1
|
Zhang R, Wang B, Zhang F, Zheng K, Liu Y. Milk-derived antimicrobial peptides incorporated whey protein film as active coating to improve microbial stability of refrigerated soft cheese. Int J Food Microbiol 2024; 419:110751. [PMID: 38781648 DOI: 10.1016/j.ijfoodmicro.2024.110751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Nisin is the first FDA-approved antimicrobial peptide and shows significant antimicrobial activity against Gram-positive bacteria, but only a weakly inhibitory effect on Gram-negative bacteria. The aim of this study was to prepare whey protein-based edible films with the incorporation of milk-derived antimicrobial peptides (αs2-casein151-181 and αs2-casein182-207) and compare their mechanical properties and potential application in cheese packaging with films containing nisin. These two antimicrobial peptides showed similar activity against B. subtilis and much higher activity against E. coli than bacteriocin nisin, representing that these milk-derived peptides had great potential to be applied as food preservatives. Antimicrobial peptides in whey protein films caused an increase in film opaqueness and water vapor barrier properties but decreased the tensile strength and elongation at break. Compared to other films, the whey protein film containing αs2-casein151-181 had good stability in salt or acidic solution, as evidenced by the results from scanning electron microscope and Fourier transform infrared spectroscopy. Whey protein film incorporated with αs2-casein151-181 could inhibit the growth of yeasts and molds, and control the growth of psychrotrophic bacteria present originally in the soft cheese at refrigerated temperature. It also exhibited significant inhibitory activity against the development of mixed culture (E. coli and B. subtilis) in the cheese due to superficial contamination during storage. Antimicrobial peptides immobilized in whey protein films showed a higher effectiveness than their direct application in solution. In addition, films containing αs2-casein151-181 could act as a hurdle inhibiting the development of postprocessing contamination on the cheese surface during the 28 days of storage. The films in this study exhibited the characteristics desired for active packaging materials.
Collapse
Affiliation(s)
- Ruyue Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Bini Wang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Fuxin Zhang
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Kai Zheng
- Jiangsu Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China.
| | - Yufang Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
2
|
Agoni C, Stavropoulos I, Kirwan A, Mysior MM, Holton T, Kranjc T, Simpson JC, Roche HM, Shields DC. Cell-Penetrating Milk-Derived Peptides with a Non-Inflammatory Profile. Molecules 2023; 28:6999. [PMID: 37836842 PMCID: PMC10574647 DOI: 10.3390/molecules28196999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/24/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Milk-derived peptides are known to confer anti-inflammatory effects. We hypothesised that milk-derived cell-penetrating peptides might modulate inflammation in useful ways. Using computational techniques, we identified and synthesised peptides from the milk protein Alpha-S1-casein that were predicted to be cell-penetrating using a machine learning predictor. We modified the interpretation of the prediction results to consider the effects of histidine. Peptides were then selected for testing to determine their cell penetrability and anti-inflammatory effects using HeLa cells and J774.2 mouse macrophage cell lines. The selected peptides all showed cell penetrating behaviour, as judged using confocal microscopy of fluorescently labelled peptides. None of the peptides had an effect on either the NF-κB transcription factor or TNFα and IL-1β secretion. Thus, the identified milk-derived sequences have the ability to be internalised into the cell without affecting cell homeostatic mechanisms such as NF-κB activation. These peptides are worthy of further investigation for other potential bioactivities or as a naturally derived carrier to promote the cellular internalisation of other active peptides.
Collapse
Affiliation(s)
- Clement Agoni
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
- Discipline of Pharmaceutical Sciences, University of KwaZulu Natal, Durban 4041, South Africa
| | - Ilias Stavropoulos
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
| | - Anna Kirwan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Biology and Environmental Science, University College Dublin, Belfield, D04 N2E5 Dublin 4, Ireland
| | - Margharitha M. Mysior
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Therese Holton
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Tilen Kranjc
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute of Food and Health, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland
| | - Jeremy C. Simpson
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Biology and Environmental Science, University College Dublin, Belfield, D04 N2E5 Dublin 4, Ireland
| | - Helen M. Roche
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- Institute for Global Food Security, Queens University Belfast, Belfast BT9 5DL, UK
| | - Denis C. Shields
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin 4, Ireland (M.M.M.); (J.C.S.)
- School of Medicine, University College Dublin, Belfield, D04 W6F6 Dublin 4, Ireland
| |
Collapse
|
3
|
Ren Q, Zhang M, Xue R, Liu T, Yang Z, Yang Z. Purification and characterization of a novel low-molecular-weight antimicrobial peptide produced by Lactiplantibacillus plantarum NMGL2. Int J Biol Macromol 2023; 248:125932. [PMID: 37482152 DOI: 10.1016/j.ijbiomac.2023.125932] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/25/2023]
Abstract
The present study aimed to purify and characterize a novel low-molecular-weight antimicrobial peptide (AMP) named as PNMGL2 produced by Lactiplantibacillus plantarum NMGL2. The AMP was effectively separated and purified by ethyl acetate extraction and DEAE-Sepharose anion exchange chromatography. Tricine-SDS-PAGE of the purified AMP showed a major protein band below 1.7 kDa, which was identified by MALDI-TOF MS to be a hexapeptide LNFLKK (761.95 Da), and structurally characterized to be combination of helixes and random coil by a PEP-FOLD 3 De novo approach. The antimicrobial activity of LNFLKK was confirmed by chemical synthesis of the peptide that showed clear inhibition (MIC 7.8 mg/mL) against both Gram-positive bacteria (Staphylococcus aureus and Listeria monocytogenes), and Gram-negative bacteria (Enterobacter sakazakii, Escherichia coli and Shigella flexneri). PNMGL2 was pH resistant (pH 2-9), heat stable (121 °C, 30 min), and protease sensitive. Treatment of UV rays, sodium chloride and organic solvents did not decrease the activity. Sequencing of the whole genome of L. plantarum NMGL2 revealed presence of a bacteriocin gene cluster with two putative bacteriocin genes (ORF4 and ORF5) that were not expressed, confirming the significance of PNMGL2 contributing the antimicrobial activity of the strain. This study demonstrated the low-molecular-weight AMP that was uncharacterized in the relevant available databases, suggesting its potential application as a novel natural food preservative.
