Promoting Hospital. Nutrients 2024; 16:619. [PMID: 38474747 DOI: 10.3390/nu16050619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence of type 2 diabetes (T2DM) is associated with diet. While consumption of plant-based foods may reduce blood sugar levels, the impact of consuming plant-based foods on fasting blood sugar levels has not been well defined. This cross-sectional study was conducted at the Health-Promoting Hospital in Pak Phun Municipality, Thailand. It included 61 patients with T2DM and 74 controls matched for age and gender. Dietary intake levels among T2DM and controls were assessed by a validated food-frequency questionnaire from which plant-based-food scores were calculated. This study found significant differences between specific plant foods and fasting blood sugar levels in patients with T2DM. Adherence to a plant-based diet appeared to influence fasting blood sugar levels. Patients who consumed higher amounts of certain vegetables and fruits showed lower fasting blood sugar levels. Diabetic patients consumed more legumes than controls, but the consumption of cereals and nuts/seeds in the two groups were similar. Consumption of nuts and seeds was also associated with a 76.3% reduction in the risk of a T2DM diagnosis. These findings suggest the potential efficacy of glycemic control in T2DM patients. More work is required to explore strategies for preventing and treating metabolic disorders through dietary modification.
Collapse
Affiliation(s)
- Jonah Bawa Adokwe
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Donrawee Waeyeng
- Office of Disease Prevention and Control Region 11, Nakhon Si Thammarat 80000, Thailand
| | - Kanyamon Suwan
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kanchana Camsanit
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Chanakan Kaiduong
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Pawida Nuanrat
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Phisit Pouyfung
- Department of Community Health, Faculty of Public Health, Mahidol University, Bangkok 20100, Thailand
| | - Supabhorn Yimthiang
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Jaruneth Petchoo
- Department of Community Public Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Soisungwan Satarug
- Kidney Disease Research Collaborative, Translational Research Institute Woolloongabba, Brisbane, QLD 4102, Australia
| | - Tanaporn Khamphaya
- Environmental Safety Technology and Health, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Occupational Health and Safety, School of Public Health, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
4
|
Mitigation of Cadmium Toxicity through Modulation of the Frontline Cellular Stress Response. STRESSES 2022. [DOI: 10.3390/stresses2030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cadmium (Cd) is an environmental toxicant of public health significance worldwide. Diet is the main Cd exposure source in the non-occupationally exposed and non-smoking populations. Metal transporters for iron (Fe), zinc (Zn), calcium (Ca), and manganese (Mn) are involved in the assimilation and distribution of Cd to cells throughout the body. Due to an extremely slow elimination rate, most Cd is retained by cells, where it exerts toxicity through its interaction with sulfur-containing ligands, notably the thiol (-SH) functional group of cysteine, glutathione, and many Zn-dependent enzymes and transcription factors. The simultaneous induction of heme oxygenase-1 and the metal-binding protein metallothionein by Cd adversely affected the cellular redox state and caused the dysregulation of Fe, Zn, and copper. Experimental data indicate that Cd causes mitochondrial dysfunction via disrupting the metal homeostasis of this organelle. The present review focuses on the adverse metabolic outcomes of chronic exposure to low-dose Cd. Current epidemiologic data indicate that chronic exposure to Cd raises the risk of type 2 diabetes by several mechanisms, such as increased oxidative stress, inflammation, adipose tissue dysfunction, increased insulin resistance, and dysregulated cellular intermediary metabolism. The cellular stress response mechanisms involving the catabolism of heme, mediated by heme oxygenase-1 and -2 (HO-1 and HO-2), may mitigate the cytotoxicity of Cd. The products of their physiologic heme degradation, bilirubin and carbon monoxide, have antioxidative, anti-inflammatory, and anti-apoptotic properties.
