1
|
DeBenedictis JN, Baars E, Ochoteco-Asensio J, van Breda SG, de Kok TM. Genetic Variability Impacts Genotoxic and Transcriptome Responses in the Human Colon after the Consumption of Processed Red Meat Products and Those with Added Phytochemical Extracts. Nutrients 2024; 16:425. [PMID: 38337709 PMCID: PMC10857093 DOI: 10.3390/nu16030425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The PHYTOME study investigated the effect of consuming processed meat products on outcomes related to colorectal cancer risk without testing the impact of genetic variability on these responses. This research aims to elucidate the genetic impact on apparent total N-nitroso compound (ATNC) excretion, colonic DNA adduct formation, ex vivo-induced DNA damage, and gene expression changes in colon biopsies of healthy participants. Through a systematic literature review, candidate polymorphisms were selected and then detected using TaqMan and PCR analysis. The effect of genotype on study outcomes was determined via a linear mixed model and analysis of variance. Machine learning was used to evaluate relative allele importance concerning genotoxic responses, which established a ranking of the most protective alleles and a combination of genotypes (gene scores). Participants were grouped by GSTM1 genotype and differentially expressed genes (DEGs), and overrepresented biological pathways were compared between groups. Stratifying participants by ten relevant genes revealed significant variations in outcome responses. After consumption of processed red meat, variations in NQO1 and COMT impacted responses in ATNC levels (µmol/L) (+9.56 for wildtype vs. heterozygous) and DNA adduct levels (pg/µg DNA) (+1.26 for variant vs. wildtype and +0.43 for variant vs. heterozygous), respectively. After phytochemicals were added to the meat, GSTM1 variation impacted changes in DNA adduct levels (-6.12 for deletion vs. wildtype). The gene scores correlated with these responses and DEGs were identified by GSTM1 genotype. The altered pathways specific to the GSTM1 wildtype group included 'metabolism', 'cell cycle', 'vitamin D receptor', and 'metabolism of water-soluble vitamins and co-factors'. Genotype impacted both the potential genotoxicity of processed red meat and the efficacy of protective phytochemical extracts.
Collapse
Affiliation(s)
| | | | | | - Simone G. van Breda
- Toxicogenomics Department, GROW School of Oncology & Reproduction, Faculty of Health, Medicine & Life Sciences, Maastricht University, 6211 LK Maastricht, The Netherlands (J.O.-A.)
| | | |
Collapse
|
2
|
Niedermaier T, Gredner T, Hoffmeister M, Mons U, Brenner H. Impact of Reducing Intake of Red and Processed Meat on Colorectal Cancer Incidence in Germany 2020 to 2050-A Simulation Study. Nutrients 2023; 15:nu15041020. [PMID: 36839378 PMCID: PMC9966277 DOI: 10.3390/nu15041020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND According to the International Agency for Research on Cancer (IARC), there is sufficient evidence for the carcinogenicity of processed meat consumption in humans, specifically regarding colorectal cancer (CRC) risk. Evidence for the carcinogenicity of red meat consumption is more limited but points in the same direction. METHODS A macro-simulation approach was used to calculate age- and sex-specific potential impact fractions in a 30-year period (2020-2050). AIMS We estimated numbers and proportions of future CRC cases preventable under different scenarios of reducing the intake of processed and red meat in the German population. RESULTS Eliminating processed meat intake could reduce the burden of CRC by approximately 205,000 cases in Germany (9.6%) in 2020-2050, 2/3 among males (145,000) and 1/3 among females (60,000). Without red meat intake, approximately 63,000 CRC cases could be avoided (2.9%), 39,000 among males and 24,000 among females. Reductions in the mean consumption of both processed and red meat by one or two servings (each 11 or 22 g) per day would be expected to reduce CRC case numbers by 68,000 (3.1%) and 140,000 (6.5%), respectively. CONCLUSION A reduction in red and processed meat intake might substantially reduce the incidence of CRC in Germany. The means of achieving such a reduction might include price and taxation policies, food labeling, and clearer risk communication aiming to reduce individual intake.
Collapse
Affiliation(s)
- Tobias Niedermaier
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Correspondence:
| | - Thomas Gredner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ute Mons
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Cancer Prevention Unit, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| |
Collapse
|
3
|
Cruz N, Flores M, Urquiaga I, Ávila F. Modulation of 1,2-Dicarbonyl Compounds in Postprandial Responses Mediated by Food Bioactive Components and Mediterranean Diet. Antioxidants (Basel) 2022; 11:1513. [PMID: 36009232 PMCID: PMC9405221 DOI: 10.3390/antiox11081513] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/16/2022] [Accepted: 07/26/2022] [Indexed: 01/17/2023] Open
Abstract
Glycoxidative stress with the consequent generation of advanced glycation end products has been implied in the etiology of numerous non-communicable chronic diseases. During the postprandial state, the levels of 1,2-dicarbonyl compounds can increase, depending on numerous factors, including characteristics of the subjects mainly related to glucose metabolism disorders and nutritional status, as well as properties related to the chemical composition of meals, including macronutrient composition and the presence of dietary bioactive molecules and macromolecules. In this review, we examine the chemical, biochemical, and physiological pathways that contribute to postprandial generation of 1,2-dicarbonyl compounds. The modulation of postprandial 1,2-dicarbonyl compounds is discussed in terms of biochemical pathways regulating the levels of these compounds, as well as the effect of phenolic compounds, dietary fiber, and dietary patterns, such as Mediterranean and Western diets.
