1
|
Zárate-Segura PB, Alvarez-Chávez AL, De Los Santos S, Bastida-Gonzalez FG, Hernández-Hernández JM, Zambrano E, Coral-Vázquez RM, Canto P. Effects of Epicatechin on the Expression of MyomiRs-31, -133, -136, -206, -296, and -486 in the Skeletal Muscle of the Offspring of Obese Mothers. Cell Biochem Biophys 2025:10.1007/s12013-025-01700-x. [PMID: 40016564 DOI: 10.1007/s12013-025-01700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2025] [Indexed: 03/01/2025]
Abstract
Specific myogenic microRNAs termed "myomiRNAs" are involved in skeletal muscle development and regeneration, and an obesogenic environment in utero may affect these processes. The present study aimed to determine whether this environment induced variations in the expression levels of myomiRs-31, -133, -136, -206, and -296 and whether the administration of (-)-epicatechin (Epi), an exercise mimetic, could modify these variations. Rat Wistar male offspring from control mothers (C) or obese mothers (MO) were treated (C+Epi and MO+Epi) or not treated with Epi (C and MO). MyomiRNA expression in the gastrocnemius and soleus muscles was analyzed via RT‒qPCR, and bioinformatic analysis was used to predict the participation of these miRNAs in different skeletal muscle signal transduction pathways. The expression of myomiRNA-31-5p in the gastrocnemius and soleus was significantly lower in the Epi-treated groups (C+Epi and MO+Epi vs. C and MO). The expression of myomiRNA-206 increased in the gastrocnemius muscles of the MO and MO+Epi groups but decreased in the soleus muscles of the MO and MO+Epi groups. The expression of myomiRNA-296 was increased in the MO group in the gastrocnemius and soleus but was reduced in the Epi stimulus group. The expression of myomiRNA-486 increased in the gastrocnemius of the C+Epi group and decreased in the soleus of the MO+Epi group (p = 0.028 vs. MO). In conclusion, we show that an intrauterine obesogenic environment differentially affects the expression levels of some myomiRNAs and that this effect is modified by epicatechin.
Collapse
Affiliation(s)
- Paola B Zárate-Segura
- Laboratorio de Medicina Traslacional, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ana Luisa Alvarez-Chávez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | | | - José Manuel Hernández-Hernández
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados, CINVESTAV-IPN, Ciudad de México, México
| | - Elena Zambrano
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México.
| |
Collapse
|
2
|
Alvarez-Chávez AL, De Los Santos S, Coral-Vázquez RM, Méndez JP, Palma Flores C, Zambrano E, Canto P. (-)-Epicatechin treatment modify the expression of genes related to atrophy in gastrocnemius muscle of male rats obese by programing. J Dev Orig Health Dis 2024; 15:e21. [PMID: 39370974 DOI: 10.1017/s2040174424000187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The aim of this study is to determine if the offspring of mothers with obesity, present disorders in the expression of genes related to atrophy or protein synthesis in the muscle and if these disorders are modified with the (-)-epicatechin (Epi) treatment. Six male offspring per group were randomly assigned to the control groups [C and offspring of maternal obesity (MO)] or the Epi intervention groups, Epi treatment for 13 weeks (C + Epi long or MO + Epi long), or Epi administration for two weeks (C + Epi short or MO + Epi short). The effect of Epi in the gastrocnemius tissue was evaluated, analyzing mRNA and protein levels of Murf1, MAFbx, Foxo1, NFkB, and p70S6K-alpha. After the analysis by two-way ANOVA, we found an influence of the Epi long treatment over the model, by decreasing the Murf1 gene expression in both groups treated with the flavonoid (C + Epi long and MO + Epi long) (p = 0.036). Besides, Epi long treatment over the NFκB expression, by decreasing the fold increase in both groups treated with the flavonoid (C + Epi long and MO + Epi long) (p = 0.038). We not find any interaction between the variables or changes in the MAFbx, Foxo1 mRNA, neither in the phosphorylated/total protein ratio of NFκB, Foxo1, or p70S6K-alpha. In conclusions, treatment with a long protocol of Epi, reduces the mRNA of the muscle atrophy genes Murf 1 and NFkB, in the gastrocnemius muscle; however, these changes are not maintained at protein level.