Collapse
Affiliation(s)
- Qingxia Ren
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Min Zhang
- Key Laboratory of Agro-Products Primary Processing, Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Rui Xue
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Tongji Liu
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Zhennai Yang
- Key Laboratory of Geriatric Nutrition and Health of Ministry of Education, Beijing Technology and Business University, Beijing 100048, China; Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhang Yang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
4
|
You Y, Liu H, Zhu Y, Zheng H. Rational design of stapled antimicrobial peptides. Amino Acids 2023; 55:421-442. [PMID: 36781451 DOI: 10.1007/s00726-023-03245-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The global increase in antimicrobial drug resistance has dramatically reduced the effectiveness of traditional antibiotics. Structurally diverse antibiotics are urgently needed to combat multiple-resistant bacterial infections. As part of innate immunity, antimicrobial peptides have been recognized as the most promising candidates because they comprise diverse sequences and mechanisms of action and have a relatively low induction rate of resistance. However, because of their low chemical stability, susceptibility to proteases, and high hemolytic effect, their usage is subject to many restrictions. Chemical modifications such as D-amino acid substitution, cyclization, and unnatural amino acid modification have been used to improve the stability of antimicrobial peptides for decades. Among them, a side-chain covalent bridge modification, the so-called stapled peptide, has attracted much attention. The stapled side-chain bridge stabilizes the secondary structure, induces protease resistance, and increases cell penetration and biological activity. Recent progress in computer-aided drug design and artificial intelligence methods has also been used in the design of stapled antimicrobial peptides and has led to the successful discovery of many prospective peptides. This article reviews the possible structure-activity relationships of stapled antimicrobial peptides, the physicochemical properties that influence their activity (such as net charge, hydrophobicity, helicity, and dipole moment), and computer-aided methods of stapled peptide design. Antimicrobial peptides under clinical trial: Pexiganan (NCT01594762, 2012-05-07). Omiganan (NCT02576847, 2015-10-13).
Collapse
Affiliation(s)
- YuHao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - HongYu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - YouZhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
5
|
Nano-Conjugated Food-Derived Antimicrobial Peptides As Natural Biopreservatives: A Review of Technology and Applications. Antibiotics (Basel) 2023; 12:antibiotics12020244. [PMID: 36830155 PMCID: PMC9952009 DOI: 10.3390/antibiotics12020244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
In recent years, microbial food safety has garnered a lot of attention due to worldwide expansion of the food industry and processed food products. This has driven the development of novel preservation methods over traditional ones. Food-derived antimicrobial peptides (F-AMPs), produced by the proteolytic degradation of food proteins, are emerging as pragmatic alternatives for extension of the shelf-life of food products. The main benefits of F-AMPs are their wide spectrum antimicrobial efficacy and low propensity for the development of antibiotic resistance. However, direct application of F-AMPs in food limits its efficacy during storage. Therefore, the development of nanocarriers for the conjugation and distribution of potential AMPs may hold great potential to increase their bioactivity. This review highlights the significance of F-AMPs as a feasible and sustainable alternative to conventional food preservatives. The most recent developments in production, characterization, and mode of action of these AMPs against planktonic and biofilm forming pathogens are thoroughly discussed in this work. Moreover, nano-conjugation of F-AMPs with different nano-carriers and potential future application in food packaging are emphasized. This review may aid in comprehending the nano-conjugation of F-AMPs and offer insightful recommendations for further exploration and potential uses in the food processing industry.
Collapse
|
6
|
Singh A, Duche RT, Wandhare AG, Sian JK, Singh BP, Sihag MK, Singh KS, Sangwan V, Talan S, Panwar H. Milk-Derived Antimicrobial Peptides: Overview, Applications, and Future Perspectives. Probiotics Antimicrob Proteins 2023; 15:44-62. [PMID: 36357656 PMCID: PMC9649404 DOI: 10.1007/s12602-022-10004-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2022] [Indexed: 11/13/2022]
Abstract
The growing consumer awareness towards healthy and safe food has reformed food processing strategies. Nowadays, food processors are aiming at natural, effective, safe, and low-cost substitutes for enhancing the shelf life of food products. Milk, besides being a rich source of nutrition for infants and adults, serves as a readily available source of precious functional peptides. Due to the existence of high genetic variability in milk proteins, there is a great possibility to get bioactive peptides with varied properties. Among other bioactive agents, milk-originated antimicrobial peptides (AMPs) are gaining interest as attractive and safe additive conferring extended shelf life to minimally processed foods. These peptides display broad-spectrum antagonistic activity against bacteria, fungi, viruses, and protozoans. Microbial proteolytic activity, extracellular peptidases, food-grade enzymes, and recombinant DNA technology application are among few strategies to tailor specific peptides from milk and enhance their production. These bioprotective agents have a promising future in addressing the global concern of food safety along with the possibility to be incorporated into the food matrix without compromising overall consumer acceptance. Additionally, in conformity to the current consumer demands, these AMPs also possess functional properties needed for value addition. This review attempts to present the basic properties, synthesis approaches, action mechanism, current status, and prospects of antimicrobial peptide application in food, dairy, and pharma industry along with their role in ensuring the safety and health of consumers.
Collapse
Affiliation(s)
- Anamika Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Rachael Terumbur Duche
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Federal University of Agriculture, Makurdi, Nigeria
| | - Arundhati Ganesh Wandhare
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Jaspreet Kaur Sian
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India ,Department of Microbiology, Punjab Agricultural University (PAU), Ludhiana, 141001 Punjab India
| | - Brij Pal Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, 123031 Haryana India
| | - Manvesh Kumar Sihag
- Department of Dairy Chemistry, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Kumar Siddharth Singh
- Institute for Microbiology, Gottfried Wilhelm Leibniz University, Herrenhäuser Str. 2, 30419 Hanover, Germany
| | - Vikas Sangwan
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001 Punjab India
| | - Shreya Talan
- Dairy Microbiology Division, ICAR-National Dairy Research Institute (ICAR-NDRI), Karnal, Haryana India
| | - Harsh Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University (GADVASU), Ludhiana, 141001, Punjab, India.
