1
|
Faradina A, Tung YT, Chen SH, Liao YC, Chou MJ, Teng IC, Lin WL, Wang CC, Sheu MT, Chou PY, Shih CK, Skalny AV, Tinkov AA, Chang JS. Djulis Hull Enhances the Efficacy of Ferric Citrate Supplementation via Restoring Normal Iron Efflux through the IL-6-Hepcidin-Ferroportin Pathway in High-Fat-Diet-Induced Obese Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16691-16701. [PMID: 37877289 DOI: 10.1021/acs.jafc.3c02826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Obesity-related functional iron disorder remains a major nutritional challenge. We evaluated the effects of djulis hull (DH) on iron metabolism in 50% high-fat-diet-induced obese rats supplemented with ferric citrate (2 g iron/kg diet) for 12 weeks. DH supplementation (5, 10, 15% dry weight/kg diet) significantly increased serum and hepatic iron but decreased appetite hormones, body weight, hepcidin, and liver inflammation (all p < 0.05). The Spearman correlation showed that appetite hormones were negatively associated with iron but positively correlated with liver hepcidin (all p < 0.05). A Western blot analysis showed that DH significantly downregulated hepatic hepcidin through the IL-6-JAK-STAT3 and enhanced ferroportin (Fpn) via the Keap1-Nrf2 and PHD2-HIF-2α. An in vitro study revealed that major bioactive compounds of DH, hexacosanol, and squalene suppressed LPS-induced IL-6 and hepcidin but enhanced Fpn expression in activated THP-1 cells. In conclusion, DH may exert nutraceutical properties for the treatment of functional iron disorder and restoration of iron efflux may have beneficial effects on weight control.
Collapse
Affiliation(s)
- Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Chi Liao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Meng-Jung Chou
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - I-Chun Teng
- Department of Nutritional Services, National Cheng Kung University Hospital, Tainan 704, Taiwan
| | - Wen-Ling Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ming-Thau Sheu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Yu Chou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Anatoly V Skalny
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Alexey A Tinkov
- Center for Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia
- Department of Medical Elementology, Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russia
- Yaroslavl State University, 150001 Yaroslavl, Russia
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
- Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei 110, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Gotardo ÉMF, Brito PL, Gushiken LFS, Chweih H, Leonardo FC, Costa FF, Conran N. Molecular and cellular effects of in vivo chronic intravascular hemolysis and anti-inflammatory therapeutic approaches. Vascul Pharmacol 2023; 150:107176. [PMID: 37116732 DOI: 10.1016/j.vph.2023.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Intravascular hemolysis (IVH) occurs in numerous inherited and acquired disorders, including sickle cell disease (SCD), malaria and sepsis. These diseases display unique symptoms, but often share complications, such as vasomotor dysfunction and pulmonary hypertension. Consequently, in vivo models are needed to study the effects of continuous intravascular hemolytic processes, independently of the molecular or extrinsic alteration that leads to erythrocyte destruction. We gave twice-weekly low-dose phenylhydrazine (LDPHZ) to C57BL/6 J mice for 4 weeks, and measured parameters indicative of anemia, hemoglobin-clearance pathways, inflammation and iron turnover, comparing these to those of a murine model of SCD, which displays associated IVH. LDPHZ administration provoked discreet anemia in mice and significant reticulocytosis, in association with hemoglobin/heme-clearance pathway protein depletion. Mice subjected to chronic hemolysis displayed elevated leukocyte counts and plasma levels of interleukin (IL)-1β, TNF-α, IL-6, soluble ICAM-1, endothelin-1 and anti-inflammatory IL-10, closely emulating alterations indicative of systemic inflammatory and endothelial activation in SCD, and confirming chronic IVH in itself as a serious complication. Discreet accelerations in hepatic and splenic iron turnover also occurred in LDPHZ mice, without alterations in liver damage markers. Examining the effects of two therapies on hemolysis-induced inflammation, the administration of hydroxyurea (and to a lesser extent, l-glutamine) significantly abrogated hemolytic inflammation in mice, without apparent inhibition of hemolysis. In conclusion, the isolation of chronic IVH, a common disease mechanism, using this model, may allow the study of hemolysis-specific sequelae at the cellular and systemic level, and the investigation of candidate agents that could potentially counter hemolytic inflammation.