Collapse
Affiliation(s)
- Ana Luisa Alvarez-Chávez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Juan Pablo Méndez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Carlos Palma Flores
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
- Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Elena Zambrano
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
- Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| |
Collapse
|
3
|
De Los Santos S, Reyes-Castro LA, Coral-Vázquez RM, Mendez JP, Zambrano E, Canto P. (-)-EPICATECHIN INCREASES APELIN/APLNR EXPRESSION AND MODIFIES PROTEINS INVOLVED IN LIPID METABOLISM OF OFFSPRING DESCENDANTS OF MATERNAL OBESITY. J Nutr Biochem 2023; 117:109350. [PMID: 37044135 DOI: 10.1016/j.jnutbio.2023.109350] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/23/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Several studies have shown the beneficial effects of (-)-epicatechin (Epi) in metabolic profile and that this flavanol is a biased ligand of the apelin receptor. The apelinergic system is expressed in adipocytes and has been related to obesity and metabolic disorders. The study aim was to evaluate the effect of Epi on apelin, on its receptor and on proteins involved in lipolysis, lipogenesis, and adipogenesis in the retroperitoneal adipose tissue of male rats descended from obese mothers. We evaluated the effect of Epi in the retroperitoneal adipose tissue of four groups of male offspring, analyzing mRNA expression and protein levels of apelin and its Apj receptor. We also analyzed, by Western Blot, the levels of AMPKα, ACC, C/EBPα, ATGL, Fas, and FABP4 of the AP2 proteins. Epi significantly elevated apelin mRNA expression and protein levels as well as its Apj receptor. Besides, the flavanol significantly promoted AMPKα phosphorylation with the concomitant reduction of Fas, and the increase of the ATGL protein. In contrast, there was an increase in the inactive phosphorylated form of ACC and a decrease in the phosphorylated active form of C/EBPα. Similarly, Epi treatment induced a reduction in the fatty acid-binding protein 4 in the C+Epi and MO+Epi groups. In conclusion, Epi increases the expression of the apelinergic system and the active phosphorylated form of AMPKα; likewise, it modifies the expression level or active form of proteins involved in lipolysis, lipogenesis and adipogenesis in the retroperitoneal adipose tissue of male offspring of obese mothers.
Collapse
Affiliation(s)
- Sergio De Los Santos
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México.
| | - Luis Antonio Reyes-Castro
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Ramón Mauricio Coral-Vázquez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México; Subdirección de Enseñanza e Investigación, Centro Médico Nacional "20 de Noviembre", Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Ciudad de México, México
| | - Juan Pablo Mendez
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Elena Zambrano
- Departamento de Biología de Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México
| | - Patricia Canto
- Unidad de Investigación en Obesidad, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México; Subdirección de Investigación Clínica, Dirección de Investigación, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Ciudad de México, México.
| |
Collapse
|
4
|
Portilla-Martínez A, Ortiz-Flores MÁ, Meaney E, Villarreal F, Nájera N, Ceballos G. (-)-Epicatechin Is a Biased Ligand of Apelin Receptor. Int J Mol Sci 2022; 23:8962. [PMID: 36012227 PMCID: PMC9409145 DOI: 10.3390/ijms23168962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/24/2022] Open
Abstract
(-)-Epicatechin (EC) is part of a large family of biomolecules called flavonoids and is widely distributed in the plant kingdom. Several studies have shown the beneficial effects of EC consumption. Many of these reported effects are exerted by activating the signaling pathways associated with the activation of two specific receptors: the G protein-coupled estrogen receptor (GPER), a transmembrane receptor, and the pregnane X receptor (PXR), which is a nuclear receptor. However, the effects of EC are so diverse that these two receptors cannot describe the complete phenomenon. The apelin receptor or APLNR is classified within the G protein-coupled receptor (GPCR) family, and is capable of activating the G protein canonical pathways and the β-arrestin transducer, which participates in the phenomenon of receptor desensitization and internalization. β-arrestin gained interest in selective pharmacology and mediators of the so-called "biased agonism". With molecular dynamics (MD) and in vitro assays, we demonstrate how EC can recruit the β-arrestin in the active conformation of the APLN receptor acting as a biased agonist.