| |
Collapse
|
7
|
High throughput virtual screening (HTVS) of peptide library: Technological advancement in ligand discovery. Eur J Med Chem 2022; 243:114766. [PMID: 36122548 DOI: 10.1016/j.ejmech.2022.114766] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/21/2022] [Accepted: 09/08/2022] [Indexed: 11/23/2022]
Abstract
High-throughput virtual screening (HTVS) is a leading biopharmaceutical technology that employs computational algorithms to uncover biologically active compounds from large-scale collections of chemical compound libraries. In addition, this method often leverages the precedence of screening focused libraries for assessing their binding affinities and improving physicochemical properties. Usually, developing a drug sometimes takes ages, and lessons are learnt from FDA-approved drugs. This screening strategy saves resources and time compared to laboratory testing in certain stages of drug discovery. Yet in-silico investigations remain challenging in some cases of drug discovery. For the last few decades, peptide-based drug discoveries have received remarkable momentum for several advantages over small molecules. Therefore, developing a high-fidelity HTVS platform for chemically versatile peptide libraries is highly desired. This review summarises the modern and frequently appreciated HTVS strategies for peptide libraries from 2011 to 2021. In addition, we focus on the software used for preparing peptide libraries, their screening techniques and shortcomings. An index of various HTVS methods reported here should assist researchers in identifying tools that could be beneficial for their peptide library screening projects.
Collapse
|
8
|
Pang Y, Wu R, Cui T, Zhang Z, Dong L, Chen F, Hu X. Proteomic Response of Bacillus subtilis Spores under High Pressure Combined with Moderate Temperature and Random Peptide Mixture LK Treatment. Foods 2022; 11:foods11081123. [PMID: 35454710 PMCID: PMC9030791 DOI: 10.3390/foods11081123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/20/2022] Open
Abstract
In this study, a method of Bacillus subtilis spore inactivation under high pressure (P, 200 MPa) combined with moderate temperature (T, 80 °C) and the addition of antimicrobial peptide LK (102 μg/mL) was investigated. Spores presented cortex hydrolysis and inner membrane (IM) damage with an 8.16 log reduction in response to treatment with PT-LK, as observed by phase-contrast and inverted fluorescence microscopy and flow cytometry (FCM) analysis. Furthermore, a tandem mass tag (TMT) quantitative proteomics approach was utilized because Liquid chromatography-tandem mass spectrometry (LC–MS/MS) analysis data were used. After treatment with PT-LK, 17,017 polypeptides and 3166 proteins were detected from B. subtilis spores. Among them, 78 proteins showed significant differences in abundance between the PT-LK-treated and control groups, with 49 proteins being upregulated and 29 proteins being downregulated in the PT-LK-treated group. Genetic information processing, metabolism, cellular process, and environmental information processing were the main mechanisms of PT-LK-mediated spore inactivation.
Collapse
Affiliation(s)
- Yaru Pang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Ruobin Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Tianlin Cui
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Zequn Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Li Dong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Fang Chen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (Y.P.); (R.W.); (T.C.); (Z.Z.); (L.D.); (F.C.)
- China National Engineering Research Center for Fruit and Vegetable Processing, Beijing 100083, China
- Key Laboratory of Fruits and Vegetables Processing, Ministry of Agriculture, Beijing 100083, China
- Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, Beijing 100083, China
- Correspondence: ; Tel.: +86-137-0102-6564
| |
Collapse
|
9
|
Exploration of bioactive peptides from various origin as promising nutraceutical treasures: In vitro, in silico and in vivo studies. Food Chem 2022; 373:131395. [PMID: 34710682 DOI: 10.1016/j.foodchem.2021.131395] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023]
Abstract
The current health scenarios describe growing public health problems, such as diabetes, hypertension and cancer. Therefore, researchers focused on studying these health issues are interested in exploring bioactive compounds from different food sources. Among them, bioactive peptides have garnered huge scientific interest because of their multifunctional biological activities such as antioxidative, antimicrobial, antihypertensive, anticancer, antidiabetic, immunomodulatory effect. They can be used as food and pharmaceutical ingredients with a great potential against disease targets. This review covers methods of production in general for several peptides obtained from various food sources including seed, milk and meat, and described their biological activities. Particular focus was given to bioinformatic tools to advance quantification, detection and characterize each peptide sequence obtained from different protein sources with predicted biological activity. Besides, various in vivo studies have been discussed to provide a better understanding of their physiological functions, which altogether could provide valuable information for their commercialization in future foods.
Collapse
|
10
|
González-González F, Delgado S, Ruiz L, Margolles A, Ruas-Madiedo P. Functional bacterial cultures for dairy applications: towards improving safety, quality, nutritional and health benefit aspects. J Appl Microbiol 2022; 133:212-229. [PMID: 35238463 PMCID: PMC9539899 DOI: 10.1111/jam.15510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/12/2022] [Accepted: 02/25/2022] [Indexed: 11/30/2022]
Abstract
Traditionally, fermentation was used to preserve the shelf life of food. Currently, in addition to favouring food preservation, well standardized and controlled industrial processes are also aimed at improving the functional characteristics of the final product. In this regard, starter cultures have become an essential cornerstone of food production. The selection of robust microorganisms, well adapted to the food environment, has been followed by the development of microbial consortia that provide some functional characteristics, beyond their acidifying capacity, achieving safer, high‐quality foods with improved nutritional and health‐promoting properties. In addition to starters, adjunct cultures and probiotics, which normally do not have a relevant role in fermentation, are added to the food in order to provide some beneficial characteristics. This review focuses on highlighting the functional characteristics of food starters, as well as adjunct and probiotic cultures (mainly lactic acid bacteria and bifidobacteria), with a specific focus on the synthesis of metabolites for preservation and safety aspects (e.g. bacteriocins), organoleptic properties (e.g. exopolysaccharides), nutritional (e.g. vitamins) and health improvement (e.g. neuroactive molecules). Literature reporting the application of these functional cultures in the manufacture of foods, mainly those related to dairy production, such as cheeses and fermented milks, has also been updated.
