1
|
Xian M, Maskey AR, Kopulos D, Li XM. The roles of bitter and sweet taste receptors in food allergy: Where are we now? Allergol Int 2025:S1323-8930(25)00010-3. [PMID: 40037957 DOI: 10.1016/j.alit.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/31/2024] [Accepted: 01/17/2025] [Indexed: 03/06/2025] Open
Abstract
Food allergy (FA) is a growing global concern, which contributes significantly to anaphylaxis and severe allergic reactions. Despite advancements in treatments like allergen immunotherapy and biologics, current approaches have notable limitations and there is a pressing need for new therapeutic strategies. Recent research into taste receptors has unveiled their potential role in FA, offering fresh perspectives for understanding and managing this condition. Taste receptors, particularly type 1 taste receptors (TAS1Rs/T1Rs, sweet taste receptors) and type 2 taste receptors (TAS2Rs/T2Rs, bitter taste receptors), are distributed not only in the oral cavity but also in various extra-oral tissues, and their interactions with immune responses are increasingly recognized. This review highlights the connections between taste receptors and FA, exploring how taste receptor mechanisms might contribute to FA pathogenesis and treatment. Taste receptors, especially TAS2Rs, which include multiple subtypes with varying ligand specificities, have been implicated in modulating allergic responses and could serve as targets for novel FA therapies. Additionally, compounds such as bitter agents and sweeteners that interact with taste receptors show promise in influencing FA outcomes. This review emphasizes the need for further research into the mechanisms of taste receptor involvement in FA and suggests that targeting these receptors could provide new avenues for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Mo Xian
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anish R Maskey
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Daniel Kopulos
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Xiu-Min Li
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA; Department of Otolaryngology, New York Medical College, Valhalla, NY, USA; Department of Dermatology, New York Medical College, Valhalla, NY, USA.
| |
Collapse
|
2
|
Zuñiga-Martínez BS, Domínguez-Avila JA, Montiel-Herrera M, Villegas-Ochoa MA, Robles-Sánchez RM, Ayala-Zavala JF, Viuda-Martos M, González-Aguilar GA. Consumption of Plant-Derived Phenolic Acids Modulates Hunger and Satiety Responses Due to Chemical Interactions with Enteroendocrine Mediators. Foods 2024; 13:3640. [PMID: 39594055 PMCID: PMC11593637 DOI: 10.3390/foods13223640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Energy-dense foods are commonly rich in fat and simple sugars and poor in dietary fiber and micronutrients; regularly consuming them decreases the concentration and/or effect of anorexigenic hormones and may increase that of orexigenic ones, thereby decreasing satiety. In contrast, plant-derived phenolic-rich foods exert positive effects on satiety. In silico, in vitro, and in vivo investigations on some of most representative phenolic acids like chlorogenic acid (CGA), gallic acid (GA), ferulic acid (FA), and protocatechuic acid (PCA) have shown that they are able to modulate various hunger and satiety processes; however, there are few studies that show how their chemical structure contributes to achieve such effects. The objective of this review is to summarize how these phenolic acids can favorably modulate hormones and other satiety mediators, with emphasis on the chemical interactions exerted between the core of these compounds and their biological targets. The evidence suggests that they form interactions with certain hormones, their receptors, and/or enzymes involved in regulating hunger and satiety, which are attributed to their chemical structure (such as the position of hydroxyl groups). Further research is needed to continue understanding these molecular mechanisms of action and to utilize the knowledge in the development of health-promoting foods.
Collapse
Affiliation(s)
- B. Shain Zuñiga-Martínez
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - J. Abraham Domínguez-Avila
- CONAHCYT-Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico
| | - Marcelino Montiel-Herrera
- Departmento de Medicina y Ciencias de la Salud, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - Mónica A. Villegas-Ochoa
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Rosario Maribel Robles-Sánchez
- Departmento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Blvd. Luis Encinas y Rosales s/n, Col Centro, Hermosillo 83000, SO, Mexico;
| | - J. Fernando Ayala-Zavala
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| | - Manuel Viuda-Martos
- IPOA Research Group, Instituto de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, 03312 Alicante, Spain;
| | - Gustavo A. González-Aguilar
- Centro de Investigación en Alimentación y Desarrollo A. C., Carretera Gustavo Enrique Astiazarán Rosas No. 46, Col. La Victoria, Hermosillo 83304, SO, Mexico; (B.S.Z.-M.); (M.A.V.-O.); (J.F.A.-Z.); (G.A.G.-A.)
| |
Collapse
|
3
|
Trius-Soler M, Moreno JJ. Bitter taste receptors: Key target to understand the effects of polyphenols on glucose and body weight homeostasis. Pathophysiological and pharmacological implications. Biochem Pharmacol 2024; 228:116192. [PMID: 38583811 DOI: 10.1016/j.bcp.2024.116192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Experimental and clinical research has reported beneficial effects of polyphenol intake on high prevalent diseases such as type 2 diabetes and obesity. These phytochemicals are ligands of taste 2 receptors (T2Rs) that have been recently located in a variety of organs and extra-oral tissues. Therefore, the interaction between polyphenol and T2Rs in brain structures can play a direct effect on appetite/satiety regulation and food intake. T2Rs are also expressed along the digestive tract, and their interaction with polyphenols can induce the release of gastrointestinal hormones (e.g., ghrelin, GLP-1, CCK) influencing appetite, gastrointestinal functionally, and glycemia control. Intestinal microbiota can also influence on network effects of polyphenols-T2Rs interaction and vice versa, impacting innate immune responses and consequently on gut functionally. Furthermore, polyphenols binding to T2Rs present important effects on adipose tissue metabolism. Interestingly, T2R polymorphism could, at least partially, explain the inter-individual variability of the effects of polyphenols on glucose and body weight homeostasis. Together, these factors can contribute to understand the beneficial effects of polyphenol-rich diets but also might aid in identifying new pharmacological pathway targets for the treatment of diabetes and obesity.