Collapse
Affiliation(s)
- Andrés Portilla-Martínez
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Miguel Ángel Ortiz-Flores
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Eduardo Meaney
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | | | - Nayelli Nájera
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Guillermo Ceballos
- Laboratorio de Investigación Integral Cardiometabólica, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| |
Collapse
|
5
|
Abstract
The PI3K/AKT signaling has crucial role in the regulation of numerous physiological functions through activation of downstream effectors and modulation of cell cycle transition, growth and proliferation. This pathway participates in the pathogenesis of several human disorders such as heart diseases through regulation of size and survival of cardiomyocytes, angiogenic processes as well as inflammatory responses. Moreover, PI3K/AKT pathway participates in the process of myocardial injury induced by a number of substances such as H2O2, Mercury, lipopolysaccharides, adriamycin, doxorubicin and epirubicin. In this review, we describe the contribution of this pathway in the pathoetiology of myocardial ischemia/reperfusion injury and myocardial infarction, heart failure, cardiac hypertrophy, cardiomyopathy and toxins-induced cardiac injury.
Collapse
|
6
|
(-) - Epicatechin improves Tibialis anterior muscle repair in CD1 mice with BaCl2-induced damage. J Nutr Biochem 2022; 107:109069. [DOI: 10.1016/j.jnutbio.2022.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 02/05/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
|
7
|
Wen K, Fang X, Yang J, Yao Y, Nandakumar KS, Salem ML, Cheng K. Recent Research on Flavonoids and their Biomedical Applications. Curr Med Chem 2021; 28:1042-1066. [PMID: 32660393 DOI: 10.2174/0929867327666200713184138] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Flavonoids, commonly found in various plants, are a class of polyphenolic compounds having a basic structural unit of 2-phenylchromone. Flavonoid compounds have attracted much attention due to their wide biological applications. In order to facilitate further research on the biomedical application of flavonoids, we surveyed the literature published on the use of flavonoids in medicine during the past decade, documented the commonly found structures in natural flavonoids, and summarized their pharmacological activities as well as associated mechanisms of action against a variety of health disorders including chronic inflammation, cancer, cardiovascular complications and hypoglycemia. In this mini-review, we provide suggestions for further research on the biomedical applications of flavonoids.
Collapse
Affiliation(s)
- Kangmei Wen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaochuan Fang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Yang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yongfang Yao
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou 450001, China
| | | | | | - Kui Cheng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
8
|
Huang X, Qian J, Li L, Zhang X, Wei G, Lv J, Qin F, Yu J, Xiao Y, Gong Z, Huo J. Curcumol improves cisplatin sensitivity of human gastric cancer cells through inhibiting PI3K/AKT pathway. Drug Dev Res 2020; 81:1019-1025. [PMID: 32715509 DOI: 10.1002/ddr.21719] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/17/2022]
Abstract
BACKGROUND Curcumol was presented to unleash antitumor effects in a variety of cancers, including gastric cancer. However, the relevance between curcumol and cisplatin resistance in gastric cancer still remains unclear. Therefore, the current research was performed to survey the role of curcumol in cisplatin sensitivity in gastric cancer. METHODS First, BGC-823 and BGC-823/DDP cells were incubated with cisplatin for 48 hr and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) analysis was applied to determine the inhibition rate of cell proliferation and the half-maximal inhibitory concentration (IC50 ) of cisplatin. In addition, BGC-823 and BGC-823/DDP cells were treated with curcumol for 48 hr followed with detection of cell viability and apoptosis using MTT and flow cytometry assay, respectively. Moreover, MTT analysis was applied to test the effects of curcumol on cisplatin sensitivity in gastric cancer cells. Lastly, Western blot assay and qRT-PCR analysis were utilized to check the functions of curcumol on PI3K/AKT pathway-related markers. RESULTS We found that BGC-823/DDP cells exhibited stronger resistance to cisplatin compared with BGC-823 cells. Furthermore, curcumol evidently reduced cell proliferation and facilitated cell apoptosis in BGC-823/DDP and BGC-823 cells. Moreover, results from MTT assay demonstrated that curcumol notably promoted the suppression effect of cisplatin and decreased the IC50 of cisplatin in BGC-823/DDP and BGC-823 cells. It was also presented that curcumol suppressed the PI3K/AKT pathway dose-dependently in BGC-823/DDP and BGC-823 cells. CONCLUSION The findings in the current research demonstrated that curcumol could promote the sensitivity of gastric cancer cells to cisplatin-based chemotherapies via inhibiting the phosphatidylinositol 3-kinase (PI3K)/Protein Kinase B (AKT) pathway.
