1
|
Someya Y, Kobayashi S, Toriumi K, Takeda S, Adachi N, Kurosawa A. A Cell System-Assisted Strategy for Evaluating the Natural Antioxidant-Induced Double-Stranded DNA Break (DSB) Style. Genes (Basel) 2023; 14:420. [PMID: 36833347 PMCID: PMC9957360 DOI: 10.3390/genes14020420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Natural antioxidants derived from plants exert various physiological effects, including antitumor effects. However, the molecular mechanisms of each natural antioxidant have not yet been fully elucidated. Identifying the targets of natural antioxidants with antitumor properties in vitro is costly and time-consuming, and the results thus obtained may not reliably reflect in vivo conditions. Therefore, to enhance understanding regarding the antitumor effects of natural antioxidants, we focused on DNA, one of the targets of anticancer drugs, and evaluated whether antioxidants, e.g., sulforaphane, resveratrol, quercetin, kaempferol, and genistein, which exert antitumor effects, induce DNA damage using gene-knockout cell lines derived from human Nalm-6 and HeLa cells pretreated with the DNA-dependent protein kinase inhibitor NU7026. Our results suggested that sulforaphane induces single-strand breaks or DNA strand crosslinks and that quercetin induces double-strand breaks. In contrast, resveratrol showed the ability to exert cytotoxic effects other than DNA damage. Our results also suggested that kaempferol and genistein induce DNA damage via unknown mechanisms. Taken together, the use of this evaluation system facilitates the analysis of the cytotoxic mechanisms of natural antioxidants.
Collapse
Affiliation(s)
- Yuduki Someya
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Sakine Kobayashi
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Kazuya Toriumi
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Shigeki Takeda
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
| | - Noritaka Adachi
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
| | - Aya Kurosawa
- Faculty of Science and Technology, Gunma University, Kiryu 376-8515, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama 236-0027, Japan
- Gunma University Center for Food and Science and Wellness, Gunma University, Kiryu 376-8515, Japan
| |
Collapse
|
2
|
Wang S, Tang YJ. Sulforaphane ameliorates amyloid-β-induced inflammatory injury by suppressing the PARP1/SIRT1 pathway in retinal pigment epithelial cells. Bioengineered 2021; 12:7079-7089. [PMID: 34982643 PMCID: PMC8973853 DOI: 10.1080/21655979.2021.1976503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Age-associated macular degeneration (AMD) is a progressive eye disorder that leads to irreversible impairment of central vision, and effective therapies are lacking. Here, we explore how oligomeric amyloid-β1-42 can trigger inflammatory injury in retinal pigment epithelial cells and how sulforaphane can mitigate such injury. ARPE-19 retinal pigment epithelial cells expressing low, endogenous, or high levels of poly(ADP-ribose) polymerase (PARP1) were treated with oligomeric amyloid-β1-42 in the presence or absence of various signaling inhibitors or sulforaphane. Cell viability, apoptosis, inflammatory responses, and activity of the PARP1/Sirtuin (SIRT1) axis were assayed. Treating ARPE-19 cells with oligomeric amyloid-β1-42 promoted the production of IL-1β, IL-6, IL-8, and TNF-ɑ, which was partially reversed by inhibiting PARP1 and activating SIRT1. PARP1 was found to act upstream of SIRT1, and expression of the two proteins correlated negatively with each other. Sulforaphane also mitigated the injury due to oligomeric amyloid-β1-42 through a mechanism involving inactivation of the PARP1/SIRT1 pathway. Oligomeric amyloid-β1-42 can trigger AMD-like injury in retinal pigment epithelium by activating PARP1 and repressing SIRT1. Moreover, sulforaphane can induce cell viability and SIRT1 expression, but reduce cell apoptosis, the activity of caspase-3 or -9, and PARP1 expression in oAβ1-42-treated cells. However, PARP1 inactivation or SIRT1 activation weaken these effects. In summary, sulforaphane reduces the inflammatory injury induced by oAβ1-42 in ARPE-19 cell by inactivating the PARP1/SIRT1 pathway. Thus, the compound may be an effective therapy against AMD.