Collapse
|
5
|
Chan SW, Chu TTW, Choi SW, Benzie IFF, Tomlinson B. Impact of short-term bilberry supplementation on glycemic control, cardiovascular disease risk factors, and antioxidant status in Chinese patients with type 2 diabetes. Phytother Res 2021; 35:3236-3245. [PMID: 33599340 DOI: 10.1002/ptr.7038] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/18/2020] [Accepted: 01/15/2021] [Indexed: 12/22/2022]
Abstract
Bilberry (Vaccinium myrtillus L.) is one of the richest natural sources of anthocyanins which are powerful antioxidants and reported to have antiinflammatory, antidyslipidemic, antihypertensive, and hypoglycemic effects. The objective of this study was to assess the effect of bilberry supplementation on biomarkers of glycemic control, lipid profile, antioxidant, and inflammatory status in patients with type 2 diabetes in a randomized, double-blind, placebo-controlled cross-over study. Twenty patients were randomized to receive either bilberry supplementation (1.4 g/day of extract) daily for 4 weeks followed by 6 weeks of washout and then an additional 4 weeks of matching placebo or vice versa. Blood pressure, metabolic parameters, antioxidant status, and oxidative stress were measured before and after each period. Results showed no effect on body weight, blood pressure, or lipid profile. HbA1c was reduced by 0.31 ± 0.58% during bilberry supplementation, but this change was not significantly different from that with placebo. Antioxidant status, oxidative stress, and inflammatory status showed no significant differences across treatments. This short-term study of bilberry supplementation did not show significant effects on cardiovascular risk factors or antioxidant status, but the tendency for improved glycemic control may suggest a longer treatment period may be effective in diabetic patients.
Collapse
Affiliation(s)
- Sze Wa Chan
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong SAR, China
| | - Tanya T W Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| | - Siu Wai Choi
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.,Oral and Maxillofacial Surgery, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Iris F F Benzie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Brian Tomlinson
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China.,Faculty of Medicine, Macau University of Science and Technology, Macau, China
| |
Collapse
|
6
|
Adami GR, Tangney C, Schwartz JL, Dang KC. Gut/Oral Bacteria Variability May Explain the High Efficacy of Green Tea in Rodent Tumor Inhibition and Its Absence in Humans. Molecules 2020; 25:molecules25204753. [PMID: 33081212 PMCID: PMC7594096 DOI: 10.3390/molecules25204753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 02/07/2023] Open
Abstract
Consumption of green tea (GT) and GT polyphenols has prevented a range of cancers in rodents but has had mixed results in humans. Human subjects who drank GT for weeks showed changes in oral microbiome. However, GT-induced changes in RNA in oral epithelium were subject-specific, suggesting GT-induced changes of the oral epithelium occurred but differed across individuals. In contrast, studies in rodents consuming GT polyphenols revealed obvious changes in epithelial gene expression. GT polyphenols are poorly absorbed by digestive tract epithelium. Their metabolism by gut/oral microbial enzymes occurs and can alter absorption and function of these molecules and thus their bioactivity. This might explain the overall lack of consistency in oral epithelium RNA expression changes seen in human subjects who consumed GT. Each human has different gut/oral microbiomes, so they may have different levels of polyphenol-metabolizing bacteria. We speculate the similar gut/oral microbiomes in, for example, mice housed together are responsible for the minimal variance observed in tissue GT responses within a study. The consistency of the tissue response to GT within a rodent study eases the selection of a dose level that affects tumor rates. This leads to the theory that determination of optimal GT doses in a human requires knowledge about the gut/oral microbiome in that human.
Collapse
Affiliation(s)
- Guy R. Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
- Correspondence: ; Tel.: +1-312-996-6251
| | - Christy Tangney
- Department of Clinical Nutrition, College of Health Sciences, Rush University Medical Center, 600 South Paulina St, Room 716 AAC, Chicago, IL 60612, USA;
| | - Joel L. Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| | - Kim Chi Dang
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL 60612, USA; (J.L.S.); (K.C.D.)