Collapse
Affiliation(s)
- Nadia Cruz
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| | - Marcos Flores
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomás, Talca 3460000, Chile;
| | - Inés Urquiaga
- Center for Molecular Nutrition and Chronic Diseases, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago 8331150, Chile;
| | - Felipe Ávila
- Escuela de Nutrición y Dietética, Facultad de Ciencias de la Salud, Universidad de Talca, Campus Lircay, Talca 3460000, Chile;
| |
Collapse
|
4
|
Aloisi CMN, Escher NA, Kim HS, Geisen SM, Fontana GA, Yeo JE, Schärer OD, Sturla SJ. A combination of direct reversion and nucleotide excision repair counters the mutagenic effects of DNA carboxymethylation. DNA Repair (Amst) 2022; 110:103262. [PMID: 35030424 PMCID: PMC9232693 DOI: 10.1016/j.dnarep.2021.103262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 02/03/2023]
Abstract
Distinct cellular DNA damage repair pathways maintain the structural integrity of DNA and protect it from the mutagenic effects of genotoxic exposures and processes. The occurrence of O6-carboxymethylguanine (O6-CMG) has been linked to meat consumption and hypothesized to contribute to the development of colorectal cancer. However, the cellular fate of O6-CMG is poorly characterized and there is contradictory data in the literature as to how repair pathways may protect cells from O6-CMG mutagenicity. To better address how cells detect and remove O6-CMG, we evaluated the role of two DNA repair pathways in counteracting the accumulation and toxic effects of O6-CMG. We found that cells deficient in either the direct repair protein O6-methylguanine-DNA methyltransferase (MGMT), or key components of the nucleotide excision repair (NER) pathway, accumulate higher levels O6-CMG DNA adducts than wild type cells. Furthermore, repair-deficient cells were more sensitive to carboxymethylating agents and displayed an increased mutation rate. These findings suggest that a combination of direct repair and NER circumvent the effects O6-CMG DNA damage.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nora A Escher
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Hyun Suk Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Susanne M Geisen
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Gabriele A Fontana
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Jung-Eun Yeo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Orlando D Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea; Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
5
|
Geisen SM, Aloisi CMN, Huber SM, Sandell ES, Escher NA, Sturla SJ. Direct Alkylation of Deoxyguanosine by Azaserine Leads to O6-Carboxymethyldeoxyguanosine. Chem Res Toxicol 2021; 34:1518-1529. [PMID: 34061515 DOI: 10.1021/acs.chemrestox.0c00471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The O6-alkylguanosine adduct O6-carboxymethyldeoxyguanosine (O6-CMdG) has been detected at elevated levels in blood and tissue samples from colorectal cancer patients and from healthy volunteers after consuming red meat. The diazo compound l-azaserine leads to the formation of O6-CMdG as well as the corresponding methyl adduct O6-methyldeoxyguanosine (O6-MedG) in cells and is therefore in wide use as a chemical probe in cellular studies concerning DNA damage and mutation. However, there remain knowledge gaps concerning the chemical basis of DNA adduct formation by l-azaserine. To characterize O6-CMdG formation by l-azaserine, we carried out a combination of chemical and enzymatic stability and reactivity studies supported by liquid chromatography tandem mass spectrometry for the simultaneous quantification of O6-CMdG and O6-MedG. We found that l-azaserine is stable under physiological and alkaline conditions as well as in active biological matrices but undergoes acid-catalyzed hydrolysis. We show, for the first time, that l-azaserine reacts directly with guanosine (dG) and oligonucleotides to form an O6-serine-CMdG (O6-Ser-CMdG) adduct. Moreover, by characterizing the reaction of dG with l-azaserine, we demonstrate that O6-Ser-CMdG forms as an intermediate that spontaneously decomposes to form O6-CMdG. Finally, we quantified levels of O6-CMdG and O6-MedG in a human cell line exposed to l-azaserine and found maximal adduct levels after 48 h. The findings of this work elucidate the chemical basis of how l-azaserine reacts with deoxyguanosine and support its use as a chemical probe for N-nitroso compound exposure in carcinogenesis research, particularly concerning the identification of pathways and factors that promote adduct formation.
Collapse
Affiliation(s)
- Susanne M Geisen
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Claudia M N Aloisi
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Sabrina M Huber
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Emma S Sandell
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Nora A Escher
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Science and Technology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
6
|
Aloisi CMN, Sandell ES, Sturla SJ. A Chemical Link between Meat Consumption and Colorectal Cancer Development? Chem Res Toxicol 2021; 34:12-23. [PMID: 33417435 DOI: 10.1021/acs.chemrestox.0c00395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
O6-carboxymethylguanine (O6-CMG) is a mutagenic DNA adduct that forms at increased levels when people eat meat. It has been studied as a potential initiating event in colorectal carcinogenesis. It can arise from alkylation of guanine in DNA by electrophilic degradation products of N-nitroso compounds. There is significant data regarding biochemical and cellular process, including DNA repair and translesion DNA synthesis that control O6-CMG accumulation, persistence, and mutagenicity. Mutation spectra arising from the adduct closely resemble common mutations in colorectal cancer; however, gaps remain in understanding the biochemical processes that regulate how and where the damage persists in the genome. Addressing such questions relies on advances in chemistry such as synthesis approaches and bioanalytical methods. Results of research in this area help advance our understanding of the toxicological relevance of O6-CMG-modified DNA. Further attention should focus on understanding how a combination of genetic and environmental factors control its biological persistence and how this information can be used as a basis of biomoniotoring and prevention efforts to help mitigate colon cancer risk.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Emma S Sandell
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Kostka T, Fohrer J, Guigas C, Briviba K, Seiwert N, Fahrer J, Steinberg P, Empl MT. Synthesis and in vitro characterization of the genotoxic, mutagenic and cell-transforming potential of nitrosylated heme. Arch Toxicol 2020; 94:3911-3927. [PMID: 32671443 PMCID: PMC7603461 DOI: 10.1007/s00204-020-02846-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/09/2020] [Indexed: 12/18/2022]
Abstract
Data from epidemiological studies suggest that consumption of red and processed meat is a factor contributing to colorectal carcinogenesis. Red meat contains high amounts of heme, which in turn can be converted to its nitrosylated form, NO-heme, when adding nitrite-containing curing salt to meat. NO-heme might contribute to colorectal cancer formation by causing gene mutations and could thereby be responsible for the association of (processed) red meat consumption with intestinal cancer. Up to now, neither in vitro nor in vivo studies characterizing the mutagenic and cell transforming potential of NO-heme have been published due to the fact that the pure compound is not readily available. Therefore, in the present study, an already existing synthesis protocol was modified to yield, for the first time, purified NO-heme. Thereafter, newly synthesized NO-heme was chemically characterized and used in various in vitro approaches at dietary concentrations to determine whether it can lead to DNA damage and malignant cell transformation. While NO-heme led to a significant dose-dependent increase in the number of DNA strand breaks in the comet assay and was mutagenic in the HPRT assay, this compound tested negative in the Ames test and failed to induce malignant cell transformation in the BALB/c 3T3 cell transformation assay. Interestingly, the non-nitrosylated heme control showed similar effects, but was additionally able to induce malignant transformation in BALB/c 3T3 murine fibroblasts. Taken together, these results suggest that it is the heme molecule rather than the NO moiety which is involved in driving red meat-associated carcinogenesis.