Collapse
Affiliation(s)
- Song Wang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Yu-Jie Tang
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
3
|
Harris CM, Zamperoni KE, Sernoskie SC, Chow NSM, Massey TE. Effects of in vivo treatment of mice with sulforaphane on repair of DNA pyridyloxylbutylation. Toxicology 2021; 454:152753. [PMID: 33741493 DOI: 10.1016/j.tox.2021.152753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/08/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
The phytochemical sulforaphane (SF) has gained interest for its apparent association with reduced cancer risk and other cytoprotective properties, at least some of which are attributed to activation of the transcription factor Nrf2. Repair of bulky DNA adducts is important for mitigating carcinogenesis from exogenous DNA damaging agents, but it is unknown whether in vivo treatment with SF affects adduct repair. At 12 h following a single oral dose of 100 mg/kg SF, an almost doubling in activity for repair of pyridyloxobutylated DNA was observed in CD-1 mouse liver nuclear extracts, but not in lung extracts. This change at 12 h in repair activity was preceded by the induction of Nrf2-regulated genes but not accompanied by changes in levels of the specific nucleotide excision repair (NER) proteins XPC, XPA, XPB and p53 or in binding of hepatic XPC, XPA and XPB to damaged DNA. SF also did not significantly alter histone deacetylase activity as measured by acetylated histone H3 levels, or stimulate formation of γ-H2A.X, a marker of DNA damage. A significant reduction in oxidative DNA damage, as measured by 8-OHdG (a biomarker of oxidative DNA damage), was observed only in DNA from the lungs of SF-treated mice 3 h post-dosing. These results suggest that the ability of SF to increase bulky adduct repair activity is organ-selective and is consistent with activation of the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Christopher M Harris
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Kristen E Zamperoni
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Samantha C Sernoskie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Natalie S M Chow
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada
| | - Thomas E Massey
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L 3N6, Canada.
| |
Collapse
|
4
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
5
|
Natural scaffolds in anticancer therapy and precision medicine. Biotechnol Adv 2018; 36:1563-1585. [PMID: 29729870 DOI: 10.1016/j.biotechadv.2018.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 12/21/2022]
Abstract
The diversity of natural compounds is essential for their mechanism of action. The source, structures and structure activity relationship of natural compounds contributed to the development of new classes of chemotherapy agents for over 40 years. The availability of combinatorial chemistry and high-throughput screening has fueled the challenge to identify novel compounds that mimic nature's chemistry and to predict their macromolecular targets. Combining conventional and targeted therapies helped to successfully overcome drug resistance and prolong disease-free survival. Here, we aim to provide an overview of preclinical investigated natural compounds alone and in combination to further improve personalization of cancer treatment.
Collapse
|
6
|
Russo M, Spagnuolo C, Russo GL, Skalicka-Woźniak K, Daglia M, Sobarzo-Sánchez E, Nabavi SF, Nabavi SM. Nrf2 targeting by sulforaphane: A potential therapy for cancer treatment. Crit Rev Food Sci Nutr 2017; 58:1391-1405. [PMID: 28001083 DOI: 10.1080/10408398.2016.1259983] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the past decades, extensive studies have reported the potential chemopreventive activity of sulforaphane, an isothiocyanate derived from glucoraphanin, occurring in large amounts in Brassica genus plants. Sulforaphane was found to be active against several forms of cancer. A growing body of data shows that sulforaphane acts against cancer at different levels, from development to progression, through pleiotropic effects. In this review, we discuss the available experimental and clinical data on the potential therapeutic role of sulforaphane against cancer. Its effects range from the protection of cells from DNA damage to the modulation of the cell cycle via pro-apoptotic, anti-angiogenesis and anti-metastasis activities. At molecular level, sulforaphane modulates cellular homeostasis via the activation of the transcription factor Nrf2. Although data from clinical studies are limited, sulforaphane remains a good candidate in the adjuvant therapy based on natural molecules against several types of cancer.