Collapse
Affiliation(s)
- F González-González
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - S Delgado
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - L Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - A Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| | - P Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias - Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Asturias, Spain.,Group Functionality and Ecology of Beneficial Microbes, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Oviedo, Asturias, Spain
| |
Collapse
|
11
|
Piras C, Hale OJ, Reynolds CK, Jones AKB, Taylor N, Morris M, Cramer R. LAP-MALDI MS coupled with machine learning: an ambient mass spectrometry approach for high-throughput diagnostics. Chem Sci 2022; 13:1746-1758. [PMID: 35282613 PMCID: PMC8826629 DOI: 10.1039/d1sc05171g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Large-scale population screening for early and accurate detection of disease is a key objective for future diagnostics. Ideally, diagnostic tests that achieve this goal are also cost-effective, fast and easily adaptable to new diseases with the potential of multiplexing. Mass spectrometry (MS), particularly MALDI MS profiling, has been explored for many years in disease diagnostics, most successfully in clinical microbiology but less in early detection of diseases. Here, we present liquid atmospheric pressure (LAP)-MALDI MS profiling as a rapid, large-scale and cost-effective platform for disease analysis. Using this new platform, two different types of tests exemplify its potential in early disease diagnosis and response to therapy. First, it is shown that LAP-MALDI MS profiling detects bovine mastitis two days before its clinical manifestation with a sensitivity of up to 70% and a specificity of up to 100%. This highly accurate, pre-symptomatic detection is demonstrated by using a large set of milk samples collected weekly over six months from approximately 500 dairy cows. Second, the potential of LAP-MALDI MS in antimicrobial resistance (AMR) detection is shown by employing the same mass spectrometric setup and similarly simple sample preparation as for the early detection of mastitis.
Collapse
Affiliation(s)
- Cristian Piras
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6DX UK +44 (0)118 378 4550
- Department of Health Sciences, "Magna Græcia University" of Catanzaro Campus Universitario "Salvatore Venuta" Viale Europa 88100 Catanzaro Italy
| | - Oliver J Hale
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6DX UK +44 (0)118 378 4550
| | - Christopher K Reynolds
- School of Agriculture, Policy and Development, University of Reading Whiteknights Reading RG6 6EU UK
| | - A K Barney Jones
- School of Agriculture, Policy and Development, University of Reading Whiteknights Reading RG6 6EU UK
| | - Nick Taylor
- Veterinary Epidemiology and Economics Research Unit (VEERU), PAN Livestock Services Ltd, School of Agriculture, Policy and Development, University of Reading Whiteknights Reading RG6 6EU UK
| | | | - Rainer Cramer
- Department of Chemistry, University of Reading Whiteknights Reading RG6 6DX UK +44 (0)118 378 4550
| |
Collapse
|
12
|
Donkey Milk Fermentation by Lactococcus lactis subsp. cremoris and Lactobacillus rhamnosus Affects the Antiviral and Antibacterial Milk Properties. Molecules 2021; 26:molecules26165100. [PMID: 34443691 PMCID: PMC8398202 DOI: 10.3390/molecules26165100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Milk is considered an important source of bioactive peptides, which can be produced by endogenous or starter bacteria, such as lactic acid bacteria, that are considered effective and safe producers of food-grade bioactive peptides. Among the various types of milk, donkey milk has been gaining more and more attention for its nutraceutical properties. METHODS Lactobacillus rhamnosus 17D10 and Lactococcus lactis subsp. cremoris 40FEL3 were selected for their ability to produce peptides from donkey milk. The endogenous peptides and those obtained after bacterial fermentation were assayed for their antioxidant, antibacterial, and antiviral activities. The peptide mixtures were characterized by means of LC-MS/MS and then analyzed in silico using the Milk Bioactive Peptide DataBase. RESULTS The peptides produced by the two selected bacteria enhanced the antioxidant activity and reduced E. coli growth. Only the peptides produced by L. rhamnosus 17D10 were able to reduce S. aureus growth. All the peptide mixtures were able to inhibit the replication of HSV-1 by more than 50%. Seventeen peptides were found to have 60% sequence similarity with already known bioactive peptides. CONCLUSIONS A lactic acid bacterium fermentation process is able to enhance the value of donkey milk through bioactivities that are important for human health.
Collapse
|
13
|
Heymich ML, Srirangan S, Pischetsrieder M. Stability and Activity of the Antimicrobial Peptide Leg1 in Solution and on Meat and Its Optimized Generation from Chickpea Storage Protein. Foods 2021; 10:foods10061192. [PMID: 34070446 PMCID: PMC8227015 DOI: 10.3390/foods10061192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
The antimicrobial peptide Leg1 (RIKTVTSFDLPALRFLKL) from chickpea legumin is active against spoilage bacteria, yeast, and mold. The present study tested its effectiveness under food storage conditions and examined options to obtain a food-grade agent. The minimum inhibitory concentration (MIC) of Leg1 against E. coli (62.5 µM) proved stable over seven days at 20 °C or 4 °C. It was not influenced by reduced pH (5.0 vs. 6.8), which is relevant in food such as meat. An incubation temperature of 20 °C vs. 37 °C reduced the MIC to 15.6/7.8 µM against E. coli/B. subtilis. With a minimum bactericidal concentration in meat of 125/15.6 µM against E. coli/B. subtilis, Leg1 is equivalently effective as nisin and 5000–82,000 times more active than sodium benzoate, potassium sorbate, or sodium nitrite. Replacing the counter-ion trifluoroacetate derived from peptide synthesis by the more natural alternatives acetate or chloride did not impair the activity of Leg1. As an alternative to chemical synthesis, an optimized protocol for chymotryptic hydrolysis was developed, increasing the yield from chickpea legumin by a factor of 30 compared to the standard procedure. The present results indicate that food-grade Leg1 could possibly be applicable for food preservation.
Collapse
|
14
|
Um J, Manguy J, Anes J, Jacquier JC, Hurley D, Dillon ET, Wynne K, Fanning S, O'Sullivan M, Shields DC. Enriching antimicrobial peptides from milk hydrolysates using pectin/alginate food-gels. Food Chem 2021; 352:129220. [PMID: 33684717 DOI: 10.1016/j.foodchem.2021.129220] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/15/2023]
Abstract
Cationic antimicrobial peptides have raised interest as attractive alternatives to classical antibiotics, and also have utility in preventing food spoilage. We set out to enrich cationic antimicrobial peptides from milk hydrolysates using gels containing various ratios of anionic pectin/alginate. All processes were carried out with food-grade materials in order to suggest food-safe methods suited for producing food ingredients or supplements. Hydrolysed caseinate peptides retained in the gel fraction, identified by mass spectrometry, were enriched for potential antimicrobial peptides, as judged by a computational predictor of antimicrobial activity. Peptides retained in a 60:40 pectin:alginate gel fraction had a strong antimicrobial effect against 8 tested bacterial strains with a minimal inhibitory concentration of 1.5-5 mg/mL, while the unfractionated hydrolysate only had a detectable effect in one of the eight strains. Among 110 predicted antimicrobial peptides in the gel fraction, four are known antimicrobial peptides, HKEMPFPK, TTMPLW, YYQQKPVA and AVPYPQR. These results highlight the potential of pectin/alginate food-gels based processes as safe, fast, cost-effective methods to separate and enrich for antimicrobial peptides from complex food protein hydrolysates.