| |
Collapse
|
7
|
Watanabe D, Murakami H, Ohno H, Tanisawa K, Konishi K, Tsunematsu Y, Sato M, Miyoshi N, Wakabayashi K, Watanabe K, Miyachi M. Association between dietary intake and the prevalence of tumourigenic bacteria in the gut microbiota of middle-aged Japanese adults. Sci Rep 2020; 10:15221. [PMID: 32939005 PMCID: PMC7495490 DOI: 10.1038/s41598-020-72245-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 08/27/2020] [Indexed: 12/12/2022] Open
Abstract
The relative contribution of diet to colorectal cancer (CRC) incidence is higher than that for other cancers. Animal models have revealed that Escherichia coli containing polyketide synthase (pks+ E. coli) in the gut participates in CRC development. The purpose of this cross-sectional study was to examine the relationship between dietary intake and the prevalence of pks+ E. coli isolated from the microbiota in faecal samples of 223 healthy Japanese individuals. Dietary intake was assessed using a previously validated brief-type self-administered diet history questionnaire. The prevalence of pks+ E. coli was evaluated using faecal samples collected from participants and specific primers that detected pks+ E. coli. The prevalence of pks+ E. coli was 26.9%. After adjusting for baseline confounders, the prevalence of pks+ E. coli was negatively associated with the intake of green tea (odds ratio [OR], 0.59 [95% confidence interval (CI) 0.30-0.88] per 100 g/1,000 kcal increment) and manganese (OR, 0.43 [95% CI 0.22-0.85] per 1 mg/1,000 kcal increment) and was positively associated with male sex (OR, 2.27 [95% CI 1.05-4.91]). While futher studies are needed to validate these findings, these results provide insight into potential dietary interventions for the prevention of CRC.
Collapse
Affiliation(s)
- Daiki Watanabe
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Harumi Ohno
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Kumpei Tanisawa
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Kana Konishi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan
| | - Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Noriyuki Miyoshi
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Keiji Wakabayashi
- School of Food and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8636, Japan.
| |
Collapse
|
8
|
Plant-Derived Bioactives and Oxidative Stress-Related Disorders: A Key Trend towards Healthy Aging and Longevity Promotion. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10030947] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Plants and their corresponding botanical preparations have been used for centuries due to their remarkable potential in both the treatment and prevention of oxidative stress-related disorders. Aging and aging-related diseases, like cardiovascular disease, cancer, diabetes, and neurodegenerative disorders, which have increased exponentially, are intrinsically related with redox imbalance and oxidative stress. Hundreds of biologically active constituents are present in each whole plant matrix, providing promissory bioactive effects for human beings. Indeed, the worldwide population has devoted increased attention and preference for the use of medicinal plants for healthy aging and longevity promotion. In fact, plant-derived bioactives present a broad spectrum of biological effects, and their antioxidant, anti-inflammatory, and, more recently, anti-aging effects, are considered to be a hot topic among the medical and scientific communities. Nonetheless, despite the numerous biological effects, it should not be forgotten that some bioactive molecules are prone to oxidation and can even exert pro-oxidant effects. In this sense, the objective of the present review is to provide a detailed overview of plant-derived bioactives in age-related disorders. Specifically, the role of phytochemicals as antioxidants and pro-oxidant agents is carefully addressed, as is their therapeutic relevance in longevity, aging-related disorders, and healthy-aging promotion. Finally, an eye-opening look into the overall evidence of plant compounds related to longevity is presented.
Collapse
|
9
|
Abstract
Green tea polyphenols may protect cells from UV damage through antioxidant activities and by stimulating the removal of damaged or cross-linked DNA. Recently, DNA repair pathways have been predicted as possible targets of epigallocatechin gallate (EGCG)-initiated signaling. However, whether and how green tea polyphenols can promote nucleotide excision repair and homologous recombination in diverse organisms requires further investigation. In this report, we used the budding yeast, Saccharomyces cerevisiae, as a model to investigate the effects of green tea extract on DNA repair pathways. We first showed that green tea extract increased the survival rate and decreased the frequency of mutations in yeast exposed to UVB-irradiation. Furthermore, green tea extract increased the expression of homologous recombination genes, RFA1, RAD51 and RAD52, and nucleotide excision repair genes, RAD4 and RAD14. Importantly, we further used a specific strand invasion assay to show that green tea extract promotes homologous recombination at double-strand breaks. Thus, green tea extract acts to preserve genome stability by activating DNA repair pathways in yeast. Because homologous recombination repair is highly conserved in yeast and humans, this study demonstrates yeast may be a useful platform for future research to investigate the underlying mechanisms of the bioactive compounds in DNA repair.