Collapse
Affiliation(s)
- Tina Kostka
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany.
- Institute of Food Science and Human Nutrition, Leibniz University Hannover, Hannover, Germany.
| | - Jörg Fohrer
- Institute of Organic Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Claudia Guigas
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Karlis Briviba
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Nina Seiwert
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Jörg Fahrer
- Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
- Max Rubner-Institut, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
8
|
Bear TLK, Dalziel JE, Coad J, Roy NC, Butts CA, Gopal PK. The Role of the Gut Microbiota in Dietary Interventions for Depression and Anxiety. Adv Nutr 2020; 11:890-907. [PMID: 32149335 PMCID: PMC7360462 DOI: 10.1093/advances/nmaa016] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 12/16/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
There is emerging evidence that an unhealthy dietary pattern may increase the risk of developing depression or anxiety, whereas a healthy dietary pattern may decrease it. This nascent research suggests that dietary interventions could help prevent, or be an alternative or adjunct therapy for, depression and anxiety. The relation, however, is complex, affected by many confounding variables, and is also likely to be bidirectional, with dietary choices being affected by stress and depression. This complexity is reflected in the data, with sometimes conflicting results among studies. As the research evolves, all characteristics of the relation need to be considered to ensure that we obtain a full understanding, which can potentially be translated into clinical practice. A parallel and fast-growing body of research shows that the gut microbiota is linked with the brain in a bidirectional relation, commonly termed the microbiome-gut-brain axis. Preclinical evidence suggests that this axis plays a key role in the regulation of brain function and behavior. In this review we discuss possible reasons for the conflicting results in diet-mood research, and present examples of areas of the diet-mood relation in which the gut microbiota is likely to be involved, potentially explaining some of the conflicting results from diet and depression studies. We argue that because diet is one of the most significant factors that affects human gut microbiota structure and function, nutritional intervention studies need to consider the gut microbiota as an essential piece of the puzzle.
Collapse
Affiliation(s)
- Tracey L K Bear
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Julie E Dalziel
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
| | - Jane Coad
- School of Food and Advanced Technology, Massey University, Palmerston North, New Zealand
| | - Nicole C Roy
- Riddet Institute, Massey University, Palmerston North, New Zealand
- AgResearch Ltd Grasslands Research Centre, Palmerston North, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Christine A Butts
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Pramod K Gopal
- Riddet Institute, Massey University, Palmerston North, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
9
|
Watson KM, Gaulke CA, Tsikitis VL. Understanding the microbiome: a primer on the role of the microbiome in colorectal neoplasia. Ann Gastroenterol 2020; 33:223-236. [PMID: 32382225 PMCID: PMC7196612 DOI: 10.20524/aog.2020.0467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer is a leading cause of cancer-related death internationally, with mounting evidence pointing to the role of the microbiome in adenoma and cancer development. This article aims to provide clinicians with a foundation for understanding the field of research into the microbiome. We also illustrate the various ways in which the microbiota have been linked to colorectal cancer, with a specific focus on microbiota with identified virulence factors, and also on the ways that byproducts of microbiota metabolism may result in oncogenesis. We also review strategies for manipulating the microbiome for therapeutic effects.
Collapse
Affiliation(s)
- Katherine M. Watson
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| | | | - Vassiliki Liana Tsikitis
- Department of Surgery, Oregon Health & Science University, Portland, OR (Katherine M. Watson, Vassiliki Liana Tsikitis)
| |
Collapse
|
10
|
Aloisi CMN, Nilforoushan A, Ziegler N, Sturla SJ. Sequence-Specific Quantitation of Mutagenic DNA Damage via Polymerase Amplification with an Artificial Nucleotide. J Am Chem Soc 2020; 142:6962-6969. [PMID: 32196326 PMCID: PMC7192524 DOI: 10.1021/jacs.9b11746] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
DNA mutations can result from replication
errors due to different
forms of DNA damage, including low-abundance DNA adducts induced by
reactions with electrophiles. The lack of strategies to measure DNA
adducts within genomic loci, however, limits our understanding of
chemical mutagenesis. The use of artificial nucleotides incorporated
opposite DNA adducts by engineered DNA polymerases offers a potential
basis for site-specific detection of DNA adducts, but the availability
of effective artificial nucleotides that insert opposite DNA adducts
is extremely limited, and furthermore, there has been no report of
a quantitative strategy for determining how much DNA alkylation occurs
in a sequence of interest. In this work, we synthesized an artificial
nucleotide triphosphate that is selectively inserted opposite O6-carboxymethyl-guanine DNA by an engineered
polymerase and is required for DNA synthesis past the adduct. We characterized
the mechanism of this enzymatic process and demonstrated that the
artificial nucleotide is a marker for the presence and location in
the genome of O6-carboxymethyl-guanine.