Collapse
Affiliation(s)
- Jounghyun Um
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland; UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Jean Manguy
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland
| | - João Anes
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Jean-Christophe Jacquier
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Daniel Hurley
- UCD-Centre for Food Safety, School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Eugene T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Kieran Wynne
- Mass Spectrometry Resource, Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Population Science, University College Dublin, Dublin, Ireland
| | - Michael O'Sullivan
- UCD Institute of Food and Health, School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland.
| | - Denis C Shields
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Nebbia S, Lamberti C, Lo Bianco G, Cirrincione S, Laroute V, Cocaign-Bousquet M, Cavallarin L, Giuffrida MG, Pessione E. Antimicrobial Potential of Food Lactic Acid Bacteria: Bioactive Peptide Decrypting from Caseins and Bacteriocin Production. Microorganisms 2020; 9:microorganisms9010065. [PMID: 33383704 PMCID: PMC7824078 DOI: 10.3390/microorganisms9010065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 01/05/2023] Open
Abstract
Lactic acid bacteria (LAB) potential in the food industry and in the biotechnological sector is a well-established interest. LAB potential in counteracting especially food-borne infections has received growing attention, but despite being a road full of promises is yet poorly explored. Furthermore, the ability of LAB to produce antimicrobial compounds, both by ribosomal synthesis and by decrypting them from proteins, is of high value when considering the growing impact of multidrug resistant strains. The antimicrobial potential of 14 food-derived lactic acid bacteria strains has been investigated in this study. Among them, four strains were able to counteract Listeria monocytogenes growth: Lactococcus lactis SN12 and L. lactis SN17 by high lactic acid production, whereas L. lactis 41FLL3 and Lactobacillus sakei I151 by Nisin Z and Sakacin P production, respectively. Strains Lactococcus lactis MG1363, Lactobacillus rhamnosus 17D10 and Lactobacillus helveticus 4D5 were tested and selected for their potential attitude to hydrolyze caseins. All the strains were able to release bioactive peptides with already known antimicrobial, antihypertensive and opioid activities. These features render these strains or their bioactive molecules suitable for use in food as biocontrol agents, or as nutraceutical supplements to treat mild disorders such as moderate hypertension and children insomnia. These results highlight once again that LAB potential in ensuring food safety, food nutraceutical value and ultimately in favoring human health is still underexplored and underexploited.
Collapse
Affiliation(s)
- Stefano Nebbia
- Laboratory of Microbial and Applied Biochemistry-Department of Life Sciences and Systems Biology, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (S.N.); (G.L.B.); (E.P.)
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Cristina Lamberti
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Giuliana Lo Bianco
- Laboratory of Microbial and Applied Biochemistry-Department of Life Sciences and Systems Biology, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (S.N.); (G.L.B.); (E.P.)
| | - Simona Cirrincione
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
- Correspondence: ; Tel.: +39-011-670-9231
| | - Valerie Laroute
- Laboratoire d’ingénierie des systèmes biologiques et des procédés, Université de Toulouse, CNRS, INRA, INSA 135 Avenue de Rangueil, 31077 Toulouse, France; (V.L.); (M.C.-B.)
| | - Muriel Cocaign-Bousquet
- Laboratoire d’ingénierie des systèmes biologiques et des procédés, Université de Toulouse, CNRS, INRA, INSA 135 Avenue de Rangueil, 31077 Toulouse, France; (V.L.); (M.C.-B.)
| | - Laura Cavallarin
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Maria Gabriella Giuffrida
- Consiglio Nazionale delle Ricerche-Istituto di Scienze delle Produzioni Alimentari, Largo Braccini, 10095 Grugliasco, Italy; (C.L.); (L.C.); (M.G.G.)
| | - Enrica Pessione
- Laboratory of Microbial and Applied Biochemistry-Department of Life Sciences and Systems Biology, Università di Torino, Via Accademia Albertina 13, 10123 Torino, Italy; (S.N.); (G.L.B.); (E.P.)
| |
Collapse
|
16
|
Heymich ML, Friedlein U, Trollmann M, Schwaiger K, Böckmann RA, Pischetsrieder M. Generation of antimicrobial peptides Leg1 and Leg2 from chickpea storage protein, active against food spoilage bacteria and foodborne pathogens. Food Chem 2020; 347:128917. [PMID: 33465691 DOI: 10.1016/j.foodchem.2020.128917] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/19/2022]
Abstract
Contamination with bacteria leads to food waste and foodborne diseases with severe consequences for the environment and human health. Aiming to reduce food spoilage and infection, the present study developed novel highly active food-grade antimicrobial peptides affecting a wide range of bacteria. After extraction from chickpea, the storage protein legumin was hydrolyzed by the digestive protease chymotrypsin. Subsequent analysis by ultrahigh-performance micro-liquid chromatography-triple quadrupole time-of-flight tandem mass spectrometry determined the resulting peptide profiles. Virtual screening identified 21 potential antimicrobial peptides in the hydrolysates. Among those, the peptides Leg1 (RIKTVTSFDLPALRFLKL) and Leg2 (RIKTVTSFDLPALRWLKL) exhibited antimicrobial activity against 16 different bacteria, including pathogens, spoilage-causing bacteria and two antibiotic-resistant strains. Leg1/Leg2 showed minimum inhibitory concentrations (MIC) down to 15.6 µmol/L and were thus 10-1,000-fold more active compared to conventional food preservatives. Moreover, Leg1 and Leg2 showed bactericidal activity in contrast to the bacteriostatic activity of conventional preservatives.