Collapse
Affiliation(s)
- Xiaofei Huang
- Department of Emergency, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun Qian
- Department of Diagnostics of Chinese Medicine, School of Chinese Medicine, School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lingchang Li
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaozhen Zhang
- Department of Emergency, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guoli Wei
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Lv
- Department of Emergency, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fengxia Qin
- Department of Emergency, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jialin Yu
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ya Xiao
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen Gong
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiege Huo
- Department of Oncology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
9
|
Yang Z, Wang M, Zhang Y, Cai F, Jiang B, Zha W, Yu W. Metformin Ameliorates Diabetic Cardiomyopathy by Activating the PK2/PKR Pathway. Front Physiol 2020; 11:425. [PMID: 32508669 PMCID: PMC7252307 DOI: 10.3389/fphys.2020.00425] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a complication of diabetes that can cause damage to myocardial structure and function. Metformin (Met) is a widely used type 2 diabetes treatment drug that exerts cardioprotective effects through multiple pathways. Prokineticin 2 (PK2) is a small-molecule secreted protein that plays pivotal parts in cardiomyocyte survival and angiogenesis. However, the role of Met in regulating the PK2 signaling pathway in DCM remains unclear. This experiment explored the effects of Met on high glucose (HG)-induced injury through the PK2/PKR pathway in vivo and in vitro. Cardiomyocytes isolated from adult or AKT-knockout mice were treated with HG (33 mmol/L) and PK2 or AKT1/2 kinase inhibitor (AKT inhibitor). Heart contraction properties based on cell shortening were evaluated; these properties included the resting cell length, peak shortening (PS), maximum speed of shortening/relengthening (±dL/dt), time to 90% relengthening (TR90), and time to peak shortening (TPS). Mice with streptozotocin-induced diabetes were treated with Met to evaluate cardiac function, myocardial structure, and the PK2/PKR and AKT/GSK3β pathways. Moreover, H9c2 cardiomyocytes were exposed to HG in the absence or presence of Met with or without the PK2 antagonist PKRA7 or the AKT inhibitor, and apoptotic proteins such as Bax and Bcl-2 and the PK2/PKR and AKT/GSK3β pathways were evaluated using western blot analysis. The prolongation of TR90 and decreases in PS and ±dL/dt caused by HG were ameliorated by PK2 in cardiomyocytes, but the effects of PK2 were ameliorated or negated by the AKT inhibitor and in AKT-knockout mice. Diabetic mice showed metabolic abnormalities, aberrant myocardial enzyme levels, declines in myocardial systolic and diastolic function associated with myocardial fibrosis, and pronounced apoptosis, but these effects were greatly rescued by Met treatment. Moreover, PK2, PKR1, and PKR2 expression and p-AKT/AKT and p-GSK3β/GSK3β ratios were decreased in diabetic mice, and these decreases were attenuated by Met. Likewise, H9c2 cells exposed to HG showed reduced PK2/PKR expression and decreased p-AKT/AKT and p-GSK3β/GSK3β ratios, and these effects were nullified by Met. In addition, the effects of Met on cardiomyocytes exposed to HG were abolished after intervention with PKRA7 or the AKT inhibitor. These results suggest that Met can activate the PK2/PKR-mediated AKT/GSK3β pathway, thus improving cardiac function and alleviating apoptosis in DM mice.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Pharmacology, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Min Wang
- Department of Pharmacology, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Yuchen Zhang
- Department of Pharmacology, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| | - Fei Cai