Collapse
Affiliation(s)
- Marta Trius-Soler
- Department of Public Health and Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Juan José Moreno
- Department of Nutrition, Food Science and Gastronomy, XIA, School of Pharmacy and Food Sciences, University of Barcelona, Barcelona, Spain; Institute for Nutrition and Food Safety Research, University of Barcelona, Barcelona, Spain; Consorcio CIBER, M.P. Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Miguéns-Gómez A, Sierra-Cruz M, Blay MT, Rodríguez-Gallego E, Beltrán-Debón R, Terra X, Pinent M, Ardévol A. GSPE Pre-Treatment Exerts Long-Lasting Preventive Effects against Aging-Induced Changes in the Colonic Enterohormone Profile of Female Rats. Int J Mol Sci 2023; 24:ijms24097807. [PMID: 37175514 PMCID: PMC10177949 DOI: 10.3390/ijms24097807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The impact that healthy aging can have on society has raised great interest in understanding aging mechanisms. However, the effects this biological process may have on the gastrointestinal tract (GIT) have not yet been fully described. Results in relation to changes observed in the enteroendocrine system along the GIT are controversial. Grape seed proanthocyanidin extracts (GSPE) have been shown to protect against several pathologies associated with aging. Based on previous results, we hypothesized that a GSPE pre-treatment could prevent the aging processes that affect the enteroendocrine system. To test this hypothesis, we treated 21-month-old female rats with GSPE for 10 days. Eleven weeks after the treatment, we analyzed the effects of GSPE by comparing these aged animals with young animals. Aging induced a greater endocrine response to stimulation in the upper GIT segments (cholecystokinin (CCK) and glucagon-like peptide-1 (GLP-1)), a decrease in the mRNA abundance of GLP-1, peptide YY (PYY) and chromogranin A (ChgA) in the colon, and an increase in colonic butyrate. GSPE-treated rats were protected against a decrease in enterohormone expression in the colon. This effect is not directly related to the abundance of microbiome or short-chain fatty acids (SCFA) at this location. GSPE may therefore be effective in preventing a decrease in the colonic abundance of enterohormone expression induced by aging.
Collapse
Affiliation(s)
- Alba Miguéns-Gómez
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain
| |
Collapse
|
5
|
Taladrid D, Rebollo-Hernanz M, Martin-Cabrejas MA, Moreno-Arribas MV, Bartolomé B. Grape Pomace as a Cardiometabolic Health-Promoting Ingredient: Activity in the Intestinal Environment. Antioxidants (Basel) 2023; 12:antiox12040979. [PMID: 37107354 PMCID: PMC10135959 DOI: 10.3390/antiox12040979] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Grape pomace (GP) is a winemaking by-product particularly rich in (poly)phenols and dietary fiber, which are the main active compounds responsible for its health-promoting effects. These components and their metabolites generated at the intestinal level have been shown to play an important role in promoting health locally and systemically. This review focuses on the potential bioactivities of GP in the intestinal environment, which is the primary site of interaction for food components and their biological activities. These mechanisms include (i) regulation of nutrient digestion and absorption (GP has been shown to inhibit enzymes such as α-amylase and α-glucosidase, protease, and lipase, which can help to reduce blood glucose and lipid levels, and to modulate the expression of intestinal transporters, which can also help to regulate nutrient absorption); (ii) modulation of gut hormone levels and satiety (GP stimulates GLP-1, PYY, CCK, ghrelin, and GIP release, which can help to regulate appetite and satiety); (iii) reinforcement of gut morphology (including the crypt-villi structures, which can improve nutrient absorption and protect against intestinal damage); (iv) protection of intestinal barrier integrity (through tight junctions and paracellular transport); (v) modulation of inflammation and oxidative stress triggered by NF-kB and Nrf2 signaling pathways; and (vi) impact on gut microbiota composition and functionality (leading to increased production of SCFAs and decreased production of LPS). The overall effect of GP within the gut environment reinforces the intestinal function as the first line of defense against multiple disorders, including those impacting cardiometabolic health. Future research on GP's health-promoting properties should consider connections between the gut and other organs, including the gut-heart axis, gut-brain axis, gut-skin axis, and oral-gut axis. Further exploration of these connections, including more human studies, will solidify GP's role as a cardiometabolic health-promoting ingredient and contribute to the prevention and management of cardiovascular diseases.
Collapse
Affiliation(s)
- Diego Taladrid
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| | - Miguel Rebollo-Hernanz
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria A Martin-Cabrejas
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
- Department of Agricultural Chemistry and Food Science, Faculty of Science, C/Francisco Tomás y Valiente, 7, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | - Begoña Bartolomé
- Institute of Food Science Research (CIAL, CSIC-UAM), C/Nicolás Cabrera, 9, 28049 Madrid, Spain
| |
Collapse
|
6
|
Miguéns‐Gómez A, Sierra‐Cruz M, Segú H, Beltrán‐Debón R, Rodríguez‐Gallego E, Terra X, Blay MT, Pérez‐Vendrell AM, Pinent M, Ardévol A. Administration of Alphitobius diaperinus or Tenebrio molitor before meals transiently increases food intake through enterohormone regulation in female rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:1660-1667. [PMID: 36324158 PMCID: PMC10099498 DOI: 10.1002/jsfa.12305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/11/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND It has been previously shown that acutely administered insect Alphitobius diaperinus protein increases food intake in rats and modifies the ex vivo enterohormone secretory profile differently than beef or almond proteins. In this study, we aimed to evaluate whether these effects could be maintained for a longer period and determine the underlying mechanisms. RESULTS We administered two different insect species to rats for 26 days and measured food intake at different time points. Both insect species increased food intake in the first week, but the effect was later lost. Glucagon-like peptide 1 (GLP-1) and ghrelin were measured in plasma and ex vivo, and no chronic effects on their secretion or desensitization were found. Nevertheless, digested A. diaperinus acutely modified GLP-1 and ghrelin secretion ex vivo. CONCLUSION Our results suggest that increases in food intake could be explained by a local ghrelin reduction acting in the small intestine. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Alba Miguéns‐Gómez
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Marta Sierra‐Cruz
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Helena Segú
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Raúl Beltrán‐Debón
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Esther Rodríguez‐Gallego
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Ximena Terra
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Maria Teresa Blay
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | | | - Montserrat Pinent
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| | - Anna Ardévol
- Departament de Bioquímica i BiotecnologiaMoBioFood Research Group, Universitat Rovira i VirgiliTarragonaSpain
| |
Collapse
|
7
|
Li M, Liu Y, Weigmann B. Biodegradable Polymeric Nanoparticles Loaded with Flavonoids: A Promising Therapy for Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:4454. [PMID: 36901885 PMCID: PMC10003013 DOI: 10.3390/ijms24054454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders that cause chronic non-specific inflammation in the gastrointestinal (GI) tract, primarily affecting the ileum and colon. The incidence of IBD has risen sharply in recent years. Despite continuous research efforts over the past decades, the aetiology of IBD is still not fully understood and only a limited number of drugs are available for its treatment. Flavonoids, a ubiquitous class of natural chemicals found in plants, have been widely used in the prevention and treatment of IBD. However, their therapeutic efficacy is unsatisfactory due to poor solubility, instability, rapid metabolism, and rapid systemic elimination. With the development of nanomedicine, nanocarriers can efficiently encapsulate various flavonoids and subsequently form nanoparticles (NPs), which greatly improves the stability and bioavailability of flavonoids. Recently, progress has also been made in the methodology of biodegradable polymers that can be used to fabricate NPs. As a result, NPs can significantly enhance the preventive or therapeutic effects of flavonoids on IBD. In this review, we aim to evaluate the therapeutic effect of flavonoid NPs on IBD. Furthermore, we discuss possible challenges and future perspectives.