Collapse
Affiliation(s)
- Marie-Louise Heymich
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| | - Ulrike Friedlein
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim Germany.
| | - Marius Trollmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058 Erlangen, Germany.
| | - Karin Schwaiger
- Chair of Food Safety, Faculty of Veterinary Medicine, Ludwig Maximilian University of Munich, Schönleutnerstr. 8, 85764 Oberschleißheim Germany.
| | - Rainer A Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Staudtstr. 5, 91058 Erlangen, Germany.
| | - Monika Pischetsrieder
- Food Chemistry, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|
17
|
David S, Magram Klaiman M, Shpigelman A, Lesmes U. Addition of Anionic Polysaccharide Stabilizers Modulates In Vitro Digestive Proteolysis of a Chocolate Milk Drink in Adults and Children. Foods 2020; 9:foods9091253. [PMID: 32906813 PMCID: PMC7555934 DOI: 10.3390/foods9091253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/19/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
There is a need to better understand the possible anti-nutritional effect of food stabilizers on the digestibility of important macronutrients, like proteins. This study hypothesized that the anionic nature of κ-, ι-, λ-, Carrageenan (CGN) and xanthan gum directs their interactions with food proteins leading to their subsequent attenuated digestive proteolysis. Model chocolate milk drinks were tested for their colloidal properties, viscosity and proteolytic breakdown in adults and children using in vitro digestion models coupled with proteomic analyses. SDS-PAGE analyses of gastro-intestinal effluents highlight stabilizers hinder protein breakdown in adults and children. Zeta potential and colloidal particle size were the strongest determinants of stabilizers’ ability to hinder proteolysis. LC-MS proteomic analyses revealed stabilizer addition significantly reduced bioaccessibility of milk-derived bioactive peptides with differences in liberated peptide sequences arising mainly from their location on the outer rim of the protein structures. Further, liberation of bioactive peptides emptying from a child stomach into the intestine were most affected by the presence of ι-CGN. Overall, this study raises the notion that stabilizer charge and other properties of edible proteins are detrimental to the ability of humans to utilize the nutritional potential of such formulations. This could help food professionals and regulatory agencies carefully consider the use of anionic stabilizers in products aiming to serve as protein sources for children and other liable populations.
Collapse
|
18
|
Fu T, Islam MS, Ali M, Wu J, Dong W. Two antimicrobial genes from Aegilops tauschii Cosson identified by the Bacillus subtilis expression system. Sci Rep 2020; 10:13346. [PMID: 32770019 PMCID: PMC7414872 DOI: 10.1038/s41598-020-70314-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/21/2020] [Indexed: 01/08/2023] Open
Abstract
Antimicrobial genes play an important role as a primary defense mechanism in all multicellular organisms. We chose Bacillus subtilis as a target pathogen indicator and transferred the Aegilops tauschii Cosson cDNA library into B. subtilis cells. Expression of the candidate antimicrobial gene can inhibit B. subtilis cell growth. Using this strategy, we screened six genes that have an internal effect on the indicator bacteria. Then, the secreted proteins were extracted and tested; two genes, AtR100 and AtR472, were found to have strong external antimicrobial activities with broad-spectrum resistance against Xanthomonas oryzae pv. oryzicola, Clavibacter fangii, and Botrytis cinerea. Additionally, thermal stability tests indicated that the antimicrobial activities of both proteins were thermostable. Furthermore, these two proteins exhibited no significant hemolytic activities. To test the feasibility of application at the industrial level, liquid fermentation and spray drying of these two proteins were conducted. Powder dilutions were shown to have significant inhibitory effects on B. cinerea. Fluorescence microscopy and flow cytometry results showed that the purified protein impaired and targeted the cell membranes. This study revealed that these two antimicrobial peptides could potentially be used for replacing antibiotics, which would provide the chance to reduce the emergence of drug resistance.
Collapse
Affiliation(s)
- Tingting Fu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Md Samiul Islam
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Mohsin Ali
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Jia Wu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
19
|
|
20
|
Rios-Villa KA, Bhattacharya M, La EH, Barile D, Bornhorst GM. Interactions between whey proteins and cranberry juice after thermal or non-thermal processing during in vitro gastrointestinal digestion. Food Funct 2020; 11:7661-7680. [DOI: 10.1039/d0fo00177e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study entails the possible interactions between whey protein and cranberry juice after processing, impacting either the protein digestibility or the bioaccessibility of cranberry antioxidants using an in vitro gastrointestinal digestion model.
Collapse
Affiliation(s)
- Karen A. Rios-Villa
- Department of Food Science and Technology
- University of California at Davis
- Davis
- USA
| | | | - Ellia H. La
- Foods for Health Institute
- University of California at Davis
- Davis
- USA
| | - Daniela Barile
- Department of Food Science and Technology
- University of California at Davis
- Davis
- USA
- Foods for Health Institute
| | - Gail M. Bornhorst
- Department of Food Science and Technology
- University of California at Davis
- Davis
- USA
- Department of Biological and Agricultural Engineering
| |
Collapse
|
21
|
Application of in silico approaches for the generation of milk protein-derived bioactive peptides. J Funct Foods 2020. [DOI: 10.1016/j.jff.2019.103636] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
22
|
Aguilar-Toalá JE, Hernández-Mendoza A, González-Córdova AF, Vallejo-Cordoba B, Liceaga AM. Potential role of natural bioactive peptides for development of cosmeceutical skin products. Peptides 2019; 122:170170. [PMID: 31574281 DOI: 10.1016/j.peptides.2019.170170] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
In recent years, consumers' demand for cosmeceutical products with protective and therapeutic functions derived from natural sources have caused this industry to search for alternative active ingredients. Bioactive peptides have a wide spectrum of bioactivities, which make them ideal candidates for development of these cosmeceutical products. In vitro studies have demonstrated that bioactive peptides (obtained as extracts, hydrolysates, and/or individual peptides) exhibit biological properties including antioxidant, antimicrobial, and anti-inflammatory activities, in addition to their properties of inhibiting aging-related enzymes such as elastase, collagenase, tyrosinase and hyaluronidase. Some studies report multifunctional bioactive peptides that can simultaneously affect, beneficially, multiple physiological pathways in the skin. Moreover, in vivo studies have revealed that topical application or consumption of bioactive peptides possess remarkable skin protection. These properties suggest that bioactive peptides may contribute in the improvement of skin health by providing specific physiological functions, even though the mechanisms underlying the protective effect have not been completely elucidated. This review provides an overview of in vitro, in silico and in vivo properties of bioactive peptides with potential use as functional ingredients in the cosmeceutical field. It also describes the possible mechanisms involved as well as opportunities and challenges associated with their application.