Collapse
|
10
|
Azqueta A, Langie SAS, Boutet-Robinet E, Duthie S, Ladeira C, Møller P, Collins AR, Godschalk RWL. DNA repair as a human biomonitoring tool: Comet assay approaches. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 781:71-87. [PMID: 31416580 DOI: 10.1016/j.mrrev.2019.03.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/12/2022]
Abstract
The comet assay offers the opportunity to measure both DNA damage and repair. Various comet assay based methods are available to measure DNA repair activity, but some requirements should be met for their effective use in human biomonitoring studies. These conditions include i) robustness of the assay, ii) sources of inter- and intra-individual variability must be known, iii) DNA repair kinetics should be assessed to optimize sampling timing; and iv) DNA repair in accessible surrogate tissues should reflect repair activity in target tissues prone to carcinogenic effects. DNA repair phenotyping can be performed on frozen and fresh samples, and is a more direct measurement than genomic or transcriptomic approaches. There are mixed reports concerning the regulation of DNA repair by environmental and dietary factors. In general, exposure to genotoxic agents did not change base excision repair (BER) activity, whereas some studies reported that dietary interventions affected BER activity. On the other hand, in vitro and in vivo studies indicated that nucleotide excision repair (NER) can be altered by exposure to genotoxic agents, but studies on other life style related factors, such as diet, are rare. Thus, crucial questions concerning the factors regulating DNA repair and inter-individual variation remain unanswered. Intra-individual variation over a period of days to weeks seems limited, which is favourable for DNA repair phenotyping in biomonitoring studies. Despite this reported low intra-individual variation, timing of sampling remains an issue that needs further investigation. A correlation was reported between the repair activity in easily accessible peripheral blood mononuclear cells (PBMCs) and internal organs for both NER and BER. However, no correlation was found between tumour tissue and blood cells. In conclusion, although comet assay based approaches to measure BER/NER phenotypes are feasible and promising, more work is needed to further optimize their application in human biomonitoring and intervention studies.
Collapse
Affiliation(s)
- Amaya Azqueta
- Department of Pharmacology and Toxicology, University of Navarra, C/Irunlarrea 1, 31009 Pamplona, Spain; IdiSNA, Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.
| | - Sabine A S Langie
- VITO - Sustainable Health, Mol, Belgium; Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Susan Duthie
- School of Pharmacy and Life Sciences, The Robert Gordon University, Riverside East, Garthdee Road, Aberdeen, AB10 7GJ, United Kingdom
| | - Carina Ladeira
- H&TRC- Health & Technology Research Center, ESTeSL- Escola Superior de Tecnologia da Saúde, Instituto Politécnico de Lisboa, Av. D. João II, lote 4.69.01, Parque das Nações, 1990-096 Lisboa, Portugal; Centro de Investigação e Estudos em Saúde Pública, Escola Nacional de Saúde Pública, Universidade Nova de Lisboa, Portugal
| | - Peter Møller
- Department of Public Health, Section of Environmental Health, University of Copenhagen, Øster Farimagsgade 5A, DK-1014 Copenhagen K, Denmark
| | - Andrew R Collins
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Roger W L Godschalk
- Department of Pharmacology & Toxicology, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, The Netherlands
| |
Collapse
|
11
|
Del Bo' C, Marino M, Martini D, Tucci M, Ciappellano S, Riso P, Porrini M. Overview of Human Intervention Studies Evaluating the Impact of the Mediterranean Diet on Markers of DNA Damage. Nutrients 2019; 11:nu11020391. [PMID: 30781873 PMCID: PMC6412605 DOI: 10.3390/nu11020391] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/03/2019] [Accepted: 02/11/2019] [Indexed: 01/26/2023] Open
Abstract
The Mediterranean diet (MD) is characterized by high consumption of fruits, vegetables, cereals, potatoes, poultry, beans, nuts, lean fish, dairy products, small quantities of red meat, moderate alcohol consumption, and olive oil. Most of these foods are rich sources of bioactive compounds which may play a role in the protection of oxidative stress including DNA damage. The present review provides a summary of the evidence deriving from human intervention studies aimed at evaluating the impact of Mediterranean diet on markers of DNA damage, DNA repair, and telomere length. The few results available show a general protective effect of MD alone, or in combination with bioactive-rich foods, on DNA damage. In particular, the studies reported a reduction in the levels of 8-hydroxy-2'⁻deoxyguanosine and a modulation of DNA repair gene expression and telomere length. In conclusion, despite the limited literature available, the results obtained seem to support the beneficial effects of MD dietary pattern in the protection against DNA damage susceptibility. However, further well-controlled interventions are desirable in order to confirm the results obtained and provide evidence-based conclusions.