- Hubei Province Key Laboratory on Cardiovascular, Cerebrovascular, and Metabolic Disorders, Hubei University of Science and Technology, Xianning, China
| | - Botao Jiang
- Department of Urology, Xianning Central Hospital, Xianning, China
| | - Wenliang Zha
- Department of Surgery, Clinic Medical College, Hubei University of Science and Technology, Xianning, China.,National Demonstration Center for Experimental General Medicine Education, Hubei University of Science and Technology, Xianning, China
| | - Wei Yu
- Department of Pharmacology, School of Pharmacy, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
10
|
Qu Z, Liu A, Li P, Liu C, Xiao W, Huang J, Liu Z, Zhang S. Advances in physiological functions and mechanisms of (-)-epicatechin. Crit Rev Food Sci Nutr 2020; 61:211-233. [PMID: 32090598 DOI: 10.1080/10408398.2020.1723057] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(-)-Epicatechin (EC) is a flavanol easily obtained through the diet and is present in tea, cocoa, vegetables, fruits, and cereals. Recent studies have shown that EC protects human health and exhibits prominent anti-oxidant and anti-inflammatory activities, enhances muscle performance, improves symptoms of cardiovascular and cerebrovascular diseases, prevents diabetes, and protects the nervous system. With the development of modern medical and biotechnology research, the mechanisms of action associated with EC toward various chronic diseases are becoming more apparent, and the pharmacological development and utilization of EC has been increasingly clarified. Currently, there is no comprehensive systematic introduction to the effects of EC and its mechanisms of action. This review presents the latest research progress and the role of EC in the prevention and treatment of various chronic diseases and its protective health effects and provides a theoretical basis for future research on EC.
Collapse
Affiliation(s)
- Zhihao Qu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Changwei Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
11
|
de los Santos S, Coral-Vázquez RM, Menjivar M, Granados-Silvestre MDLÁ, Tejeda ME, Reyes-Castro LA, Méndez JP, Zambrano E, Canto P. (−)-Epicatechin modifies body composition of the male offspring of obese rats. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Han X, Shi H, Liu K, Zhong L, Wang F, You Q. Protective effect of gastrodin on myocardial ischemia-reperfusion injury and the expression of Bax and Bcl-2. Exp Ther Med 2019; 17:4389-4394. [PMID: 31105779 PMCID: PMC6507512 DOI: 10.3892/etm.2019.7512] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/04/2019] [Indexed: 01/06/2023] Open
Abstract
The protective effects of gastrodin on myocardial ischemia-reperfusion injury in rats and the underlying mechanism were investigated. Sprague Dawley (SD) rats were randomly divided into three groups, of which the gastrodin group was treated with gastrodin, and the other two groups were treated with normal saline. In the myocardial ischemia-reperfusion model group, myocardial ischemia was induced by ligation of the left anterior descending coronary artery, and myocardial reperfusion was performed by ligature removal. Only thread without ligation for the sham operation group was conducted. The rats were euthanized 8 days after surgery. Heart tissues were harvested and used for measurement of apoptotic rate and expression levels of apoptosis-related proteins. Serum levels of cytokines were measured also using blood samples. Compared with the myocardial ischemia-reperfusion model group, significant reduction of cardiomyocyte apoptosis was observed in the gastrodin group (P<0.05). In the gastrodin group, the protein and mRNA expression levels for Bax and activated caspase-3 decreased, while for Bcl-2 increased (P<0.05). Gastrodin can downregulate inflammatory cytokines (P<0.05) and upregulate anti-inflammatory cytokines such as IL-10 (P<0.05) in serum of SD rats. Therefore, gastrodin played a protective role in myocardial ischemia-reperfusion injury by regulating the expression levels of apoptosis-related signaling proteins and inflammatory cytokines.