Finally, we established a mass spectrometric method for quantifying
the incorporated artificial nucleotide and obtained a linear relationship
with the amount of O6-carboxymethyl-guanine
in the target sequence. In this work, we present a strategy to identify,
locate, and quantify a mutagenic DNA adduct, advancing tools for linking
DNA alkylation to mutagenesis and for detecting DNA adducts in genes
as potential diagnostic biomarkers for cancer prevention.
Collapse
Affiliation(s)
- Claudia M N Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Arman Nilforoushan
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Nathalie Ziegler
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| | - Shana J Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, 8092 Zurich, Switzerland
| |
Collapse
|
11
|
Seiwert N, Heylmann D, Hasselwander S, Fahrer J. Mechanism of colorectal carcinogenesis triggered by heme iron from red meat. Biochim Biophys Acta Rev Cancer 2019; 1873:188334. [PMID: 31783067 DOI: 10.1016/j.bbcan.2019.188334] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the major tumor entities worldwide, with an increasing incidence in younger people. CRC formation is causally linked to various genetic, life-style and dietary risk factors. Among the ladder, the consumption of red meat has emerged as important risk factor contributing to CRC. A large body of evidence shows that heme iron is the critical component of red meat, which promotes colorectal carcinogenesis. In this review, we describe the uptake and cellular fate of both heme and inorganic iron in intestinal epithelial cells. Next, an overview on the DNA damaging properties of heme iron is provided, highlighting the DNA adducts relevant for CRC etiology. Moreover, heme triggered mechanisms leading to colonic hyperproliferation are presented, which are intimately linked to changes in the intestinal microbiota induced by heme. A special focus was set on the impact of heme iron on innate and adaptive immune cells, which could be relevant in the context of CRC. Finally, we recapitulate in vivo studies providing evidence for the tumor-promoting potential of dietary heme iron. Altogether, heme iron affects numerous key pathways involved in the pathogenesis of CRC.
Collapse
Affiliation(s)
- Nina Seiwert
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Daniel Heylmann
- Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany
| | | | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, 55131 Mainz, Germany; Rudolf Buchheim Institute of Pharmacology, Justus Liebig University Giessen, 35392 Giessen, Germany; Division of Food Chemistry and Toxicology, Department of Chemistry, Technical University of Kaiserslautern, 67663 Kaiserslautern, Germany.
| |
Collapse
|
12
|
Abstract
Chemical damage to DNA is a key initiator of adverse biological consequences due to disruption of the faithful reading of the genetic code. For example, O6-alkylguanine ( O6-alkylG) DNA adducts are strongly miscoding during DNA replication when the damaged nucleobase is a template for polymerase-mediated translesion DNA synthesis. Thus, mutations derived from O6-alkylG adducts can have severe adverse effects on protein translation and function and are an early event in the initiation of carcinogenesis. However, the low abundance of these adducts places significant limitations on our ability to relate their presence and biological influences with resultant mutations or disease risk. As a consequence, there is a critical need for novel tools to detect and study the biological role of alkylation adducts. Incorporating DNA bases with altered structures that are derived synthetically is a strategy that has been used widely to interrogate biological processes involving DNA. Such synthetic nucleosides have contributed to our understanding of DNA structure, DNA polymerase (Pol) and repair enzyme function, and to the expansion of the genetic alphabet. This Account describes our efforts toward creating and applying synthetic nucleosides directed at DNA adducts. We synthesized a variety of nucleosides with altered base structures that complement the altered hydrogen bonding capacity and hydrophilicity of O6-alkylG adducts. The heterocyclic perimidinone-derived nucleoside Per was the first of such adduct-directed synthetic nucleosides; it specifically stabilized O6-benzylguanine ( O6-BnG) in a DNA duplex. Structural variants of Per were used to determine hydrogen bonding and base-stacking contributions to DNA duplex stability in templates containing O6-BnG as well as O6-methylguanine ( O6-MeG) adducts. We created synthetic probes able to stabilize damaged over undamaged templates and established how altered hydrogen bonding or base-stacking properties impact DNA duplex stability as a function of adduct structures. This knowledge was then applied to devise a hybridization-based detection strategy involving gold nanoparticles that distinguish damaged from undamaged DNA by colorimetric changes. Furthermore, synthetic nucleosides were used as mechanistic tools to understand chemical determinants such as hydrogen bonding, π-stacking, and size and shape deviations that impact the efficiency and fidelity of DNA adduct bypass by DNA Pols. Finally, we reported the first example of amplifying alkylated DNA, accomplished by combining an engineered polymerase and synthetic triphosphate for which incorporation is templated by a DNA adduct. The presence of the synthetic nucleoside in amplicons could serve as a marker for the presence and location of DNA damage at low levels in DNA strands. Adduct-directed synthetic nucleosides have opened new concepts to interrogate the levels, locations, and biological influences of DNA alkylation.