Collapse
Affiliation(s)
- Maria Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Carmela Spagnuolo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Gian Luigi Russo
- a Institute of Food Sciences, National Research Council , Avellino , Italy
| | - Krystyna Skalicka-Woźniak
- b Department of Pharmacognosy with Medicinal Plants Unit , Medical University of Lublin , Lublin , Poland
| | - Maria Daglia
- c Department of Drug Sciences , Medicinal Chemistry and Pharmaceutical Technology Section, University of Pavia , Italy
| | - Eduardo Sobarzo-Sánchez
- d Laboratory of Pharmaceutical Chemistry, Department of Organic Chemistry , Faculty of Pharmacy, University of Santiago de Compostela , Spain
| | - Seyed Fazel Nabavi
- e Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Seyed Mohammad Nabavi
- e Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| |
Collapse
|
7
|
Chen KL, Jung P, Kulkoyluoglu-Cotul E, Liguori C, Lumibao J, Mazewski C, Ranard K, Rowles JL, Wang Y, Xue L, Madak-Erdogan Z. Impact of Diet and Nutrition on Cancer Hallmarks. ACTA ACUST UNITED AC 2017; 7. [PMID: 30581989 DOI: 10.15406/jcpcr.2017.07.00240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diet and nutrition are undeniably two factors that have a major impact on the prevention, progression, and treatment of various cancers. In this review, we will discuss how bioactives from diet and nutritional status affect each of the hallmarks of cancer. We will present recent research and discuss using diet and nutrition as a means to prevent and treat cancer.
Collapse
Affiliation(s)
- Karen L Chen
- Division of Nutritional Sciences, University of Illinois, USA
| | - Paul Jung
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | | | - Carli Liguori
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | - Jan Lumibao
- Division of Nutritional Sciences, University of Illinois, USA
| | - Candice Mazewski
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | | | - Joe L Rowles
- Division of Nutritional Sciences, University of Illinois, USA
| | - Yanling Wang
- Department of Food Science and Human Nutrition, University of Illinois, USA
| | - Louisa Xue
- Division of Nutritional Sciences, University of Illinois, USA
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, USA.,Department of Food Science and Human Nutrition, University of Illinois, USA
| |
Collapse
|
8
|
Lakatos P, Hegedűs C, Salazar Ayestarán N, Juarranz Á, Kövér KE, Szabó É, Virág L. The PARP inhibitor PJ-34 sensitizes cells to UVA-induced phototoxicity by a PARP independent mechanism. Mutat Res 2016; 790:31-40. [PMID: 27427773 DOI: 10.1016/j.mrfmmm.2016.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/28/2016] [Accepted: 07/04/2016] [Indexed: 12/24/2022]
Abstract
A combination of a photosensitizer with light of matching wavelength is a common treatment modality in various diseases including psoriasis, atopic dermatitis and tumors. DNA damage and production of reactive oxygen intermediates may impact pathological cellular functions and viability. Here we set out to investigate the role of the nuclear DNA nick sensor enzyme poly(ADP-ribose) polymerase 1 in photochemical treatment (PCT)-induced tumor cell killing. We found that silencing PARP-1 or inhibition of its enzymatic activity with Veliparib had no significant effect on the viability of A431 cells exposed to 8-methoxypsoralen (8-MOP) and UVA (2.5J/cm(2)) indicating that PARP-1 is not likely to be a key player in either cell survival or cell death of PCT-exposed cells. Interestingly, however, another commonly used PARP inhibitor PJ-34 proved to be a photosensitizer with potency equal to 8-MOP. Irradiation of PJ-34 with UVA caused changes both in the UV absorption and in the 1H NMR spectra of the compound with the latter suggesting UVA-induced formation of tautomeric forms of the compound. Characterization of the photosensitizing effect revealed that PJ-34+UVA triggers overproduction of reactive oxygen species, induces DNA damage, activation of caspase 3 and caspase 8 and internucleosomal DNA fragmentation. Cell death in this model could not be prevented by antioxidants (ascorbic acid, trolox, glutathione, gallotannin or cell permeable superoxide dismutase or catalase) but could be suppressed by inhibitors of caspase-3 and -8. In conclusion, PJ-34 is a photosensitizer and PJ-34+UVA causes DNA damage and caspase-mediated cell death independently of PARP-1 inhibition.
Collapse
Affiliation(s)
- Petra Lakatos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nerea Salazar Ayestarán
- Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid, Spain
| | - Ángeles Juarranz
- Department of Biology, Faculty of Sciences, Universidad Autónoma of Madrid, 28049-Madrid, Spain
| | - Katalin E Kövér
- Department of Inorganic and Analytical Chemistry, Faculty of Sciences, University of Debrecen, Debrecen, Hungary
| | - Éva Szabó
- Department of Dermatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Virág
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE Cell Biology and Signaling Research Group, Debrecen, Hungary.
| |
Collapse
|