Collapse
Affiliation(s)
- Érica M F Gotardo
- Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Pâmela L Brito
- Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Lucas F S Gushiken
- Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Hanan Chweih
- Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Flavia C Leonardo
- Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fernando F Costa
- Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Nicola Conran
- Hematology and Transfusion Center, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| |
Collapse
|
3
|
Hu TY, Mayasari NR, Cheng TM, Bai CH, Chao JCJ, Huang YL, Wang FF, Skalny AV, Tinkov AA, Chang JS. Polymorphisms of haptoglobin modify the relationship between dietary iron and the risk of gestational iron-deficiency anemia. Eur J Nutr 2023; 62:299-309. [PMID: 35974112 DOI: 10.1007/s00394-022-02987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE To assess whether polymorphisms of haptoglobin (Hp) modify the relationship between dietary iron and the risk of gestational iron-deficiency anemia (IDA). METHODS This study analyzed 1430 singleton pregnant women aged 20 ~ ≤ 48 years from the 2017-2019 National Nutrition and Health Survey of Pregnant Women in Taiwan. Sociodemographic, blood biochemical, Hp phenotype, and 24-h dietary recall data were collected. Erythropoiesis-related total prenatal supplementation was defined as the reported use of multivitamins and minerals, vitamin B complex, folate, and iron. RESULTS Distributions of the Hp 1-1, Hp 2-1, and Hp 2-2 phenotypes were 13.6, 39.8, and 46.5%, respectively. Women with the Hp 1-1 phenotype had the lowest mean levels of serum ferritin (p-trend = 0.017), the highest prevalence of gestational ID (p-trend = 0.033) as well as the highest prevalence of gestational IDA (did not reach statistical differences, p-trend = 0.086). A gene-diet interaction on serum ferritin was observed between the Hp 1 and Hp 2 (2-1/2-2) alleles (p < 0.001). An adjusted multivariate logistic regression showed that compared to those with a normal blood iron status and who reported using erythropoiesis-related total prenatal supplements, those who did not had a 4.05-fold [odds ratio (OR) = 4.05 (95% confidence interval (CI) 2.63-6.24), p < 0.001] increased risk of gestational IDA. The corresponding ORs for carriers of the Hp 1 and Hp 2 alleles were 4.78 (95% CI 1.43-15.99) and 3.79 (95% CI 2.37-6.06), respectively. CONCLUSION Pregnant women who are Hp 1 carriers are at increased risk for developing IDA if they do not meet the recommended dietary allowance for iron or use erythropoiesis-related prenatal supplements.
Collapse
Affiliation(s)
- Tzu-Yu Hu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - Noor Rohmah Mayasari
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan
| | - Tsai-Mu Cheng
- Graduate Institute of Translational Medicine, College of Medical Sciences and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Jane C-J Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan.,College of Public Health, Master Program in Global Health and Development, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Fan-Fen Wang
- Department of Medicine, Yangming Branch, Taipei City Hospital, Taipei, Taiwan.,National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Anatoly V Skalny
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,KG Razumovsky Moscow State University of Technologies and Management, 109004, Moscow, Russia
| | - Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Yaroslavl State University, Yaroslavl, Russia
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, 250 Wu-Xing Street, Taipei, 11031, Taiwan. .,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. .,Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei, Taiwan.