Collapse
Affiliation(s)
- Michael H. Räz
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| | - Claudia M. N. Aloisi
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| | - Hailey L. Gahlon
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| | - Shana J. Sturla
- Department of Health Sciences and Technology, ETH Zürich, Schmelzbergstrasse 9, Zürich 8092, Switzerland
| |
Collapse
|
13
|
Nieva-Echevarría B, Goicoechea E, Guillén MD. Food lipid oxidation under gastrointestinal digestion conditions: A review. Crit Rev Food Sci Nutr 2018; 60:461-478. [DOI: 10.1080/10408398.2018.1538931] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bárbara Nieva-Echevarría
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - Encarnación Goicoechea
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | - María D. Guillén
- Food Technology, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| |
Collapse
|
14
|
Hemeryck LY, Rombouts C, De Paepe E, Vanhaecke L. DNA adduct profiling of in vitro colonic meat digests to map red vs. white meat genotoxicity. Food Chem Toxicol 2018; 115:73-87. [DOI: 10.1016/j.fct.2018.02.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/28/2023]
|
15
|
da Silveira TFF, de Souza TCL, Carvalho AV, Ribeiro AB, Kuhnle GG, Godoy HT. White açaí juice (Euterpe oleracea): Phenolic composition by LC-ESI-MS/MS, antioxidant capacity and inhibition effect on the formation of colorectal cancer related compounds. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
16
|
Kobayashi J. Effect of diet and gut environment on the gastrointestinal formation of N-nitroso compounds: A review. Nitric Oxide 2017; 73:66-73. [PMID: 28587887 DOI: 10.1016/j.niox.2017.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
Diet is associated with the development of cancer in the gastrointestinal (GI) tract, because dietary nitrate and nitrite are the main nitrosating agents that are responsible for the formation of carcinogenic N-nitroso compounds (NOCs) when nitrosatable substrates, such as amine and amide, are present in the GI tract. However, whether the nitroso compounds become beneficial S-nitroso compounds or carcinogenic NOCs might depend on dietary and environmental factors including food stuffs, gastric acidity, microbial flora, and the mean transit time of digesta. This review focused on GI NOC formation and environmental risk factors affecting its formation to provide appropriate nutritional strategies to prevent the development of GI cancer.
Collapse
Affiliation(s)
- Jun Kobayashi
- Division of Pathophysiology, Department of Clinical Dietetics and Human Nutrition, Faculty of Pharmaceutical Science, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.
| |
Collapse
|
17
|
Van Hecke T, Van Camp J, De Smet S. Oxidation During Digestion of Meat: Interactions with the Diet andHelicobacter pyloriGastritis, and Implications on Human Health. Compr Rev Food Sci Food Saf 2017; 16:214-233. [DOI: 10.1111/1541-4337.12248] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 12/23/2022]
Affiliation(s)
- Thomas Van Hecke
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| | - John Van Camp
- the Unit of Food Chemistry and Human Nutrition; Ghent Univ.; Ghent Belgium
| | - Stefaan De Smet
- the Laboratory for Animal Nutrition and Animal Product Quality; Ghent Univ.; Ghent Belgium
| |
Collapse
|
18
|
Bastide NM, Naud N, Nassy G, Vendeuvre JL, Taché S, Guéraud F, Hobbs DA, Kuhnle GG, Corpet DE, Pierre FHF. Red Wine and Pomegranate Extracts Suppress Cured Meat Promotion of Colonic Mucin-Depleted Foci in Carcinogen-Induced Rats. Nutr Cancer 2017; 69:289-298. [PMID: 28094544 DOI: 10.1080/01635581.2017.1263745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Processed meat intake is carcinogenic to humans. We have shown that intake of a workshop-made cured meat with erythorbate promotes colon carcinogenesis in rats. We speculated that polyphenols could inhibit this effect by limitation of endogenous lipid peroxidation and nitrosation. Polyphenol-rich plant extracts were added to the workshop-made cured meat and given for 14 days to rats and 100 days to azoxymethane-induced rats to evaluate the inhibition of preneoplastic lesions. Colons of 100-d study were scored for precancerous lesions (mucin-depleted foci, MDF), and biochemical end points of peroxidation and nitrosation were measured in urinary and fecal samples. In comparison with cured meat-fed rats, dried red wine, pomegranate extract, α-tocopherol added at one dose to cured meat and withdrawal of erythorbate significantly decreased the number of MDF per colon (but white grape and rosemary extracts did not). This protection was associated with the full suppression of fecal excretion of nitrosyl iron, suggesting that this nitroso compound might be a promoter of carcinogenesis. At optimized concentrations, the incorporation of these plant extracts in cured meat might reduce the risk of colorectal cancer associated with processed meat consumption.
Collapse
Affiliation(s)
- Nadia M Bastide
- a INRA UMR1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, ENVT, INP , Toulouse , France
| | - Nathalie Naud
- a INRA UMR1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, ENVT, INP , Toulouse , France
| | | | | | - Sylviane Taché
- a INRA UMR1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, ENVT, INP , Toulouse , France
| | - Françoise Guéraud
- a INRA UMR1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, ENVT, INP , Toulouse , France
| | - Ditte A Hobbs
- c Department of Food and Nutritional Sciences , University of Reading , Whiteknights , UK
| | - Gunter G Kuhnle
- c Department of Food and Nutritional Sciences , University of Reading , Whiteknights , UK
| | - Denis E Corpet
- a INRA UMR1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, ENVT, INP , Toulouse , France
| | - Fabrice H F Pierre
- a INRA UMR1331, TOXALIM (Research Center in Food Toxicology), Université de Toulouse, ENVT, INP , Toulouse , France
| |
Collapse
|
19
|