Collapse
Affiliation(s)
- Mingrui Li
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Ying Liu
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, 91052 Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91052 Erlangen, Germany
| |
Collapse
|
8
|
Miguéns-Gómez A, Sierra-Cruz M, Pérez-Vendrell AM, Rodríguez-Gallego E, Beltrán-Debón R, Terra X, Ardévol A, Pinent M. Differential effects of a cafeteria diet and GSPE preventive treatments on the enterohormone secretions of aged vs. young female rats. Food Funct 2022; 13:10491-10500. [PMID: 36148543 DOI: 10.1039/d2fo02111k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grape seed derived procyanidins (GSPE) have been shown to effectively prevent intestinal disarrangements induced by a cafeteria diet in young rats. However, little is known about the effects of procyanidins and cafeteria diet on enterohormone secretion in aged rats, as the ageing processes modify these effects. To study these effects in aged rats, we subjected 21-month-old and young 2-month-old female rats to two sub-chronic preventive GSPE treatments. After three months of cafeteria diet administration, we analysed the basal and stimulated secretion and mRNA expression of CCK, PYY and GLP-1, caecal SCFA and intestinal sizes. We found that the effects of a cafeteria diet on the basal duodenal CCK secretion are age dependent. GLP-1 in the ileum was not modified regardless of the rat's age, and GSPE preventive effects differed in the two age groups. GSPE pre-treatment reduced GLP-1, PYY and ChgA in mRNA in aged ileum tissue, while the cafeteria diet increased these in aged colon. The GSPE treatments only modified low-abundance SCFAs. The cafeteria diet in aged rats increases the caecum size differently from that in young rats and GSPE pre-treatment prevents this increase. Therefore, ageing modifies nutrient sensing, and the cafeteria diet acts mainly on the duodenum and colon, while procyanidins have a larger effect on the ileum.
Collapse
Affiliation(s)
- Alba Miguéns-Gómez
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Marta Sierra-Cruz
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Anna Maria Pérez-Vendrell
- Monogastric Nutrition, Centre Mas de Bover, IRTA, Ctra. Reus-El Morell Km 3.8, 43120 Constantí, Spain
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| |
Collapse
|
9
|
Jalševac F, Terra X, Rodríguez-Gallego E, Beltran-Debón R, Blay MT, Pinent M, Ardévol A. The Hidden One: What We Know About Bitter Taste Receptor 39. Front Endocrinol (Lausanne) 2022; 13:854718. [PMID: 35345470 PMCID: PMC8957101 DOI: 10.3389/fendo.2022.854718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Over thousands of years of evolution, animals have developed many ways to protect themselves. One of the most protective ways to avoid disease is to prevent the absorption of harmful components. This protective function is a basic role of bitter taste receptors (TAS2Rs), a G protein-coupled receptor family, whose presence in extraoral tissues has intrigued many researchers. In humans, there are 25 TAS2Rs, and although we know a great deal about some of them, others are still shrouded in mystery. One in this latter category is bitter taste receptor 39 (TAS2R39). Besides the oral cavity, it has also been found in the gastrointestinal tract and the respiratory, nervous and reproductive systems. TAS2R39 is a relatively non-selective receptor, which means that it can be activated by a range of mostly plant-derived compounds such as theaflavins, catechins and isoflavones. On the other hand, few antagonists for this receptor are available, since only some flavones have antagonistic properties (all of them detailed in the document). The primary role of TAS2R39 is to sense the bitter components of food and protect the organism from harmful compounds. There is also some indication that this bitter taste receptor regulates enterohormones and in turn, regulates food intake. In the respiratory system, it may be involved in the congestion process of allergic rhinitis and may stimulate inflammatory cytokines. However, more thorough research is needed to determine the precise role of TAS2R39 in these and other tissues.
Collapse
|
10
|
A Novel Pathway of Flavonoids Protecting against Inflammatory Bowel Disease: Modulating Enteroendocrine System. Metabolites 2022; 12:metabo12010031. [PMID: 35050153 PMCID: PMC8777795 DOI: 10.3390/metabo12010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/20/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a comprehensive term for chronic or relapsing inflammatory diseases occurring in the intestinal tract, generally including Crohn's disease (CD) and ulcerative colitis (UC). Presently, the pathogenesis of IBD is unknown, yet multiple factors have been reported to be related with the development of IBD. Flavonoids are phytochemicals with biological activity, which are ubiquitously distributed in edible plants, such as fruits and vegetables. Recent studies have demonstrated impressively that flavonoids have anti-IBD effects through multiple mechanisms. These include anti-inflammatory and antioxidant actions; the preservation of the epithelial barrier integrity, the intestinal immunomodulatory property, and the shaping microbiota composition and function. In addition, a few studies have shown the impact of flavonoids on enterohormones release; nonetheless, there is hardly any work showing the link between flavonoids, enterohormones release and IBD. So far, the interaction between flavonoids, enterohormones and IBD is elucidated for the first time in this review. Furthermore, the inference can be drawn that flavonoids may protect against IBD through modulating enterohormones, such as glucagon-like peptide 1 (GLP-1), GLP-2, dipeptidyl peptidase-4 inhibitors (DPP-4 inhibitors), ghrelin and cholecystokinin (CCK). In conclusion, this manuscript explores a possible mechanism of flavonoids protecting against IBD.