| |
Collapse
|
4
|
Kim H, Im I, Jeon JS, Kang EH, Lee HA, Jo S, Kim JW, Woo DH, Choi YJ, Kim HJ, Han JS, Lee BS, Kim JH, Kim SK, Park HJ. Development of human pluripotent stem cell-derived hepatic organoids as an alternative model for drug safety assessment. Biomaterials 2022; 286:121575. [DOI: 10.1016/j.biomaterials.2022.121575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 04/15/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
|
5
|
Faradina A, Tseng SH, Tung TH, Huang SY, Lee YC, Skalny AV, Tinkov AA, Chen SH, Chuang YK, Chang JS. High-dose ferric citrate supplementation attenuates omega-3 polyunsaturated fatty acid biosynthesis via downregulating delta 5 and 6 desaturases in rats with high-fat diet-induced obesity. Food Funct 2021; 12:11819-11828. [PMID: 34787162 DOI: 10.1039/d1fo02680a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Obesity is associated with an increased risk of an iron deficiency; however, a synergistic relationship between iron and lipid homeostasis was also observed. The aim of this study was to investigate the effects of pharmacological doses of iron supplementation on omega 3 (n-3) and omega 6 (n-6) polyunsaturated fatty acids (PUFAs). Sprague-Dawley (SD) rats were fed a normal diet or a 50% high-fat diet (HFD) without or with pharmacological doses of ferric citrate (0.25, 1, or 2 g ferric iron per kg diet) for 12 weeks, and erythrocyte profiles of n-3 and n-6 PUFAs were quantitated. Ferric citrate supplementation showed dose-related effects on liver inflammation, liver iron accumulation, and increasing circulating levels of iron, erythrocyte degradation biomarkers LVV-hemorphin-7, malondialdehyde (MDA), and insulin. Obese rats supplemented with 2 g ferric iron per kg diet also had decreased levels of eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and total n-3 PUFAs compared to rats fed a normal diet or HFD alone. A western blotting analysis revealed that iron-mediated downregulation of n-3 PUFA-converting enzymes (Δ5 and Δ6 desaturases) only occurred at high dosages (≥1 g ferric iron per kg diet). A Spearman correlation analysis showed that total liver iron and serum LVV-hemorphin-7 and MDA were negatively correlated with n-3 PUFAs and their converting enzymes (Δ5 and Δ6 desaturases) (all p < 0.05). In conclusion, obese rats that received high-dose ferric citrate supplementation (>1 g of ferric iron per kg diet) exhibited decreased n-3 PUFA levels via downregulation of expressions of Δ5 and Δ6 desaturase enzymes.
Collapse
Affiliation(s)
- Amelia Faradina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Sung-Hui Tseng
- Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taipei, Taiwan.,Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Te-Hsuan Tung
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine & Sciences, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Anatoly V Skalny
- Laboratory of Molecular Dietology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia
| | - Alexey A Tinkov
- Laboratory of Molecular Dietology, IM Sechenov First Moscow State Medical University (Sechenov University), 119146, Moscow, Russia.,Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000, Orenburg, Russia
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Kun Chuang
- Master Program in Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. .,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan.,Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei, Taiwan
| |
Collapse
|
6
|
Yadana S, Talegawkar SA, Mathad JS, Alexander M, Rajagopalan K, Kumar P, Naik S, Leu CS, Kulkarni V, Deshpande P, Araujo-Pereira M, Bhosale R, Babu S, Andrade BB, Caulfield LE, Gupta A, Shivakoti R. Association of Vegetable and Animal Flesh Intake with Inflammation in Pregnant Women from India. Nutrients 2020; 12:E3767. [PMID: 33302378 PMCID: PMC7762525 DOI: 10.3390/nu12123767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022] Open
Abstract
In pregnant women, studies are lacking on the relationship of vegetable and animal flesh (poultry, red meat and seafood) intake with inflammation, especially in low- and middle-income countries. We conducted a cohort study of pregnant women receiving antenatal care at BJ Medical College in Pune, India. The dietary intake of pregnant women was queried in the third trimester using a validated food frequency questionnaire. Twelve inflammatory markers were measured in plasma samples using immunoassays. Only 12% of the study population were vegetarians, although animal flesh intake levels were lower compared to Western populations. In multivariable models, higher intakes of total vegetables were associated with lower levels of the T-helper (Th) 17 cytokine interleukin (IL)-17a (p = 0.03) and the monocyte/macrophage activation marker soluble CD163 (sCD163) (p = 0.02). Additionally, higher intakes of poultry were negatively associated with intestinal fatty-acid binding protein (I-FABP) levels (p = 0.01), a marker of intestinal barrier dysfunction and Th2 cytokine IL-13 (p = 0.03), and higher seafood was associated with lower IL-13 (p = 0.005). Our data from pregnant women in India suggest that a higher quality diet emphasizing vegetables and with some animal flesh is associated with lower inflammation. Future studies should confirm these findings and test if modulating vegetables and animal flesh intake could impact specific aspects of immunity and perinatal health.