Rysman T, Van Hecke T, Van Poucke C, De Smet S, Van Royen G. Protein oxidation and proteolysis during storage and in vitro digestion of pork and beef patties. Food Chem 2016; 209:177-84. [DOI: 10.1016/j.foodchem.2016.04.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 04/01/2016] [Accepted: 04/12/2016] [Indexed: 01/12/2023]
|
20
|
De Smet S, Vossen E. Meat: The balance between nutrition and health. A review. Meat Sci 2016; 120:145-156. [DOI: 10.1016/j.meatsci.2016.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/15/2022]
|
21
|
Hemeryck LY, Rombouts C, Hecke TV, Van Meulebroek L, Bussche JV, De Smet S, Vanhaecke L. In vitro DNA adduct profiling to mechanistically link red meat consumption to colon cancer promotion. Toxicol Res (Camb) 2016; 5:1346-1358. [PMID: 30090439 DOI: 10.1039/c6tx00079g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/19/2016] [Indexed: 01/14/2023] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer type in the world. Epidemiological research has demonstrated that both red and processed meat consumption significantly contribute to CRC risk. In this study, red meat toxicity was investigated by means of simulated gastrointestinal conditions, malondialdehyde (MDA) analysis and UHPLC-(HR)MS(/MS) based DNA adductomics. Since dairy products with high calcium content are associated with a decreased CRC-risk, the possible CRC-protective effects of calcium were assessed as well. The obtained results confirmed the earlier reported finding that heme-rich meat stimulates lipid peroxidation and O6-carboxymethylguanine (O6-CMG) DNA adduct formation during digestion. Calcium carbonate (CaCO3) supplementation resulted in both toxic and anti-toxic effects; i.e. stimulation of O6-CMG production, but reduction of MDA formation. DNA adductome mapping of meat digests revealed a significant interindividual variability. The observed DNA adduct profile also differed according to the digested meat type, uncovering different putative DNA adducts that seem to be associated with digestion of beef or chicken with or without supplemented CaCO3. Formamidopyrimidine-adenine was found to be discriminative for meat digests without added CaCO3, carboxyethylcytosine was significantly higher in beef digests and methoxymethylcytosine (or its hydroxyethylcytosine isomer) was found to be lower in meat digests supplemented with CaCO3. These results demonstrate that DNA adduct formation may be involved in the pathway that links red meat digestion to CRC promotion. In addition, the possible CRC-protective attributes of calcium through anti-oxidant actions could be documented.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Caroline Rombouts
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality , Department of Animal Production , Faculty of Bioscience Engineering , Ghent University , Proefhoevestraat 10 , B-9090 Melle , Belgium
| | - Lieven Van Meulebroek
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Julie Vanden Bussche
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality , Department of Animal Production , Faculty of Bioscience Engineering , Ghent University , Proefhoevestraat 10 , B-9090 Melle , Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis , Department of Veterinary Public Health and Food Safety , Faculty of Veterinary Medicine , Ghent University , Salisburylaan 133 , B-9820 Merelbeke , Belgium .
| |
Collapse
|
22
|
Hemeryck LY, Vanhaecke L. Diet-related DNA adduct formation in relation to carcinogenesis. Nutr Rev 2016; 74:475-89. [PMID: 27330144 DOI: 10.1093/nutrit/nuw017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human diet contributes significantly to the initiation and promotion of carcinogenesis. It has become clear that the human diet contains several groups of natural foodborne chemicals that are at least in part responsible for the genotoxic, mutagenic, and carcinogenic potential of certain foodstuffs. Electrophilic chemicals are prone to attack nucleophilic sites in DNA, resulting in the formation of altered nucleobases, also known as DNA adducts. Since DNA adduct formation is believed to signal the onset of chemically induced carcinogenesis, the DNA adduct-inducing potential of certain foodstuffs has been investigated to gain more insight into diet-related pathways of carcinogenesis. Many studies have investigated diet-related DNA adduct formation. This review summarizes work on known or suspected dietary carcinogens and the role of DNA adduct formation in hypothesized carcinogenesis pathways.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | - Lynn Vanhaecke
- L.Y. Hemeryck and L. Vanhaecke are with the Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
23
|
Van Hecke T, Wouters A, Rombouts C, Izzati T, Berardo A, Vossen E, Claeys E, Van Camp J, Raes K, Vanhaecke L, Peeters M, De Vos WH, De Smet S. Reducing Compounds Equivocally Influence Oxidation during Digestion of a High-Fat Beef Product, which Promotes Cytotoxicity in Colorectal Carcinoma Cell Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1600-1609. [PMID: 26836477 DOI: 10.1021/acs.jafc.5b05915] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We studied the formation of malondialdehyde, 4-hydroxy-nonenal, and hexanal (lipid oxidation products, LOP) during in vitro digestion of a cooked low-fat and high-fat beef product in response to the addition of reducing compounds. We also investigated whether higher LOP in the digests resulted in a higher cyto- and genotoxicity in Caco-2, HT-29 and HCT-116 cell lines. High-fat compared to low-fat beef digests contained approximately 10-fold higher LOP concentrations (all P < 0.001), and induced higher cytotoxicity (P < 0.001). During digestion of the high-fat product, phenolic acids (gallic, ferulic, chlorogenic, and caffeic acid) displayed either pro-oxidant or antioxidant behavior at lower and higher doses respectively, whereas ascorbic acid was pro-oxidant at all doses, and the lipophilic reducing compounds (α-tocopherol, quercetin, and silibinin) all exerted a clear antioxidant effect. During digestion of the low-fat product, the hydrophilic compounds and quercetin were antioxidant. Decreases or increases in LOP concentrations amounted to 100% change versus controls.