Collapse
|
11
|
Coelho OGL, Alfenas RDCG, Debelo H, Wightman JD, Ferruzzi MG, Mattes RD. Effects of Concord grape juice flavor intensity and phenolic compound content on glycemia, appetite and cognitive function in adults with excess body weight: a randomized double-blind crossover trial. Food Funct 2021; 12:11469-11481. [PMID: 34698750 DOI: 10.1039/d1fo02049h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background & aims: Concord grape (Vitis lambrusca) juice (CGJ) contains a unique combination of polyphenolic compounds with diverse effects on human health. It also has an intense sensory profile that may modify food choice. Daily consumption of CGJ over 8 weeks reduced fasting blood glucose. However, the impact on 24h-postprandial glucose response from CGJ is still not clear. The purpose of this study was to assess the effect of CGJ flavor intensity and phenolic content on 24 h postprandial glucose concentrations, appetitive sensations, and cognitive function in adults with excess body weight when consumed alone or with a meal. Methods: In a randomized, double-blind, crossover design study, participants consumed three types of beverages: 100% CGJ, a polyphenol-free grape flavored drink with the same flavor essence (LP) or a polyphenol-free grape flavored drink with reduced flavor essence (LPF) either without (trial I) or with (trial II) a meal. 24 h glucose was measured through continuous glucose monitoring. Phenolic metabolite excretion was assessed in 24 h urine samples. Appetite (hunger, thirst, fullness, desire to eat, and prospective consumption) and cognitive function (alertness, energetic, strength, calmness, and relaxation) were assessed hourly through visual analog scales. Results: Thirty-four adults completed trial I and 34 adults completed trial II. When consumed with a meal, beverages with customary flavor essence (CGJ and LP) reduced hunger, desire to eat, and prospective consumption and consumption of the polyphenol-free reduced flavor essence beverage was associated with higher 24 h glucose tAUC. No consistent effects were observed for cognitive outcomes. When consumed alone, CGJ was related to lower glycemic responses by those excreting a higher concentration of the phenolic metabolite iso/ferulic-3'-O-glucuronide, but in beverages without CG phenolics and reduced flavor essence, glycemia was higher among those excreting higher concentrations of caffeic acid-O-sulfate. Conclusions: Both natural phenolics and flavor essence of CGJ may help to moderate appetite and glycemia. Clinical Trials registered at http://www.clinicaltrials.gov: NCT03409484 (trial I) and NCT03409497 (trial II).
Collapse
Affiliation(s)
- Olívia G L Coelho
- Departamento de Nutrição e Saúde, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | - Hawi Debelo
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | | | - Mario G Ferruzzi
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Richard D Mattes
- Department of Nutrition Sciences, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
12
|
Martens K, Steelant B, Bullens DMA. Taste Receptors: The Gatekeepers of the Airway Epithelium. Cells 2021; 10:cells10112889. [PMID: 34831117 PMCID: PMC8616034 DOI: 10.3390/cells10112889] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 02/07/2023] Open
Abstract
Taste receptors are well known for their role in the sensation of taste. Surprisingly, the expression and involvement of taste receptors in chemosensory processes outside the tongue have been recently identified in many organs including the airways. Currently, a clear understanding of the airway-specific function of these receptors and the endogenous activating/inhibitory ligands is lagging. The focus of this review is on recent physiological and clinical data describing the taste receptors in the airways and their activation by secreted bacterial compounds. Taste receptors in the airways are potentially involved in three different immune pathways (i.e., the production of nitric oxide and antimicrobial peptides secretion, modulation of ciliary beat frequency, and bronchial smooth muscle cell relaxation). Moreover, genetic polymorphisms in these receptors may alter the patients’ susceptibility to certain types of respiratory infections as well as to differential outcomes in patients with chronic inflammatory airway diseases such as chronic rhinosinusitis and asthma. A better understanding of the function of taste receptors in the airways may lead to the development of a novel class of therapeutic molecules that can stimulate airway mucosal immune responses and could treat patients with chronic airway diseases.
Collapse
Affiliation(s)
- Katleen Martens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Department of Bioscience Engineering, University of Antwerp, 2020 Antwerp, Belgium
| | - Brecht Steelant
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
| | - Dominique M. A. Bullens
- Allergy and Clinical Immunology Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium; (K.M.); (B.S.)
- Clinical Division of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence:
| |
Collapse
|
13
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
14
|
Grau-Bové C, Miguéns-Gómez A, González-Quilen C, Fernández-López JA, Remesar X, Torres-Fuentes C, Ávila-Román J, Rodríguez-Gallego E, Beltrán-Debón R, Blay MT, Terra X, Ardévol A, Pinent M. Modulation of Food Intake by Differential TAS2R Stimulation in Rat. Nutrients 2020; 12:E3784. [PMID: 33321802 PMCID: PMC7762996 DOI: 10.3390/nu12123784] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/12/2022] Open
Abstract
Metabolic surgery modulates the enterohormone profile, which leads, among other effects, to changes in food intake. Bitter taste receptors (TAS2Rs) have been identified in the gastrointestinal tract and specific stimulation of these has been linked to the control of ghrelin secretion. We hypothesize that optimal stimulation of TAS2Rs could help to modulate enteroendocrine secretions and thus regulate food intake. To determine this, we have assayed the response to specific agonists for hTAS2R5, hTAS2R14 and hTAS2R39 on enteroendocrine secretions from intestinal segments and food intake in rats. We found that hTAS2R5 agonists stimulate glucagon-like peptide 1 (GLP-1) and cholecystokinin (CCK), and reduce food intake. hTAS2R14 agonists induce GLP1, while hTASR39 agonists tend to increase peptide YY (PYY) but fail to reduce food intake. The effect of simultaneously activating several receptors is heterogeneous depending on the relative affinity of the agonists for each receptor. Although detailed mechanisms are not clear, bitter compounds can stimulate differentially enteroendocrine secretions that modulate food intake in rats.
Collapse
Grants
- AGL2017-83477-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- R2B2018/03 Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Martí Franqués Universitat Rovira i Virgili
- FI Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Beatriu de Pinós Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
- Serra Hunter Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Alba Miguéns-Gómez
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Carlos González-Quilen
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - José-Antonio Fernández-López
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (J.-A.F.-L.); (X.R.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Xavier Remesar
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (J.-A.F.-L.); (X.R.)