Collapse
Affiliation(s)
- J E Aguilar-Toalá
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States
| | - A Hernández-Mendoza
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A F González-Córdova
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - B Vallejo-Cordoba
- Laboratorio de Química y Biotecnología de Productos Lácteos, Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico
| | - A M Liceaga
- Protein Chemistry and Bioactive Peptides Laboratory, Department of Food Science, Purdue University, 745 Agriculture Mall Dr., West Lafayette, IN 47907, United States.
| |
Collapse
|
23
|
Antibacterial Properties and Efficacy of a Novel SPLUNC1-Derived Antimicrobial Peptide, α4-Short, in a Murine Model of Respiratory Infection. mBio 2019; 10:mBio.00226-19. [PMID: 30967458 PMCID: PMC6456746 DOI: 10.1128/mbio.00226-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rise of superbugs underscores the urgent need for novel antimicrobial agents. Antimicrobial peptides (AMPs) have the ability to kill superbugs regardless of resistance to traditional antibiotics. However, AMPs often display a lack of efficacy in vivo. Sequence optimization and engineering are promising but may result in increased host toxicity. We report here the optimization of a novel AMP (α4-short) derived from the multifunctional respiratory protein SPLUNC1. The AMP α4-short demonstrated broad-spectrum activity against superbugs as well as in vivo efficacy in the P. aeruginosa pneumonia model. Further exploration for clinical development is warranted. Multidrug resistance (MDR) by bacterial pathogens constitutes a global health crisis, and resistance to treatment displayed by biofilm-associated infections (e.g., cystic fibrosis, surgical sites, and medical implants) only exacerbates a problem that is already difficult to overcome. Antimicrobial peptides (AMPs) are a promising class of therapeutics that may be useful in the battle against antibiotic resistance, although certain limitations have hindered their clinical development. The goal of this study was to examine the therapeutic potential of novel AMPs derived from the multifunctional respiratory host defense protein SPLUNC1. Using standard growth inhibition and antibiofilm assays, we demonstrated that a novel structurally optimized AMP, α4-short, was highly effective against the most common group of MDR bacteria while showing broad-spectrum bactericidal and antibiofilm activities. With negligible hemolysis and toxicity to white blood cells, the new peptide also demonstrated in vivo efficacy when delivered directly into the airway in a murine model of Pseudomonas aeruginosa-induced respiratory infection. The data warrant further exploration of SPLUNC1-derived AMPs with optimized structures to assess the potential application to difficult-to-cure biofilm-associated infections.
Collapse
|
24
|
Lammi C, Aiello G, Boschin G, Arnoldi A. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
25
|
Mercurio FA, Scaloni A, Caira S, Leone M. The antimicrobial peptides casocidins I and II: Solution structural studies in water and different membrane-mimetic environments. Peptides 2019; 114:50-58. [PMID: 30243923 DOI: 10.1016/j.peptides.2018.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/18/2018] [Indexed: 10/28/2022]
Abstract
Antimicrobial peptides (AMPs) represent crucial components of the natural immune defense machinery of different organisms. Generally, they are short and positively charged, and bind to and destabilize bacterial cytoplasmic membranes, ultimately leading to cell death. Natural proteolytic cleavage of αs2-casein in bovine milk generates the antimicrobial peptides casocidin I and II. In the current study, we report for the first time on a detailed structure characterization of casocidins in solution by means of Nuclear Magnetic Resonance spectroscopy (NMR). Structural studies were conducted in H2O and different membrane mimetic environments, including 2,2,2-trifluoroethanol (TFE) and lipid anionic and zwitterionic vesicles. For both peptides, results indicate a mainly disordered conformation in H2O, with a few residues in a partial helical structure. No wide increase of order occurs upon interaction with lipid vesicles. Conversely, peptide conformation becomes highly ordered in presence of TFE, with both casocidins presenting a large helical content. Our data point out a preference of casocidins to interact with model anionic membranes. These results are compatible with possible mechanisms of action underlying the antimicrobial activity of casocidins that ultimately may affect membrane bilayer stability.
Collapse
Affiliation(s)
- Flavia Anna Mercurio
- Institute of Biostructures and Bioimaging (IBB), National Research Council & Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Via Mezzocannone 16, 80134 Naples, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, 80147 Naples, Italy
| | - Simonetta Caira
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, Via Argine 1085, 80147 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging (IBB), National Research Council & Interuniversity Research Centre on Bioactive Peptides (CIRPEB), Via Mezzocannone 16, 80134 Naples, Italy.
| |
Collapse
|
26
|
Khan MU, Pirzadeh M, Förster CY, Shityakov S, Shariati MA. Role of Milk-Derived Antibacterial Peptides in Modern Food Biotechnology: Their Synthesis, Applications and Future Perspectives. Biomolecules 2018; 8:biom8040110. [PMID: 30301185 PMCID: PMC6316258 DOI: 10.3390/biom8040110] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/11/2022] Open
Abstract
Milk-derived antibacterial peptides (ABPs) are protein fragments with a positive influence on the functions and conditions of a living organism. Milk-derived ABPs have several useful properties important for human health, comprising a significant antibacterial effect against various pathogens, but contain toxic side-effects. These compounds are mainly produced from milk proteins via fermentation and protein hydrolysis. However, they can also be produced using recombinant DNA techniques or organic synthesis. This review describes the role of milk-derived ABPs in modern food biotechnology with an emphasis on their synthesis and applications. Additionally, we also discuss the mechanisms of action and the main bioproperties of ABPs. Finally, we explore future perspectives for improving ABP physicochemical properties and diminishing their toxic side-effects.
Collapse
Affiliation(s)
- Muhammad Usman Khan
- Bioproducts Sciences and Engineering Laboratory (BSEL), Washington State University, Richland, 99354 WA, USA.