Collapse
Affiliation(s)
- Xiao Han
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Hai Shi
- Department of Cardiothoracic Surgery, The Third People's Hospital of Nantong, Nantong, Jiangsu 226001, P.R. China
| | - Kun Liu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Lou Zhong
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fei Wang
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Qingsheng You
- Department of Cardiothoracic Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
13
|
De Los Santos S, Palma-Flores C, Zentella-Dehesa A, Canto P, Coral-Vázquez RM. (-)-Epicatechin inhibits development of dilated cardiomyopathy in δ sarcoglycan null mouse. Nutr Metab Cardiovasc Dis 2018; 28:1188-1195. [PMID: 30143409 DOI: 10.1016/j.numecd.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 06/18/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND AIMS Several studies propose that (-)-epicatechin, a flavonol present in high concentration in the cocoa, has cardioprotective effects. This study aimed to evaluate the impact of (-)-epicatechin on the development of dilated cardiomyopathy in a δ sarcoglycan null mouse model. METHODS AND RESULTS δ Sarcoglycan null mice were treated for 15 days with (-)-epicatechin. Histological and morphometric analysis of the hearts treated mutant mice showed significant reduction of the vasoconstrictions in the coronary arteries as well as fewer areas with fibrosis and a reduction in the loss of the ventricular wall. On the contrary, it was observed a thickening of this region. By Western blot analysis, it was shown, and increment in the phosphorylation level of eNOS and PI3K/AKT/mTOR/p70S6K proteins in the heart of the (-)-epicatechin treated animals. On the other hand, we observed a significantly decreased level of the atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) heart failure markers. CONCLUSION All the results indicate that (-)-epicatechin has the potential to prevent the development of dilated cardiomyopathy of genetic origin and encourages the use of this flavonol as a pharmacological therapy for dilated cardiomyopathy and heart failure diseases.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/metabolism
- Cardiomyopathy, Dilated/enzymology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/prevention & control
- Catechin/pharmacology
- Coronary Vessels/drug effects
- Coronary Vessels/enzymology
- Coronary Vessels/physiopathology
- Disease Models, Animal
- Fibrosis
- Male
- Mice, Knockout
- Myocytes, Cardiac/drug effects
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Phosphatidylinositol 3-Kinase/metabolism
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- Sarcoglycans/deficiency
- Sarcoglycans/genetics
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/metabolism
- Vasoconstriction/drug effects
- Ventricular Function, Left/drug effects
- Ventricular Remodeling/drug effects
Collapse
Affiliation(s)
- S De Los Santos
- División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico; Unidad de Investigación en Obesidad, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - C Palma-Flores
- División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico; Catedrático CONACYT, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Mexico City, México
| | - A Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico; Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - P Canto
- Unidad de Investigación en Obesidad, División de Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico; Clínica de Obesidad, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - R M Coral-Vázquez
- División de Investigación Biomédica, Centro Médico Nacional 20 de Noviembre, Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado, Mexico City, Mexico; Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Col. Casco de Santo Tomás, Delegación Miguel Hidalgo, Mexico City, 11340, Mexico.
| |
Collapse
|
14
|
Aqueous Extract of Davallia mariesii Attenuates 6-Hydroxydopamine-Induced Oxidative Damage and Apoptosis in B35 Cells Through Inhibition of Caspase Cascade and Activation of PI3K/AKT/GSK-3β Pathway. Nutrients 2018; 10:nu10101449. [PMID: 30301204 PMCID: PMC6213869 DOI: 10.3390/nu10101449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/25/2018] [Accepted: 10/02/2018] [Indexed: 12/31/2022] Open
Abstract
The medicinal ferns of Polydiaceae and Davalliaceae species are called "Gusuibu" by Chinese physicians and used as antiaging dietary medicines. Our previous report revealed that Drynaria fortunei (Polydiaceae) protected against 6-hydroxydopamine (6-OHDA)-induced oxidative damage via the PI3K/AKT pathway in B35 neuroblastoma cells. The present study compares the antioxidant phytoconstituent contents and radical scavenging capacities of five Davalliaceae species. The further aim was to clarify the protective mechanism of Davallia mariesii (DM) against 6-OHDA-induced oxidative damage and apoptosis in B35 cells. The results show that Araiostegia perdurans (AP) and DM extracts have better radical scavenging capacities against 1,1-diphenyl-2-picryhydrazyl (DPPH) and reactive oxygen species (ROS) than other Davalliaceae species. However, only DM extract inhibited 6-OHDA autoxidation under cell-free systems and increased cell viability, compared to B35 cells solely exposed to 6-OHDA. DM extract decreased apoptosis and restored mitochondrial expression in 6-OHDA-treated B35 cells. Additional data indicated that DM extract decreased intracellular ROS and nitric oxide levels generated by 6-OHDA exposure. DM extract also restored glutathione (GSH) levels and the activities of glutathione peroxidase and reductase, and then decreased the elevated malondialdehyde (MDA) levels. Finally, DM extract regulated the protein expression of the caspase cascade and PI3K/AKT/GSK-3β pathways. These results suggest that the protective mechanism of DM extract against 6-OHDA-induced oxidative damage and apoptosis might be related to its radical scavenging capacity, maintaining the mitochondrial function to inhibit the Bcl-2/caspase cascade pathway and activating intracellular antioxidant defenses (GSH recycling, HO-1 and NQO-1) by modulating the activation of the PI3K/AKT/GSK-3β pathway.