Collapse
Affiliation(s)
- Thomas Van Hecke
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - An Wouters
- Center for Oncological Research, University of Antwerp , B-2610 Wilrijk, Belgium
| | - Caroline Rombouts
- Cell Systems and Cellular Imaging Research Group, Ghent University , B-9000 Ghent, Belgium
- Laboratory of Chemical Analysis, Ghent University , B-9820 Merelbeke, Belgium
| | - Tazkiyah Izzati
- Cell Systems and Cellular Imaging Research Group, Ghent University , B-9000 Ghent, Belgium
| | - Alberto Berardo
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - Els Vossen
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - Erik Claeys
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| | - John Van Camp
- Unit of Food Chemistry and Human Nutrition, Ghent University , B-9000 Ghent, Belgium
| | - Katleen Raes
- Laboratory of Food Microbiology and Biotechnology, Ghent University , B-8500 Kortrijk, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Ghent University , B-9820 Merelbeke, Belgium
| | - Marc Peeters
- Center for Oncological Research, University of Antwerp , B-2610 Wilrijk, Belgium
| | - Winnok H De Vos
- Cell Systems and Cellular Imaging Research Group, Ghent University , B-9000 Ghent, Belgium
- Laboratory of Cell Biology & Histology, University of Antwerp , B-2020 Antwerp, Belgium
| | - Stefaan De Smet
- Laboratory of Animal Nutrition and Animal Product Quality, Ghent University , B-9090 Melle, Belgium
| |
Collapse
|
24
|
Steppeler C, Haugen JE, Rødbotten R, Kirkhus B. Formation of Malondialdehyde, 4-Hydroxynonenal, and 4-Hydroxyhexenal during in Vitro Digestion of Cooked Beef, Pork, Chicken, and Salmon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:487-496. [PMID: 26654171 DOI: 10.1021/acs.jafc.5b04201] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Red meat high in heme iron may promote the formation of potentially genotoxic aldehydes during lipid peroxidation in the gastrointestinal tract. In this study, the formation of malondialdehyde (MDA) equivalents measured by the thiobarbituric acid reactive substances (TBARS) method was determined during in vitro digestion of cooked red meat (beef and pork), as well as white meat (chicken) and fish (salmon), whereas analysis of 4-hydroxyhexenal (HHE) and 4-hydroxynonenal (HNE) was performed during in vitro digestion of cooked beef and salmon. Comparing products with similar fat contents indicated that the amount of unsaturated fat and not total iron content was the dominating factor influencing the formation of aldehydes. It was also shown that increasing fat content in beef products caused increasing concentrations of MDA equivalents. The highest levels, however, were found in minced beef with added fish oil high in unsaturated fat. This study indicates that when ingested alone, red meat products low in unsaturated fat and low in total fat content contribute to relatively low levels of potentially genotoxic aldehydes in the gastrointestinal tract.
Collapse
Affiliation(s)
- Christina Steppeler
- Norwegian University of Life Sciences , Department of Food Safety and Infection Biology, P.O. Box 8146, Dep, 0033 Oslo, Norway
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research , Osloveien 1, 1430 Ås, Norway
| | - John-Erik Haugen
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research , Osloveien 1, 1430 Ås, Norway
| | - Rune Rødbotten
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research , Osloveien 1, 1430 Ås, Norway
| | - Bente Kirkhus
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research , Osloveien 1, 1430 Ås, Norway
| |
Collapse
|
25
|
Van Hecke T, Jakobsen LMA, Vossen E, Guéraud F, De Vos F, Pierre F, Bertram HCS, De Smet S. Short-term beef consumption promotes systemic oxidative stress, TMAO formation and inflammation in rats, and dietary fat content modulates these effects. Food Funct 2016; 7:3760-71. [DOI: 10.1039/c6fo00462h] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
High beef consumption induces oxidative stress in gastrointestinal mucosae and extra-gastrointestinal organs such as the heart and kidneys.
Collapse
Affiliation(s)
- Thomas Van Hecke
- Laboratory for Animal Nutrition and Animal Product Quality
- Department of Animal Production
- Ghent University
- Melle
- Belgium
| | | | - Els Vossen
- Laboratory for Animal Nutrition and Animal Product Quality
- Department of Animal Production
- Ghent University
- Melle
- Belgium
| | - Françoise Guéraud
- UMR1331 Toxalim
- INRA
- INP
- UPS
- Team 9 “Prevention and Promotion of Carcinogenesis by Food”
| | - Filip De Vos
- Laboratory of Radiopharmacy
- Department of Pharmaceutical Analysis
- Ghent University
- Ghent
- Belgium
| | - Fabrice Pierre
- UMR1331 Toxalim
- INRA
- INP
- UPS
- Team 9 “Prevention and Promotion of Carcinogenesis by Food”
| | - Hanne C. S. Bertram
- Food
- metabolomics and sensory
- Department of Food Science
- Aarhus University
- Årslev
| | - Stefaan De Smet
- Laboratory for Animal Nutrition and Animal Product Quality
- Department of Animal Production
- Ghent University
- Melle
- Belgium
| |
Collapse
|
26
|
Hemeryck LY, Decloedt AI, Vanden Bussche J, Geboes KP, Vanhaecke L. High resolution mass spectrometry based profiling of diet-related deoxyribonucleic acid adducts. Anal Chim Acta 2015; 892:123-31. [PMID: 26388482 DOI: 10.1016/j.aca.2015.08.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/07/2015] [Indexed: 11/19/2022]
Abstract
Exposure of DNA to endo- and exogenous DNA binding chemicals can result in the formation of DNA adducts and is believed to be the first step in chemically induced carcinogenesis. DNA adductomics is a relatively new field of research which studies the formation of known and unknown DNA adducts in DNA due to exposure to genotoxic chemicals. In this study, a new UHPLC-HRMS(/MS)-based DNA adduct detection method was developed and validated. Four targeted DNA adducts, which all have been linked to dietary genotoxicity, were included in the described method; O(6)-methylguanine (O(6)-MeG), O(6)-carboxymethylguanine (O(6)-CMG), pyrimidopurinone (M1G) and methylhydroxypropanoguanine (CroG). As a supplementary tool for DNA adductomics, a DNA adduct database, which currently contains 123 different diet-related DNA adducts, was constructed. By means of the newly developed method and database, all 4 targeted DNA adducts and 32 untargeted DNA adducts could be detected in different DNA samples. The obtained results clearly demonstrate the merit of the described method for both targeted and untargeted DNA adduct detection in vitro and in vivo, whilst the diet-related DNA adduct database can distinctly facilitate data interpretation.