Collapse
Affiliation(s)
- Su Yadana
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA;
- EcoHealth Alliance, New York, NY 10018, USA
| | - Sameera A. Talegawkar
- Departments of Exercise and Nutrition Sciences and Epidemiology, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA;
| | - Jyoti S. Mathad
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA;
| | - Mallika Alexander
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune 380016, India; (M.A.); (V.K.); (P.D.); (A.G.)
| | - Kripa Rajagopalan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA;
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Pavan Kumar
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai 600031, India; (P.K.); (S.B.)
| | - Shilpa Naik
- Department of Obstetrics and Gynecology, Byramjee Jeejeebhoy Government Medical College, Pune 380016, India; (S.N.); (R.B.)
| | - Cheng-Shiun Leu
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY 10032, USA;
| | - Vandana Kulkarni
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune 380016, India; (M.A.); (V.K.); (P.D.); (A.G.)
| | - Prasad Deshpande
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune 380016, India; (M.A.); (V.K.); (P.D.); (A.G.)
| | - Mariana Araujo-Pereira
- Instituto Goncalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (M.A.-P.); (B.B.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research, Salvador 45204-040, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
| | - Ramesh Bhosale
- Department of Obstetrics and Gynecology, Byramjee Jeejeebhoy Government Medical College, Pune 380016, India; (S.N.); (R.B.)
| | - Subash Babu
- International Center for Excellence in Research, National Institutes of Health, National Institute for Research in Tuberculosis, Chennai 600031, India; (P.K.); (S.B.)
| | - Bruno B. Andrade
- Instituto Goncalo Moniz, Fundação Oswaldo Cruz, Salvador 40296-710, Brazil; (M.A.-P.); (B.B.A.)
- Multinational Organization Network Sponsoring Translational and Epidemiological Research, Salvador 45204-040, Brazil
- Faculdade de Medicina, Universidade Federal da Bahia, Salvador 40110-100, Brazil
- Curso de Medicina, Faculdade de Tecnologia e Ciências, Salvador 41741-590, Brazil
- Universidade Salvador (UNIFACS), Laureate Universities, Salvador 41720-200, Brazil
- Escola Bahiana de Medicina e Saúde Pública (EBMSP), Salvador 40290-000, Brazil
| | - Laura E. Caulfield
- Center for Human Nutrition, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Amita Gupta
- Byramjee-Jeejeebhoy Government Medical College-Johns Hopkins University Clinical Research Site, Pune 380016, India; (M.A.); (V.K.); (P.D.); (A.G.)
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rupak Shivakoti
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY 10032, USA;
| |
Collapse
|
7
|
Influence of benzene exposure, fat content, and their interactions on erythroid-related hematologic parameters in petrochemical workers: a cross-sectional study. BMC Public Health 2020; 20:382. [PMID: 32293364 PMCID: PMC7092548 DOI: 10.1186/s12889-020-08493-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/09/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Ubiquitously distributed benzene is a known hematotoxin. Increasing evidence has suggested that erythroid-related hematologic parameters may be sensitive to benzene exposure. Fat content, which is also closely associated with erythroid-related hematologic parameters, may affect the distribution and/or metabolism of benzene, and eventually benzene-induced toxicity. METHODS To explore the influence of benzene exposure, fat content, and their interactions on erythroid-related hematologic parameters, we recruited 1669 petrochemical workers and measured their urinary S-phenylmercapturic acid (SPMA) concentration and erythroid-related hematological parameters. Indices for fat content included body fat percentage (BF%), plasma total cholesterol (TC) and triglycerides (TG), and occurrence of fatty liver. RESULTS The dose-response curve revealed U-shaped nonlinear relationships of SPMA with hematocrit (HCT) and mean corpuscular hemoglobin concentration (MCHC) (P-overall < 0.001, and P-nonlinear < 0.015), as well as positive linear associations and r-shaped nonlinear relationships of continuous fat content indices with erythroid-related hematological parameters (P-overall ≤0.005). We also observed modification effects of fat content on the associations between benzene exposure and erythroid-related hematological parameters, with workers of lower or higher BF% and TG more sensitive to benzene-induced elevation of MCHC (Pinteraction = 0.021) and benzene-induced decrease of HCT (Pinteraction = 0.050), respectively. We also found that some erythroid-related hematologic parameters differed between subgroups of workers with different SPMA levels and fat content combination. CONCLUSIONS Our study suggested that benzene exposure, fat content, and their interactions may affect erythroid-related hematological parameters in petrochemical workers in a complex manner that are worthy of further investigation.