Collapse
|
15
|
Liu C, Yang CX, Chen XR, Liu BX, Li Y, Wang XZ, Sun W, Li P, Kong XQ. Alamandine attenuates hypertension and cardiac hypertrophy in hypertensive rats. Amino Acids 2018; 50:1071-1081. [PMID: 29752563 PMCID: PMC6060955 DOI: 10.1007/s00726-018-2583-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 04/27/2018] [Indexed: 12/21/2022]
Abstract
Oral administration of the peptide alamandine has antihypertensive and anti-fibrotic effects in rats. This work aimed to determine whether subcutaneous alamandine injection would attenuate hypertension and cardiac hypertrophy, and improve the function of a major target of hypertension-related damage, the left ventricle (LV), in spontaneously hypertensive rats (SHRs). This was examined in vivo in SHRs and normotensive rats subjected to 6-week subcutaneous infusion of alamandine or saline control, and in vitro in H9C2-derived and primary neonatal rat cardiomyocytes treated with angiotensin (Ang) II to model cardiac hypertrophy. Tail artery blood pressure measurement and transthoracic echocardiography showed that hypertension and impaired LV function in SHRs were ameliorated upon alamandine infusion. Alamandine administration also decreased the mass gains of heart and lung in SHRs, suppressed cardiomyocyte cross-sectional area expansion, and inhibited the mRNA levels of atrial natriuretic peptide and brain natriuretic peptide. The expression of alamandine receptor Mas-related G protein-coupled receptor, member D was increased in SHR hearts and in cardiomyocytes treated with Ang II. Alamandine inhibited the increases of protein kinase A (PKA) levels in the heart in SHRs and in cardiomyocytes treated with Ang II. In conclusion, the present study showed that alamandine administration attenuates hypertension, alleviates cardiac hypertrophy, and improves LV function. PKA signaling may be involved in the mechanisms underlying these effects.
Collapse
Affiliation(s)
- Chi Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Chuan-Xi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xi-Ru Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Bo-Xun Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Yong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Xiao-Zhi Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Peng Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Xiang-Qing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
16
|
(-)-Epicatechin Reduces Blood Pressure and Improves Left Ventricular Function and Compliance in Deoxycorticosterone Acetate-Salt Hypertensive Rats. Molecules 2018; 23:molecules23071511. [PMID: 29932135 PMCID: PMC6100191 DOI: 10.3390/molecules23071511] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 11/16/2022] Open
Abstract
(−)-Epicatechin (E) is a flavanol found in green tea and cocoa and has been shown to attenuate tumour necrosis factor alpha (TNF-α)-mediated inflammation, improve nitric oxide levels, promote endothelial nitric oxide synthase (eNOS) activation and inhibit NADPH oxidase. This study investigated the effect of 28 days of low epicatechin dosing (1 mg/kg/day) on the cardiovascular function of deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Wistar rats (n = 120, 8 weeks of age) underwent uninephrectomy and were randomised into four groups (uninephrectomy (UNX), UNX + E, DOCA, DOCA + E). DOCA and DOCA + E rats received 1% NaCl drinking water along with subcutaneous injections of 25 mg deoxycorticosterone-acetate (in 0.4 mL of dimethylformamide) every fourth day. UNX + E and DOCA + E rats received 1 mg/kg/day of epicatechin by oral gavage. Single-cell micro-electrode electrophysiology, Langendorff isolated-heart assessment and isolated aorta and mesenteric organ baths were used to assess cardiovascular parameters. Serum malondialdehyde concentration was used as a marker of oxidative stress. Myocardial stiffness was increased and left ventricular compliance significantly diminished in the DOCA control group, and these changes were attenuated by epicatechin treatment (p < 0.05). Additionally, the DOCA + E rats showed significantly reduced blood pressure and malondialdehyde concentrations; however, there was no improvement in left ventricular hypertrophy, electrophysiology or vascular function. This study demonstrates the ability of epicatechin to reduce blood pressure, prevent myocardial stiffening and preserve cardiac compliance in hypertrophied DOCA-salt rat hearts.