Collapse
Affiliation(s)
- Lieselot Y Hemeryck
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Anneleen I Decloedt
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Julie Vanden Bussche
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium
| | - Karen P Geboes
- Division of Digestive Oncology, Department of Gastroenterology, University Hospital Ghent, De Pintelaan 185, Ghent, 9000, Belgium
| | - Lynn Vanhaecke
- Laboratory of Chemical Analysis, Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, 9820, Belgium.
| |
Collapse
|
27
|
Decloedt AI, Bailly-Chouriberry L, Vanden Bussche J, Garcia P, Popot MA, Bonnaire Y, Vanhaecke L. In vitro simulation of the equine hindgut as a tool to study the influence of phytosterol consumption on the excretion of anabolic-androgenic steroids in horses. J Steroid Biochem Mol Biol 2015; 152:180-92. [PMID: 26094581 DOI: 10.1016/j.jsbmb.2015.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/08/2015] [Accepted: 06/12/2015] [Indexed: 11/23/2022]
Abstract
Traditionally, steroids other than testosterone are considered to be synthetic, anabolic steroids. Nevertheless, in stallions, it has been shown that β-Bol can originate from naturally present testosterone. Other precursors, including phytosterols from feed, have been put forward to explain the prevalence of low levels of steroids (including β-Bol and ADD) in urine of mares and geldings. However, the possible biotransformation and identification of the precursors has thus far not been investigated in horses. To study the possible endogenous digestive transformation, in vitro simulations of the horse hindgut were set up, using fecal inocula obtained from eight different horses. The functionality of the in vitro model was confirmed by monitoring the formation of short-chain fatty acids and the consumption of amino acids and carbohydrates throughout the digestion process. In vitro digestion samples were analyzed with a validated UHPLC-MS/MS method. The addition of β-Bol gave rise to the formation of ADD (androsta-1,4-diene-3,17-dione) or αT. Upon addition of ADD to the in vitro digestions, the transformation of ADD to β-Bol was observed and this for all eight horses' inocula, in line with previously obtained in vivo results, again confirming the functionality of the in vitro model. The transformation ratio proved to be inoculum and thus horse dependent. The addition of pure phytosterols (50% β-sitosterol) or phytosterol-rich herbal supplements on the other hand, did not induce the detection of β-Bol, only low concentrations of AED, a testosterone precursor, could be found (0.1 ng/mL). As such, the digestive transformation of ADD could be linked to the detection of β-Bol, and the consumption of phytosterols to low concentrations of AED, but there is no direct link between phytosterols and β-Bol.
Collapse
Affiliation(s)
- A I Decloedt
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, 133 Salisburylaan, B-9820 Merelbeke, Belgium
| | - L Bailly-Chouriberry
- L.C.H., Laboratoire des Courses Hippiques, 15 Rue de Paradis, 91370 Verrières-le-Buisson, France
| | - J Vanden Bussche
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, 133 Salisburylaan, B-9820 Merelbeke, Belgium
| | - P Garcia
- L.C.H., Laboratoire des Courses Hippiques, 15 Rue de Paradis, 91370 Verrières-le-Buisson, France
| | - M-A Popot
- L.C.H., Laboratoire des Courses Hippiques, 15 Rue de Paradis, 91370 Verrières-le-Buisson, France
| | - Y Bonnaire
- L.C.H., Laboratoire des Courses Hippiques, 15 Rue de Paradis, 91370 Verrières-le-Buisson, France
| | - L Vanhaecke
- Ghent University, Faculty of Veterinary Medicine, Department of Veterinary Public Health and Food Safety, Laboratory of Chemical Analysis, 133 Salisburylaan, B-9820 Merelbeke, Belgium.
| |
Collapse
|
28
|
Butyrylated starch intake can prevent red meat-induced O6-methyl-2-deoxyguanosine adducts in human rectal tissue: a randomised clinical trial. Br J Nutr 2015; 114:220-30. [PMID: 26084032 PMCID: PMC4531472 DOI: 10.1017/s0007114515001750] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epidemiological studies have identified increased colorectal cancer (CRC) risk with high red meat (HRM) intakes, whereas dietary fibre intake appears to be protective. In the present study, we examined whether a HRM diet increased rectal O(6)-methyl-2-deoxyguanosine (O(6)MeG) adduct levels in healthy human subjects, and whether butyrylated high-amylose maize starch (HAMSB) was protective. A group of twenty-three individuals consumed 300 g/d of cooked red meat without (HRM diet) or with 40 g/d of HAMSB (HRM+HAMSB diet) over 4-week periods separated by a 4-week washout in a randomised cross-over design. Stool and rectal biopsy samples were collected for biochemical, microbial and immunohistochemical analyses at baseline and at the end of each 4-week intervention period. The HRM diet increased rectal O(6)MeG adducts relative to its baseline by 21% (P < 0.01), whereas the addition of HAMSB to the HRM diet prevented this increase. Epithelial proliferation increased with both the HRM (P < 0.001) and HRM + HAMSB (P < 0.05) diets when compared with their respective baseline levels, but was lower following the HRM + HAMSB diet compared with the HRM diet (P < 0.05). Relative to its baseline, the HRM + HAMSB diet increased the excretion of SCFA by over 20% (P < 0.05) and increased the absolute abundances of the Clostridium coccoides group (P < 0.05), the Clostridium leptum group (P < 0.05), Lactobacillus spp. (P < 0.01), Parabacteroides distasonis (P < 0.001) and Ruminococcus bromii (P < 0.05), but lowered Ruminococcus torques (P < 0.05) and the proportions of Ruminococcus gnavus, Ruminococcus torques and Escherichia coli (P < 0.01). HRM consumption could increase the risk of CRC through increased formation of colorectal epithelial O(6)MeG adducts. HAMSB consumption prevented red meat-induced adduct formation, which may be associated with increased stool SCFA levels and/or changes in the microbiota composition.
Collapse
|