- CIBER Obesity and Nutrition, Institute of Health Carlos III, Av. Diagonal 643, 08028 Barcelona, Spain
| | - Cristina Torres-Fuentes
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.T.-F.); (J.Á.-R.)
| | - Javier Ávila-Román
- Nutrigenomics Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.T.-F.); (J.Á.-R.)
| | - Esther Rodríguez-Gallego
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Raúl Beltrán-Debón
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - M Teresa Blay
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Ximena Terra
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Anna Ardévol
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| | - Montserrat Pinent
- MoBioFood Research Group, Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, 43007 Tarragona, Spain; (C.G.-B.); (A.M.-G.); (C.G.-Q.); (E.R.-G.); (R.B.-D.); (M.T.B.); (X.T.); (M.P.)
| |
Collapse
|
15
|
ZhuGe R, Roura E, Behrens M. Editorial: Extra-Oral Taste Receptors: Function, Disease and Evolution. Front Physiol 2020; 11:607134. [PMID: 33192623 PMCID: PMC7662156 DOI: 10.3389/fphys.2020.607134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ronghua ZhuGe
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| | - Eugeni Roura
- Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| |
Collapse
|
16
|
Casanova-Martí À, González-Abuín N, Serrano J, Blay MT, Terra X, Frost G, Pinent M, Ardévol A. Long Term Exposure to a Grape Seed Proanthocyanidin Extract Enhances L-Cell Differentiation in Intestinal Organoids. Mol Nutr Food Res 2020; 64:e2000303. [PMID: 32613679 DOI: 10.1002/mnfr.202000303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/17/2020] [Indexed: 01/08/2023]
Abstract
SCOPE A grape-seed proanthocyanidin extract (GSPE) interacts at the intestinal level, enhancing glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) release, which modulate appetite and glucose homeostasis. Thus, enhancing L-cell numbers could be a strategy to promote hormone production, providing a potential strategy for obesity and type-2 diabetes mellitus (T2DM) treatment. METHODS AND RESULTS Mice ileum organoids are used to evaluate the long-term effects of GSPE and two of its main components, epicatechin (EC) and gallic acid (GA), on intestinal differentiation. Hormone levels are determined using RIA and ELISA kits, and gene expression of transcription factors involved in intestinal cell differentiation, as well as markers of different cell types, are assessed by real-time qPCR. GSPE upregulates enterohormone gene expression and content, as well as the pan-endocrine marker chromogranin A. GSPE also modulates the temporal gene expression profile of early and late transcription factors involved in L-cell differentiation. Furthermore, GSPE upregulates goblet cell (Muc2) and enterocyte (sucraseisomaltase) markers, while downregulating stem cell markers (Lgr5+). Although EC and GA modified enterohormone release, they do not reproduce GSPE effects on transcription factor's profile. CONCLUSIONS This study shows the potential role of GSPE in promoting enteroendocrine differentiation, effect that is not mediated by EC or GA.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Noemi González-Abuín
- Section for Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Maria Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Gary Frost
- Section for Nutrition Research, Department of Metabolism, Digestion, and Reproduction, Hammersmith Hospital, Imperial College London, London, W12 0NN, UK
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, C/Marcel·li Domingo 1, Tarragona, 43007, Spain
| |
Collapse
|
17
|
Grau-Bové C, González-Quilen C, Terra X, Blay MT, Beltrán-Debón R, Jorba-Martín R, Espina B, Pinent M, Ardévol A. Effects of Flavanols on Enteroendocrine Secretion. Biomolecules 2020; 10:biom10060844. [PMID: 32492958 PMCID: PMC7355421 DOI: 10.3390/biom10060844] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/23/2022] Open
Abstract
Some beneficial effects of grape seed proanthocyanidin extract (GSPE) can be explained by the modulation of enterohormone secretion. As GSPE comprises a combination of different molecules, the pure compounds that cause these effects need to be elucidated. The enterohormones and chemoreceptors present in the gastrointestinal tract differ between species, so if humans are to gain beneficial effects, species closer to humans-and humans themselves-must be used. We demonstrate that 100 mg/L of GSPE stimulates peptide YY (PYY) release, but not glucagon-like peptide 1 (GLP-1) release in the human colon. We used a pig ex vivo system that differentiates between apical and basolateral intestinal sides to analyse how apical stimulation with GSPE and its pure compounds affects the gastrointestinal tract. In pigs, apical GSPE treatment stimulates the basolateral release of PYY in the duodenum and colon and that of GLP-1 in the ascending, but not the descending colon. In the duodenum, luminal stimulation with procyanidin dimer B2 increased PYY secretion, but not CCK secretion, while catechin monomers (catechin/epicatechin) significantly increased CCK release, but not PYY release. The differential effects of GSPE and its pure compounds on enterohormone release at the same intestinal segment suggest that they act through chemosensors located apically and unevenly distributed along the gastrointestinal tract.
Collapse
Affiliation(s)
- Carme Grau-Bové
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Carlos González-Quilen
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - M. Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Raul Beltrán-Debón
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| | - Rosa Jorba-Martín
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Beatriz Espina
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Servei de Cirurgia General i de l’Aparell Digestiu, Hospital Universitari Joan XXIII, 43005 Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
- Correspondence: ; Tel.: +34-97-755-9566
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo nº1, 43007 Tarragona, Spain; (C.G.-B.); (C.G.-Q.); (X.T.); (M.T.B.); (R.B.-D.); (A.A.)
- Institut d’Investigació Sanitària Pere Virgili (IISPV), 43005 Tarragona, Spain; (R.J.-M.); (B.E.)
| |
Collapse
|
18
|
Wang Q, Liszt KI, Depoortere I. Extra-oral bitter taste receptors: New targets against obesity? Peptides 2020; 127:170284. [PMID: 32092303 DOI: 10.1016/j.peptides.2020.170284] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/10/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Taste perception on the tongue is essential to help us to identify nutritious or potential toxic food substances. Emerging evidence has demonstrated the expression and function of bitter taste receptors (TAS2Rs) in a wide range of extra-oral tissues. In particular, TAS2Rs in gastrointestinal enteroendocrine cells control the secretion of appetite regulating gut hormones and influence hunger and food intake. Furthermore, these effects may be reinforced by the presence of TAS2Rs on intestinal smooth muscle cells, adipocytes and the brain. This review summarises how activation of extra-oral TAS2Rs can influence appetite and body weight control and how obesity impacts the expression and function of TAS2Rs. Region-selective targeting of bitter taste receptors may be promising targets for the treatment of obesity.