Collapse
|
17
|
Li JW, Wang XY, Zhang X, Gao L, Wang LF, Yin XH. (‑)‑Epicatechin protects against myocardial ischemia‑induced cardiac injury via activation of the PTEN/PI3K/AKT pathway. Mol Med Rep 2018; 17:8300-8308. [PMID: 29658565 PMCID: PMC5984010 DOI: 10.3892/mmr.2018.8870] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 03/08/2018] [Indexed: 02/06/2023] Open
Abstract
Flavonol (−)-epicatechin (EPI) is primarily contained in green tea (Camellia sinensis) and cocoa beans (Theobroma cacao), and has been demonstrated to be beneficial for the health of the cardiovascular system. However, the effect and the underlying mechanism of EPI on myocardial ischemia induced cardiac injury has not yet been determined. Therefore, the present study aimed to detect whether EPI inhibited myocardial ischemia injury. An in vivo mouse myocardial ischemia model was induced by the ligation of left descending coronary artery for 7 days. EPI (1 mg/kg/day) was administrated 10 days prior to myocardial ischemia operation. The in vitro mouse myocardial ischemia model was induced by cultivating neonatal mouse cardiomyocytes under anoxia condition for 12 h. Cardiomyocytes were treated with EPI (5 µM) for 1 h and then incubated under anoxia conditions. Mouse hearts and cultured cardiomyocytes were used for hematoxylin-eosin, masson, ultrasonography, terminal dUTP nick end-labeling, immunofluorescence, western blotting and MTT assays. Results revealed that myocardial ischemia-induced mouse cardiac injury was significantly inhibited by EPI, as evidenced by decreased myocardial apoptosis, cardiac fibrosis and myocardial hypertrophy and improved cardiac function. In addition, it was confirmed that EPI serves a protective effect against myocardial ischemia via the phosphatase and tensin homolog (PTEN)/phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, which was reversed by the PI3K inhibitor, LY294002. The protective role of EPI in myocardial apoptosis was further confirmed on mouse cardiomyocytes following anoxia treatment in vitro. In conclusion, the data suggested that EPI protects against myocardial ischemia induced cardiac injury through the PTEN/PI3K/AKT signaling pathway in vivo and in vitro, which may provide clinical therapeutic approaches and targets for cardiac ischemia injury.
Collapse
Affiliation(s)
- Jia-Wen Li
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiao-Yun Wang
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin Zhang
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lei Gao
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Li-Feng Wang
- Department of Cardiology, Fourth Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xin-Hua Yin
- Department of Cardiology, First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
18
|
Biological activities of (-)-epicatechin and (-)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol Adv 2018; 36:666-681. [PMID: 29355598 DOI: 10.1016/j.biotechadv.2018.01.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 12/22/2022]
Abstract
Recent studies have suggested that certain (-)-epicatechin-containing foods have a blood pressure-lowering capacity. The mechanisms underlying (-)-epicatechin action may help prevent oxidative damage and endothelial dysfunction, which have both been associated with hypertension and certain brain disorders. Moreover, (-)-epicatechin has been shown to modify metabolic profile, blood's rheological properties, and to cross the blood-brain barrier. Thus, (-)-epicatechin causes multiple actions that may provide unique synergy beneficial for cardiovascular and neuropsychological health. This review summarises the current knowledge on the biological actions of (-)-epicatechin, related to cardiovascular and brain functions, which may play a remarkable role in human health and longevity.
Collapse
|