Collapse
|
8
|
Iron and Advanced Glycation End Products: Emerging Role of Iron in Androgen Deficiency in Obesity. Antioxidants (Basel) 2020; 9:antiox9030261. [PMID: 32235809 PMCID: PMC7139764 DOI: 10.3390/antiox9030261] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/27/2022] Open
Abstract
The literature suggests a bidirectional relationship between testosterone (T) and iron, but mechanisms underlying this relationship remain unclear. We investigated effects of iron on advanced glycation end products (AGEs) in obesity-related androgen deficiency. In total, 111 men were recruited, and iron biomarkers and N(ɛ)-(carboxymethyl)lysine (CML) were measured. In an animal study, rats were fed a 50% high-fat diet (HFD) with (0.25, 1, and 2 g ferric iron/kg diet) or without ferric citrate for 12 weeks. Obese rats supplemented with >1 g iron/kg diet had decreased testicular total T compared to HFD alone. Immunohistochemical staining showed that >1 g of ferric iron increased iron and AGE retention in testicular interstitial tissues, which is associated with increased expression of the receptor for AGEs (RAGE), tumor necrosis factor-α, and nitric oxide. Compared with normal weight, overweight/obese men had lower T levels and higher rates of hypogonadism (19% vs. 11.3%) and iron overload (29.8% vs.15.9%). A correlation analysis showed serum total T was positively correlated with transferrin saturation (r = 0.242, p = 0.007) and cathepsin D (r = 0.330, p = 0.001), but negatively correlated with red blood cell aggregation (r = −0.419, p<0.0001) and CML (r = −0.209, p < 0.05). In conclusion, AGEs may partially explain the underlying relationship between dysregulated iron and T deficiency.
Collapse
|
9
|
Kurniawan AL, Lee YC, Shih CK, Hsieh RH, Chen SH, Chang JS. Alteration in iron efflux affects male sex hormone testosterone biosynthesis in a diet-induced obese rat model. Food Funct 2020; 10:4113-4123. [PMID: 31233037 DOI: 10.1039/c8fo01870g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This study was motivated by clinical observations that dysmetabolic iron overload syndrome (DIOS) and an androgen deficiency are common features observed in obese adult men; however, the molecular mechanism underlying the effects of DIOS on androgen deficiency remains to be elucidated. We established a DIOS animal model by feeding Sprague-Dawley rats an iron/fat-enriched diet (50% fat plus 0.25, 1, or 2 g ferric iron per kg diet) for 12 weeks to induce iron dysfunction (indicated by decreased tissue iron efflux) in obese rats. Obese rats fed an iron/fat-enriched diet showed decreased levels of testicular total Testosterone (T) and iron exporter ferroportin but increased levels of testicular iron and hepcidin, and these effects were more evident with a >1 g ferric iron per kg diet. A western blot analysis showed that an iron/fat-enriched diet triggered testicular endoplasmic reticular (ER) stress but decreased mitochondrion biogenesis proteins (PGC1α and TFAM) and T-converting proteins (StAR, CYP11A, and 17β-HSD). TUNEL staining showed that >1 g ferric iron induced apoptosis mainly in germ cells and Leydig's cells. Uncontrolled testicular iron efflux may cause mitochondrial-ER dysfunction and affect T biosynthesis. Future study targeting the testicular hepcidin-ferroportin axis may offer a therapeutic tool to alleviate testicular iron retention and mitochondrial-ER stress in Leydig's cells.