Collapse
Affiliation(s)
- Qiaoling Wang
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Kathrin I Liszt
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| | - Inge Depoortere
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium.
| |
Collapse
|
19
|
Glycaemic regulation, appetite and ex vivo oxidative stress in young adults following consumption of high-carbohydrate cereal bars fortified with polyphenol-rich berries. Br J Nutr 2020; 121:1026-1038. [PMID: 31062684 DOI: 10.1017/s0007114519000394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Consumption of certain berries appears to slow postprandial glucose absorption, attributable to polyphenols, which may benefit exercise and cognition, reduce appetite and/or oxidative stress. This randomised, crossover, placebo-controlled study determined whether polyphenol-rich fruits added to carbohydrate-based foods produce a dose-dependent moderation of postprandial glycaemic, glucoregulatory hormone, appetite and ex vivo oxidative stress responses. Twenty participants (eighteen males/two females; 24 (sd 5) years; BMI: 27 (sd 3) kg/m2) consumed one of five cereal bars (approximately 88 % carbohydrate) containing no fruit ingredients (reference), freeze-dried black raspberries (10 or 20 % total weight; LOW-Rasp and HIGH-Rasp, respectively) and cranberry extract (0·5 or 1 % total weight; LOW-Cran and HIGH-Cran), on trials separated by ≥5 d. Postprandial peak/nadir from baseline (Δmax) and incremental postprandial AUC over 60 and 180 min for glucose and other biochemistries were measured to examine the dose-dependent effects. Glucose AUC0-180 min trended towards being higher (43 %) after HIGH-Rasp v. LOW-Rasp (P=0·06), with no glucose differences between the raspberry and reference bars. Relative to reference, HIGH-Rasp resulted in a 17 % lower Δmax insulin, 3 % lower C-peptide (AUC0-60 min and 3 % lower glucose-dependent insulinotropic polypeptide (AUC0-180 min) P<0·05. No treatment effects were observed for the cranberry bars regarding glucose and glucoregulatory hormones, nor were there any treatment effects for either berry type regarding ex vivo oxidation, appetite-mediating hormones or appetite. Fortification with freeze-dried black raspberries (approximately 25 g, containing 1·2 g of polyphenols) seems to slightly improve the glucoregulatory hormone and glycaemic responses to a high-carbohydrate food item in young adults but did not affect appetite or oxidative stress responses at doses or with methods studied herein.
Collapse
|
20
|
Canivenc-Lavier MC, Neiers F, Briand L. Plant polyphenols, chemoreception, taste receptors and taste management. Curr Opin Clin Nutr Metab Care 2019; 22:472-478. [PMID: 31490201 DOI: 10.1097/mco.0000000000000595] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Polyphenols display beneficial health effects through chemopreventive actions on numerous chronic diseases including cancers, metabolic disorders, reproductive disorders and eating behaviour disorders. According to the principle of chemoreception, polyphenols bind cellular targets capable of accepting their stereochemistry, namely metabolizing enzymes and protein receptors, including taste receptors. The extraoral expression of taste receptors and their pharmacological interest in terms of novel drug therapies open up new perspectives on the potential use of these compounds and their interactions with other chemicals in cells. These new perspectives suggest the need to examine these phytochemicals further. However, most polyphenols have a bitterness property that may disrupt the acceptability of healthy foods or dietary supplements. RECENT FINDINGS Polyphenols bind to oral and extraoral bitter type 2 taste receptors, which modulate the signalling pathways involved in anti-inflammatory processes and metabolic and dietary regulations. Depending on their chemical nature, polyphenols may act as activators or inhibitors of taste receptors, and combinations of polyphenols (or herbal mixtures) may be used to modulate the acceptability of bitterness. SUMMARY The current review summarizes recent findings on polyphenol chemoreception and highlights the evidence of healthy effects through type 2 taste receptor mediation in signalling pathways, such as new targets, with promising perspectives.
Collapse
Affiliation(s)
- Marie-Chantal Canivenc-Lavier
- Centre des Sciences du GoÛt et de l'Alimentation (CSGA), INRA, Université de Bourgogne Franche-Comté, AgroSup, CNRS, Dijon, France
| | | | | |
Collapse
|
21
|
Ginés I, Gil-Cardoso K, Serrano J, Casanova-Marti À, Lobato M, Terra X, Blay MT, Ardévol A, Pinent M. Proanthocyanidins Limit Adipose Accrual Induced by a Cafeteria Diet, Several Weeks after the End of the Treatment. Genes (Basel) 2019; 10:genes10080598. [PMID: 31398921 PMCID: PMC6723337 DOI: 10.3390/genes10080598] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/19/2019] [Accepted: 08/05/2019] [Indexed: 11/25/2022] Open
Abstract
A dose of proanthocyanidins with satiating properties proved to be able to limit body weight increase several weeks after administration under exposure to a cafeteria diet. Here we describe some of the molecular targets and the duration of the effects. We treated rats with 500 mg grape seed proanthocyanidin extract (GSPE)/kg BW for ten days. Seven or seventeen weeks after the last GSPE dose, while animals were on a cafeteria diet, we used reverse transcriptase-polymerase chain reaction (RT-PCR) to measure the mRNA of the key energy metabolism enzymes from the liver, adipose depots and muscle. We found that a reduction in the expression of adipose Lpl might explain the lower amount of adipose tissue in rats seven weeks after the last GSPE dose. The liver showed increased expression of Cpt1a and Hmgs2 together with a reduction in Fasn and Dgat2. In addition, muscle showed a higher fatty oxidation (Oxct1 and Cpt1b mRNA). However, after seventeen weeks, there was a completely different gene expression pattern. At the conclusion of the study, seven weeks after the last GSPE administration there was a limitation in adipose accrual that might be mediated by an inhibition of the gene expression of the adipose tissue Lpl. Concomitantly there was an increase in fatty acid oxidation in liver and muscle.
Collapse
Affiliation(s)
- Iris Ginés
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Katherine Gil-Cardoso
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Àngela Casanova-Marti
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Maria Lobato
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, c/Marcel·lí Domingo n°1, 43007 Tarragona, Spain
| |
Collapse
|
22
|
Behrens M, Meyerhof W. A role for taste receptors in (neuro)endocrinology? J Neuroendocrinol 2019; 31:e12691. [PMID: 30712315 DOI: 10.1111/jne.12691] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022]
Abstract
The sense of taste is positioned at the forefront when it comes to the interaction of our body with foodborne chemicals. However, the role of our taste system, and in particular its associated taste receptors, is not limited to driving food preferences leading to ingestion or rejection before other organs take over responsibility for nutrient digestion, absorption and metabolic regulation. Taste sensory elements do much more. On the one hand, extra-oral taste receptors from the brain to the gut continue to sense nutrients and noxious substances after ingestion and, on the other hand, the nutritional state feeds back on the taste system. This intricate regulatory network is orchestrated by endocrine factors that are secreted in response to taste receptor signalling and, in turn regulate the taste receptor cells themselves. The present review summarises current knowledge on the endocrine regulation of the taste perceptual system and the release of hunger/satiety regulating factors by gastrointestinal taste receptors. Furthermore, the regulation of blood glucose levels via the activation of pancreatic sweet taste receptors and subsequent insulin secretion, as well as the influence of bitter compounds on thyroid hormone release, is addressed. Finally, the central effects of tastants are discussed briefly.