- Department of Energy Systems Engineering, Faculty of Agricultural Engineering and Technology, University of Agriculture, 38000 Faisalabad, Pakistan.
| | - Maryam Pirzadeh
- Department of Food Science and Technology, Faculty of Agriculture, Sarvestan Branch, Islamic Azad University, 73451-173 Sarvestan, Iran.
| | - Carola Yvette Förster
- Department of Anesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| | - Sergey Shityakov
- Department of Anesthesia and Critical Care, University of Würzburg, 97080 Würzburg, Germany.
| | - Mohammad Ali Shariati
- Laboratory of Biocontrol and Antimicrobial Resistance, Orel state University Named After I.S. Turgenev, 302026 Orel, Russia.
| |
Collapse
|
27
|
Absolute quantification of two antimicrobial peptides α S2 -casein 182–207 and α S2 -casein 151–181 in bovine milk by UHPLC–ESI–MS/MS in sMRM mode. Food Chem 2018; 261:15-20. [DOI: 10.1016/j.foodchem.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 12/01/2017] [Accepted: 04/01/2018] [Indexed: 11/21/2022]
|
28
|
Becucci L, Aloisi G, Scaloni A, Caira S, Guidelli R. On the interaction of the highly charged peptides casocidins with biomimetic membranes. Bioelectrochemistry 2018; 123:1-8. [PMID: 29715585 DOI: 10.1016/j.bioelechem.2018.04.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 11/16/2022]
Abstract
Casocidin I and II (CI and CII) are structurally related antimicrobial peptides made of 39 and 31 amino acids, respectively, which derive from natural proteolytic processing of αs2-casein and adopt an ordered α-helical structure in biomimetic membranes. Their putative membrane-permeabilizing activity was investigated at Hg-supported self-assembled monolayers (SAMs) and at tethered bilayer lipid membranes (tBLMs); the latter consisted of a monolayer of 2,3,di-O-phytanyl-sn-glycerol-1-tetraethylene-glycol-d,l-α lipoic acid ester thiolipid (DPTL), with a dioleoylphosphatidylcholine (DOPC) or dioleoylphosphatidylserine (DOPS) monolayer on top of it. Interaction of CI and CII with these biomimetic membranes was studied by four electrochemical techniques at pH 3, 5.4 and 6.8. Peptide incorporation in tBLMs was attempted via scans of electrochemical impedance spectra. Experiments demonstrated that CI and CII penetrate SAMs as well as the distal DOPC monolayer of DPTL/DOPC tBLMs, but not the proximal phytanyl monolayer, with the only exception of CII at pH 5.4. Conversely, CII permeabilized DPTL/DOPS tBLMs to a moderate extent at all investigated pH values by forming holes across the membrane, but not ion channels. Structural distribution of charged residues seemed to prevent CII from having a hydrophobic side of the α-helix capable of stabilizing a regular ion channel in the lipid matrix.
Collapse
Affiliation(s)
- Lucia Becucci
- Department of Chemistry, Florence University, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy; 1st Grade Secondary School "Giuseppe Pescetti", Via Gramsci 390, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Giovanni Aloisi
- Department of Chemistry, Florence University, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-National Research Council, 80147 Naples, Italy
| | - Simonetta Caira
- Proteomics & Mass Spectrometry Laboratory, ISPAAM-National Research Council, 80147 Naples, Italy
| | - Rolando Guidelli
- Department of Chemistry, Florence University, via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
29
|
Deslouches B, Di YP. Antimicrobial peptides with selective antitumor mechanisms: prospect for anticancer applications. Oncotarget 2018; 8:46635-46651. [PMID: 28422728 PMCID: PMC5542299 DOI: 10.18632/oncotarget.16743] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023] Open
Abstract
In the last several decades, there have been significant advances in anticancer therapy. However, the development of resistance to cancer drugs and the lack of specificity related to actively dividing cells leading to toxic side effects have undermined these achievements. As a result, there is considerable interest in alternative drugs with novel antitumor mechanisms. In addition to the recent approach using immunotherapy, an effective but much cheaper therapeutic option of pharmaceutical drugs would still provide the best choice for cancer patients as the first line treatment. Ribosomally synthesized cationic antimicrobial peptides (AMPs) or host defense peptides (HDP) display broad-spectrum activity against bacteria based on electrostatic interactions with negatively charged lipids on the bacterial surface. Because of increased proportions of phosphatidylserine (negatively charged) on the surface of cancer cells compared to normal cells, cationic amphipathic peptides could be an effective source of anticancer agents that are both selective and refractory to current resistance mechanisms. We reviewed herein the prospect for AMP application to cancer treatment, with a focus on modes of action of cationic AMPs.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Y Peter Di
- Department of Environmental and Occupational Health, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
30
|
Analysis of hard protein corona composition on selective iron oxide nanoparticles by MALDI-TOF mass spectrometry: identification and amplification of a hidden mastitis biomarker in milk proteome. Anal Bioanal Chem 2018. [DOI: 10.1007/s00216-018-0976-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
31
|
Liu Y, Pischetsrieder M. Identification and Relative Quantification of Bioactive Peptides Sequentially Released during Simulated Gastrointestinal Digestion of Commercial Kefir. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:1865-1873. [PMID: 28195465 DOI: 10.1021/acs.jafc.6b05385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Health-promoting effects of kefir may be partially caused by bioactive peptides. To evaluate their formation or degradation during gastrointestinal digestion, we monitored changes of the peptide profile in a model of (1) oral, (2) gastric, and (3) small intestinal digestion of kefir. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy analyses revealed clearly different profiles between digests 2/3 and kefir/digest 1. Subsequent ultraperformance liquid chromatography-electrospray ionization-tandem mass spectrometry identified 92 peptides in total (25, 25, 43, and 30, partly overlapping in kefir and digests 1, 2, and 3, respectively), including 16 peptides with ascribed bioactivity. Relative quantification in scheduled multiple reaction monitoring mode showed that many bioactive peptides were released by simulated digestion. Most prominently, the concentration of angiotensin-converting enzyme inhibitor β-casein203-209 increased approximately 10 000-fold after combined oral, gastric, and intestinal digestion. Thus, physiological digestive processes may promote bioactive peptide formation from proteins and oligopeptides in kefir. Furthermore, bioactive peptides present in certain compartments of the gastrointestinal tract may exert local physiological effects.
Collapse
Affiliation(s)
- Yufang Liu
- Department of Chemistry and Pharmacy, Food Chemistry Unit, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Schuhstraße 19, 91052 Erlangen, Germany
| | - Monika Pischetsrieder
- Department of Chemistry and Pharmacy, Food Chemistry Unit, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) , Schuhstraße 19, 91052 Erlangen, Germany
| |
Collapse
|