Collapse
Affiliation(s)
- Adi Lukas Kurniawan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Chieh Lee
- Department of Obstetrics and Gynecology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. and School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, Taiwan
| | - Rong-Hong Hsieh
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan.
| | - Seu-Hwa Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan. and Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan and Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan and Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei, Taiwan
| |
Collapse
|
10
|
Zhu B, Zhi Q, Xie Q, Wu X, Gao Y, Chen X, Shi L. Reduced expression of ferroportin1 and ceruloplasmin predicts poor prognosis in adrenocortical carcinoma. J Trace Elem Med Biol 2019; 56:52-59. [PMID: 31442954 DOI: 10.1016/j.jtemb.2019.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/18/2019] [Accepted: 07/18/2019] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Iron metabolism is tightly controlled in human cells. Dysregulation of iron metabolism-related genes has been characterized as a promising prognostic biomarker in cancers. However, the expression patterns and prognostic roles of iron metabolism-related genes remain unknown in adrenocortical carcinoma (ACC). OBJECTIVES The primary objective of this study was to explore the expression patterns and prognostic roles of iron metabolism-related genes in ACC using publicly available datasets. METHODS In the present study, we compared the expression patterns of 36 iron metabolism-related genes between ACC tumors (n = 77) and normal adrenal tissues (n = 128) based on The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression (GTEx) data. The associations between clinical variables (including survival rate and pathological stage) and expression levels of iron mentalism-related genes were further explored. All the bioinformatics analyses were performed using the GEPIA or the Metascape tool. RESULTS Twelve iron metabolism-related genes were differentially expressed between ACC tumors and normal controls. Among them, reduced expression levels of ferroportin1 (FPN1) and ceruloplasmin (CP) were significantly correlated with poor survival of ACC patients. Specially, the expression levels of FPN1 were negatively correlated with the pathological stages of ACC. A pan-cancer analysis characterized the reduced expression of FPN1 and CP as an ACC-specific signature among 33 types of cancers. Functional enrichment analysis suggested that both FPN1 and CP might be implicated in several immune processes. CONCLUSION Reduced expression of FPN1 and CP was identified as a potential signature for poor prognosis of ACC in this study. Mechanisms underlying the prognostic value of FPN1 or CP in ACC deserve further experimental investigation.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Qi Zhi
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, PR China
| | - Qian Xie
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiaohui Wu
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Yanan Gao
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Xiao Chen
- Department of Pharmacology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China
| | - Liyun Shi
- Department of Microbiology and Immunology, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
11
|
Wang T, Yan H, Lu Y, Li X, Wang X, Shan Y, Yi Y, Liu B, Zhou Y, Lü X. Anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047 on high-fat and high-fructose diet mice base on inflammatory response alleviation and gut microbiota regulation. Eur J Nutr 2019; 59:2709-2728. [PMID: 31659451 DOI: 10.1007/s00394-019-02117-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE The objective of the study was to evaluate the anti-obesity effect of Lactobacillus rhamnosus LS-8 and Lactobacillus crustorum MN047, and illustrate the potential functional mechanism about the alleviation of high fat and high fructose diet (HFFD) induced obesity and related metabolic abnormalities. METHODS C57BL/6J mice were subjected to a standard or HFFD with or without supplementation of L. rhamnosus LS-8 and L. crustorum MN047 for 10 weeks. Obesity related metabolic indices including glucose tolerance, insulin resistance, serum lipid, liver function, hormones and inflammatory cytokines were assessed by standard protocols. For the monitoring of inflammatory response and lipid metabolism, transcriptional levels were profiled in liver and/or adipose tissues. Furthermore, gut microbiota composition analyses in the fecal samples were performed using 16S rRNA gene sequencing, and gut microbial metabolites, including lipopolysaccharide (LPS) and short-chain fatty acids (SCFAs), were also tested for the assessment of the relationship between gut microbiota variation and inflammatory response. RESULTS Administration with L. rhamnosus LS-8 and L. crustorum MN047 significantly mitigated body weight gain and insulin resistance, and inflammatory response (TNF-α, IL-1β and IL-6 levels in serum and corresponding mRNA levels in adipose tissues) was significantly inhibited in these two strains-treated mice. Moreover, L. rhamnosus LS-8 and L. crustorum MN047 could partially normalized mRNA expression levels involved in lipid metabolism including Pparγ, Srebp-1c, CD36, Fabp2 and FAS. In addition, these two strains manipulated gut microbiota by decreasing the abundance of Bacteroides and Desulfovibrio and increasing that of Lactobacillus and Bifidobacterium, which in turn raised the levels of feces SCFAs and lowered the levels of circulating LPS. CONCLUSION These results indicated that L. rhamnosus LS-8 and L. crustorum MN047 supplementation possessed the anti-obesity effect on the HFFD fed mice by alleviating inflammatory response and regulating gut microbiota, which further suggested that these two probiotics can be considered as an alternative dietary supplement in combination with the preventive and therapeutic strategies against obesity and related complications.