Collapse
Affiliation(s)
- Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| |
Collapse
|
23
|
Ginés I, Gil-Cardoso K, Robles P, Arola L, Terra X, Blay M, Ardévol A, Pinent M. Novel ex Vivo Experimental Setup to Assay the Vectorial Transepithelial Enteroendocrine Secretions of Different Intestinal Segments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11622-11629. [PMID: 30148363 DOI: 10.1021/acs.jafc.8b03046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The enteroendocrine system coordinates gastrointestinal (GI) tract functionality and the whole organism. However, the scarcity of enteroendocrine cells and their scattered distribution make them difficult to study. Here, we glued segments of the GI wall of pigs to a silicon tube, keeping the apical and the basolateral sides separate. The fact that there was less than 1% of 70-kDa fluorescein isothiocyanate (FITC)-dextran on the basolateral side proved that the gluing was efficient. Since the lactate dehydrogenase leakage at basolateral side was lower than 0.1% (1.40 ± 0.17 nKatals) it proved that the tissue was viable. The intestinal barrier function was maintained as it is in segments mounted in Ussing chambers (the amount of Lucifer Yellow crossing it, was similar between them; respectively, % LY, 0.48 ± 0.13; 0.52 ± 0.09; p > 0.05). Finally, apical treatments with two different extract produced differential basolateral enterohormone secretions (basolateral PYY secretion vs control; animal extract, 0.35 ± 0.16; plant extract, 2.5 ± 0.74; p < 0.05). In conclusion, we report an ex vivo system called "Ap-to-Bas" for assaying vectorial transepithelial processes that makes it possible to work with several samples at the same time. It is an optimal device for enterohormone studies in the intestine.
Collapse
|
24
|
Haldar S, Lim J, Chia SC, Ponnalagu S, Henry CJ. Effects of Two Doses of Curry Prepared with Mixed Spices on Postprandial Ghrelin and Subjective Appetite Responses-A Randomized Controlled Crossover Trial. Foods 2018; 7:foods7040047. [PMID: 29587471 PMCID: PMC5920412 DOI: 10.3390/foods7040047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 12/21/2022] Open
Abstract
Spices are known to provide orosensory stimulation that can potentially influence palatability, appetite, and energy balance. Previous studies with individual spices have shown divergent effects on appetite and energy intake measures. In a real-life context, however, several spices are consumed in combinations, as in various forms of curries. Therefore, we investigated changes in postprandial appetite and plasma ghrelin in response to the intake of two doses of curry prepared with mixed spices. The study was undertaken in healthy Chinese men, between 21 and 40 years of age and body mass index ≤27.5 kg/m². Appetite was measured using visual analogue scales (VAS) and plasma ghrelin was measured using multiplex assay. Compared with the control meal (Dose 0 Control (D0C), 0 g mixed spices), we found significantly greater suppression in 'hunger' (both p < 0.05, after Bonferroni adjustments) as well in 'desire to eat' (both p < 0.01) during the Dose 1 Curry (D1C, 6 g mixed spices) and Dose 2 Curry (D2C, 12 g mixed spices) intake. There were no differences, however, in plasma ghrelin or in other appetite measures such as in 'fullness' or in 'prospective eating' scores. Overall, the results of our study indicate greater inter-meal satiety due to mixed spices consumption, independent of any changes in plasma ghrelin response.
Collapse
Affiliation(s)
- Sumanto Haldar
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Joseph Lim
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Siok Ching Chia
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Shalini Ponnalagu
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
| | - Christiani Jeyakumar Henry
- Clinical Nutrition Research Centre (CNRC), Singapore Institute for Clinical Sciences (SICS), Agency for Science Technology and Research (A*STAR), 30 Medical Drive, Singapore 117609, Singapore.
- Department of Biochemistry, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
25
|
Abstract
The gastrointestinal tract represents the largest interface between the human body and the external environment. It must continuously monitor and discriminate between nutrients that need to be assimilated and harmful substances that need to be expelled. The different cells of the gut epithelium are therefore equipped with a subtle chemosensory system that communicates the sensory information to several effector systems involved in the regulation of appetite, immune responses, and gastrointestinal motility. Disturbances or adaptations in the communication of this sensory information may contribute to the development or maintenance of disease. This is a new emerging research field in which perception of taste can be considered as a novel key player participating in the regulation of gut function. Specific diets or agonists that target these chemosensory signaling pathways may be considered as new therapeutic targets to tune adequate physiological processes in the gut in health and disease.
Collapse
Affiliation(s)
- S Steensels
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium;
| | - I Depoortere
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
26
|
Courie R, Gaillard M, Lainas P, Hansel B, Naveau S, Dagher I, Tranchart H. Weight outcome after 2 years of a diet that excludes six processed foods: exploratory study of the "1,2,3 diet" in a moderately obese population. Diabetes Metab Syndr Obes 2018; 11:345-355. [PMID: 30034246 PMCID: PMC6047626 DOI: 10.2147/dmso.s165598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Paleolithic diet, a diet devoid of food-processing procedure, seems to produce a greater decrease in weight compared to healthy reference diets but its limited food choices make it difficult to implement in our modern times where refined food is dominant. OBJECTIVE To evaluate the effects of a 2-year diet that excludes only six refined foodstuffs implicated in obesity. Professional contact was kept minimal to approximate the approach used by most dieters. DESIGN Single-arm, open-label, exploratory study. SETTING One academic medical center, outpatient setting. PATIENTS One hundred and five subjects with a mean age of 50 (SD, 14 years) and mean body mass index of 30.5 kg/m2 (SD, 4 kg/m2). Thirty-nine percent had type 2 diabetes. INTERVENTION An ad libitum diet that excludes six refined foodstuffs (margarine, vegetable oils, butter, cream, processed meat, and sugary drinks) called the "1,2,3 diet". OUTCOMES Weight at 2 years was the primary outcome. Secondary outcomes included number of patients who lost more than 5% of initial body weight, glycated hemoglobin (HbA1c) level, and changes in dietary behavior. RESULTS Average weight loss was 4.8 kg (p<0.001), representing 5.6% of their initial body weight. Among completers (51%), the average weight loss was 5.5 kg (p<0.001), and 56% had a reduction of at least 5% of their initial body weight. Among diabetics, weight loss was similar to nondiabetics, and mean HbA1c level decreased by 1% (p=0.001) without modification in glucose-lowering medications. A higher intake of bread, dairy products, chocolate, and fresh fruits was the typical trend in dietary changes reported by completers. CONCLUSION In this exploratory study, there was a significant long-term weight loss with the "1,2,3 diet" despite minimal professional contact. Given the lack of a control group and high attrition rate, further evaluation of this diet is warranted.