Collapse
Affiliation(s)
- Cristian Del Bo'
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy.
| | - Mirko Marino
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy.
| | - Daniela Martini
- Human Nutrition Unit, Department of Veterinary Science, University of Parma, 43125 Parma, Italy.
| | - Massimiliano Tucci
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy.
| | - Salvatore Ciappellano
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy.
| | - Patrizia Riso
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy.
| | - Marisa Porrini
- Department of Food, Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
12
|
Pires F, Geraldo VP, Antunes A, Marletta A, Oliveira ON, Raposo M. On the role of epigallocatechin-3-gallate in protecting phospholipid molecules against UV irradiation. Colloids Surf B Biointerfaces 2019; 173:312-319. [DOI: 10.1016/j.colsurfb.2018.09.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/12/2018] [Accepted: 09/25/2018] [Indexed: 02/02/2023]
|
13
|
Adami GR, Tangney CC, Tang JL, Zhou Y, Ghaffari S, Naqib A, Sinha S, Green SJ, Schwartz JL. Effects of green tea on miRNA and microbiome of oral epithelium. Sci Rep 2018; 8:5873. [PMID: 29651001 PMCID: PMC5897334 DOI: 10.1038/s41598-018-22994-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 03/03/2018] [Indexed: 02/07/2023] Open
Abstract
Consumption of green tea (GT) extracts or purified catechins has shown the ability to prevent oral and other cancers and inhibit cancer progression in rodent models, but the evidence for this in humans is mixed. Working with humans, we sought to understand the source of variable responses to GT by examining its effects on oral epithelium. Lingual epithelial RNA and lingual and gingival microbiota were measured before and after 4 weeks of exposure in tobacco smokers, whom are at high risk of oral cancer. GT consumption had on average inconsistent effects on miRNA expression in the oral epithelium. Only analysis that examined paired miRNAs, showing changed and coordinated expression with GT exposure, provided evidence for a GT effect on miRNAs, identifying miRNAs co-expressed with two hubs, miR-181a-5p and 301a-3p. An examination of the microbiome on cancer prone lingual mucosa, in contrast, showed clear shifts in the relative abundance of Streptococcus and Staphylococcus, and other genera after GT exposure. These data support the idea that tea consumption can consistently change oral bacteria in humans, which may affect carcinogenesis, but argue that GT effects on oral epithelial miRNA expression in humans vary between individuals.