Collapse
Affiliation(s)
- Rodi Courie
- Department of Hepato-Gastroenterology and Nutrition, Antoine Béclère Hospital (AP-HP), Clamart, France,
| | - Martin Gaillard
- Department of Digestive Minimally Invasive Surgery, Antoine Béclère Hospital (AP-HP), Clamart, France
- Paris-Saclay University, INSERM U1193, Orsay, France
| | - Panagiotis Lainas
- Department of Digestive Minimally Invasive Surgery, Antoine Béclère Hospital (AP-HP), Clamart, France
- Paris-Saclay University, INSERM U1193, Orsay, France
| | - Boris Hansel
- Department of Hepato-Gastroenterology and Nutrition, Antoine Béclère Hospital (AP-HP), Clamart, France,
| | - Sylvie Naveau
- Department of Hepato-Gastroenterology and Nutrition, Antoine Béclère Hospital (AP-HP), Clamart, France,
- Paris-Saclay University, INSERM U1193, Orsay, France
| | - Ibrahim Dagher
- Department of Digestive Minimally Invasive Surgery, Antoine Béclère Hospital (AP-HP), Clamart, France
- Paris-Saclay University, INSERM U1193, Orsay, France
| | - Hadrien Tranchart
- Department of Digestive Minimally Invasive Surgery, Antoine Béclère Hospital (AP-HP), Clamart, France
- Paris-Saclay University, INSERM U1193, Orsay, France
| |
Collapse
|
27
|
Casanova-Martí À, Serrano J, Portune KJ, Sanz Y, Blay MT, Terra X, Ardévol A, Pinent M. Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food Funct 2018; 9:1672-1682. [DOI: 10.1039/c7fo02028g] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
An 8-day treatment of GSPE changed the microbiota composition, and several microbiota taxa correlated with metabolic parameters and enterohormones.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Kevin J. Portune
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - Yolanda Sanz
- Microbial Ecology
- Nutrition & Health Research Unit. Institute of Agrochemistry and Food Technology
- National Research Council (IATA-CSIC)
- Valencia
- Spain
| | - M. Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia
- Universitat Rovira i Virgili
- 43007 Tarragona
- Spain
| |
Collapse
|
28
|
Serrano J, Casanova-Martí À, Blay MT, Terra X, Pinent M, Ardévol A. Strategy for limiting food intake using food components aimed at multiple targets in the gastrointestinal tract. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
29
|
Casanova-Martí À, Serrano J, Blay MT, Terra X, Ardévol A, Pinent M. Acute selective bioactivity of grape seed proanthocyanidins on enteroendocrine secretions in the gastrointestinal tract. Food Nutr Res 2017; 61:1321347. [PMID: 28659730 PMCID: PMC5475339 DOI: 10.1080/16546628.2017.1321347] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 04/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background: Enteroendocrine cells respond to food components by secreting an array of hormones that regulate several functions. We have previously shown that grape seed proanthocyanidins (GSPE) modulate GLP-1 levels. Objective: To deepen on the knowledge of the mechanisms used by GSPE to increase GLP-1, and extend it to its role at modulation of other enterohormones. Design: We used an ex vivo system to test direct modulation of enterohormones; STC-1 cells to test pure phenolic compounds; and rats to test the effects at different gastrointestinal segments. Results: GSPE compounds act at several locations along the gastrointestinal tract modulating enterohormone secretion depending on the feeding condition. GSPE directly promotes GLP-1 secretion in the ileum, while unabsorbed/metabolized forms do so in the colon. Such stimulation requires the presence of glucose. GSPE enhanced GIP and reduced CCK secretion; gallic acid could be partly responsible for this effect. Conclusions: The activity of GSPE modulating enterohormone secretion may help to explain its effects on metabolism. GSPE acts through several mechanisms; its compounds and their metabolites are GLP-1 secretagogues in ileum and colon, respectively. In vivo GLP-1 secretion might also be mediated by indirect pathways involving modulation of other enterohormones that in turn regulate GLP-1 release.
Collapse
Affiliation(s)
- Àngela Casanova-Martí
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Joan Serrano
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - M Teresa Blay
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Ximena Terra
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anna Ardévol
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| | - Montserrat Pinent
- MoBioFood Research Group. Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Tarragona, Spain
| |
Collapse
|
30
|
Serrano J, Casanova-Martí À, Blay M, Terra X, Ardévol A, Pinent M. Defining Conditions for Optimal Inhibition of Food Intake in Rats by a Grape-Seed Derived Proanthocyanidin Extract. Nutrients 2016; 8:nu8100652. [PMID: 27775601 PMCID: PMC5084038 DOI: 10.3390/nu8100652] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/29/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022] Open
Abstract
Food intake depends on homeostatic and non-homeostatic factors. In order to use grape seed proanthocyanidins (GSPE) as food intake limiting agents, it is important to define the key characteristics of their bioactivity within this complex function. We treated rats with acute and chronic treatments of GSPE at different doses to identify the importance of eating patterns and GSPE dose and the mechanistic aspects of GSPE. GSPE-induced food intake inhibition must be reproduced under non-stressful conditions and with a stable and synchronized feeding pattern. A minimum dose of around 350 mg GSPE/kg body weight (BW) is needed. GSPE components act by activating the Glucagon-like peptide-1 (GLP-1) receptor because their effect is blocked by Exendin 9-39. GSPE in turn acts on the hypothalamic center of food intake control probably because of increased GLP-1 production in the intestine. To conclude, GSPE inhibits food intake through GLP-1 signaling, but it needs to be dosed under optimal conditions to exert this effect.
Collapse
Affiliation(s)
- Joan Serrano
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Àngela Casanova-Martí
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Mayte Blay
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Ximena Terra
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Anna Ardévol
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| | - Montserrat Pinent
- MoBioFood Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
| |
Collapse
|