Collapse
Affiliation(s)
- Guy R Adami
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, USA.
| | - Christy C Tangney
- Department of Clinical Nutrition, College of Health Sciences, Rush University Medical Center, 1700 W Van Buren St. Suite 425, Chicago, IL, USA
| | - Jessica L Tang
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, USA
| | - Yalu Zhou
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, USA
| | - Saba Ghaffari
- Department of Computer Science and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 2122 Siebel Center, 201N. Goodwin Ave, Urbana, IL, USA
| | - Ankur Naqib
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Saurabh Sinha
- Department of Computer Science and Carl R. Woese Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 2122 Siebel Center, 201N. Goodwin Ave, Urbana, IL, USA
| | - Stefan J Green
- DNA Services Facility, Research Resources Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Joel L Schwartz
- Department of Oral Medicine & Diagnostic Sciences, Center for Molecular Biology of Oral Diseases, College of Dentistry, University of Illinois at Chicago, 801 South Paulina Street, Chicago, IL, USA
| |
Collapse
|
14
|
Selby-Pham SNB, Howell KS, Dunshea FR, Ludbey J, Lutz A, Bennett L. Statistical modelling coupled with LC-MS analysis to predict human upper intestinal absorption of phytochemical mixtures. Food Chem 2017; 245:353-363. [PMID: 29287381 DOI: 10.1016/j.foodchem.2017.10.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/19/2017] [Accepted: 10/19/2017] [Indexed: 12/18/2022]
Abstract
A diet rich in phytochemicals confers benefits for health by reducing the risk of chronic diseases via regulation of oxidative stress and inflammation (OSI). For optimal protective bio-efficacy, the time required for phytochemicals and their metabolites to reach maximal plasma concentrations (Tmax) should be synchronised with the time of increased OSI. A statistical model has been reported to predict Tmax of individual phytochemicals based on molecular mass and lipophilicity. We report the application of the model for predicting the absorption profile of an uncharacterised phytochemical mixture, herein referred to as the 'functional fingerprint'. First, chemical profiles of phytochemical extracts were acquired using liquid chromatography mass spectrometry (LC-MS), then the molecular features for respective components were used to predict their plasma absorption maximum, based on molecular mass and lipophilicity. This method of 'functional fingerprinting' of plant extracts represents a novel tool for understanding and optimising the health efficacy of plant extracts.
Collapse
Affiliation(s)
- Sophie N B Selby-Pham
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia; CSIRO Agriculture and Food, Werribee, Victoria 3030, Australia
| | - Kate S Howell
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank R Dunshea
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joel Ludbey
- CSIRO Information Management and Technology, Clayton South, Victoria 3169, Australia
| | - Adrian Lutz
- Metabolomics Australia, School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Louise Bennett
- CSIRO Agriculture and Food, Werribee, Victoria 3030, Australia.
| |
Collapse
|
15
|
Liu Z, Liu D, Cheng J, Mei S, Fu Y, Lai W, Wang Y, Xu Y, Vo TD, Lynch BS. Lipid-soluble green tea extract: Genotoxicity and subchronic toxicity studies. Regul Toxicol Pharmacol 2017; 86:366-373. [DOI: 10.1016/j.yrtph.2017.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/30/2017] [Accepted: 04/02/2017] [Indexed: 12/24/2022]
|
16
|
Wang EW, Collins AR, Pang MYC, Siu PPM, Lai CKY, Woo J, Benzie IFF. Vitamin D and oxidation-induced DNA damage: is there a connection? Mutagenesis 2016; 31:655-659. [PMID: 27401996 DOI: 10.1093/mutage/gew033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Oxidation-induced damage to DNA can cause mutations, phenotypic changes and apoptosis. Agents that oppose such damage offer potential therapies for disease prevention. Vitamin D administration reportedly lowered DNA damage in type 2 diabetic mice, and higher DNA damage was reported in mononuclear cells of severely asthmatic patients who were vitamin D deficient. We hypothesised that lower vitamin D status associates with higher oxidation-induced DNA damage. Vitamin D deficiency (plasma 25(OH)D < 50 nmol/l) is highly prevalent worldwide, and association with DNA damage has high potential importance and impact in regard to the future health of vitamin D deficient young adults. In this study, oxidation-induced DNA damage in peripheral lymphocytes of 121 young (18-26 years) adults was measured using the formamidopyrimidine DNA glycosylase (FPG)-assisted comet assay. Plasma 25(OH)D was measured by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Correlational analysis was performed between 25(OH)D and DNA damage. Differences in DNA damage across tertiles of 25(OH)D were explored using analysis of variance. DNA damage in those with 25(OH)D <50 nmol and ≥50 nmol/l was compared using the unpaired t-test. Mean (SD) DNA damage (as %DNA in comet tail) and plasma 25(OH)D were, respectively, 18.58 (3.39)% and 44.7 (13.03) nmol/l. Most (82/121; 68%) of the subjects were deficient in vitamin D (25(OH)D <50nmol/l). No significant correlation was seen between 25(OH)D and DNA damage (r = -0.0824; P > 0.05). No significant difference was seen across 25(OH)D tertiles: mean (SD) %DNA in comet tail/25(OH)D nmol/l values in lowest, middle and highest tertiles were, respectively, 18.64 (3.30)/31.6 (4.4), 18.90 (3.98)/42.9 (3.5), 18.19 (2.84)/59.9 (8.5), nor across the binary divide: 18.73 (3.63)% in <50nmol/l group vs. 18.27 (2.84)% in the ≥50 nmol/l group. No association between vitamin D and oxidation-induced DNA damage was observed, but vitamin D deficiency was highly prevalent in the young adults studied, and we cannot rule out an ameliorative effect of correction of vitamin D deficiency on DNA damage.
Collapse
Affiliation(s)
| | - Andrew R Collins
- Department of Nutrition, The University of Oslo, PO Box 1072, Blindern, 0316 Oslo, Norway
| | | | | | - Claudia K Y Lai
- School of Nursing, The Hong Kong Polytechnic University, Yuk Choi Road, Kowloon, Hong Kong and
| | - Jean Woo
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | |
Collapse
|
17
|
Wu SJ. Osthole Attenuates Inflammatory Responses and Regulates the Expression of Inflammatory Mediators in HepG2 Cells Grown in Differentiated Medium from 3T3-L1 Preadipocytes. J Med Food 2015; 18:972-9. [PMID: 25876063 DOI: 10.1089/jmf.2014.3314] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study explored the anti-inflammatory mechanisms by which osthole acted on HepG2 cells cultured in a differentiated medium from cultured 3T3-L1 preadipocyte cells. HepG2 cells, a human liver cell line, were treated with various concentrations of osthole in differentiated media from cultured 3T3-L1 cells to evaluate proinflammatory cytokines, inflammatory mediators, and signaling pathways. We used enzyme-linked immunosorbent assay kits to determine the levels of proinflammatory cytokines, real-time polymerase chain reaction to assay the mRNA expression, and western blot to determine the expression of cyclooxygenase-2 (COX-2) and heme oxygenase-1 (HO-1) proteins. We also investigated inflammatory mechanism pathway members, including mitogen-activated protein kinase (MAPK) and nuclear transcription factor kappa-B (NF-κB). Osthole was able to suppress the levels of proinflammatory cytokines interleukin (IL)-1β and IL-6, as well as chemokines monocyte chemoattractant protein-1 and IL-8. In addition, COX-2 was suppressed and HO-1 expression was increased in a concentration-dependent manner. Osthole was also able to decrease IκB-α phosphorylation and suppress the phosphorylation of MAPKs. These results suggest that osthole has anti-inflammatory effects as demonstrated by the decreased proinflammatory cytokine and mediator production through suppression of the NF-κB and MAPK signaling pathways in HepG2 cells when they are incubated on the differentiated medium from 3T3-L1 cells.
Collapse
Affiliation(s)
- Shu-Ju Wu
- 1 Department of Nutrition and Health Sciences, Chang Gung University of Science and Technology , Tao-Yuan, Taiwan .,2 Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology , Tao-Yuan, Taiwan
| |
Collapse
|
18
|
Choi SW, Yeung VTF, Collins AR, Benzie IFF. Redox-linked effects of green tea on DNA damage and repair, and influence of microsatellite polymorphism in HMOX-1: results of a human intervention trial. Mutagenesis 2014; 30:129-37. [DOI: 10.1093/mutage/geu022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|