Collapse
Affiliation(s)
- Tao Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Hong Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yingying Lu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuan Zhou
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Hu TY, Lee SY, Shih CK, Chou MJ, Wu MC, Teng IC, Bai CH, Sabrina N, Tinkov AA, Skalny AV, Chang JS. Soluble CD163-Associated Dietary Patterns and the Risk of Metabolic Syndrome. Nutrients 2019; 11:nu11040940. [PMID: 31027316 PMCID: PMC6521166 DOI: 10.3390/nu11040940] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
Elevated soluble cluster of differentiation 163 (sCD163) concentrations, a marker of macrophage activation, are associated with obesity. Weight reduction decreases circulating CD163 levels, and changes in sCD163 levels are associated with improved metabolic dysfunction. Currently, the relationship between sCD163 and diet remains unclear. This study investigated dietary patterns associated with sCD163 concentrations and its predictive effect on metabolic syndrome (MetS). Data on anthropometrics, blood biochemistry, and a food frequency questionnaire were collected from 166 Taiwanese adults. sCD163 levels independently predicted MetS (odds ratio (OR): 5.35; 95% confidence interval (CI): 2.13~13.44, p < 0.001), non-alcoholic fatty liver disease (OR: 2.19; 95% CI: 1.03~4.64, p < 0.001), and central obesity (OR: 3.90; 95% CI: 1.78~8.55, p < 0.001), after adjusting for age and sex. An adjusted linear regression analysis revealed strong correlations between levels of sCD163 and aspartate transaminase (AST) (β = 0.250 (0.023~0.477), p < 0.05) and red blood cell aggregation (β = 0.332 (0.035~0.628), p < 0.05). sCD163-associated dietary pattern scores (high frequencies of consuming noodles and desserts, and eating at home, and a low intake frequency of steamed/boiled/raw food, white/light-green-colored vegetables, orange/red/purple-colored vegetables, dairy products, seafood, dark-green leafy vegetables, and soy products) were positively correlated with MetS, liver injury biomarkers, and sCD163 levels (all p for trend < 0.05). Individuals with the highest dietary pattern scores (tertile 3) had a 2.37-fold [OR: 2.37; 95% CI: 1.04~5.37, p < 0.05] higher risk of MetS compared to those with the lowest scores (tertile 1). Overall, the study findings suggest the importance of a healthy dietary pattern in preventing elevated sCD163 levels and diet-related chronic disease such as MetS.
Collapse
Affiliation(s)
- Tzu-Yu Hu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Shin-Yng Lee
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chun-Kuang Shih
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Meng-Jung Chou
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Meng-Chieh Wu
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - I-Chun Teng
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
| | - Chyi-Huey Bai
- Department of Public Health, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan.
- Department of Public Health, College of Public Health, Taipei Medical University, Taipei 11031, Taiwan.
| | - Nindy Sabrina
- Nutrition Program, Faculty of Food Technology and Health, Sahid Jakarta University, Jakarta 12870, Indonesia.
| | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 105064, Russia.
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya St., 6, Moscow 105064, Russia.
- Laboratory of Biotechnology and Applied Bioelementology, Yaroslavl State University, Sovetskaya St., 14, Yaroslavl 150000, Russia.
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 11031, Taiwan.
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 11031, Taiwan.
- Chinese Taipei Society for the Study of Obesity (CTSSO), Taipei 11031, Taiwan.
| |
Collapse
|
13
|
Testosterone-Associated Dietary Pattern Predicts Low Testosterone Levels and Hypogonadism. Nutrients 2018; 10:nu10111786. [PMID: 30453566 PMCID: PMC6266690 DOI: 10.3390/nu10111786] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
Obesity and low serum testosterone (T) levels are interrelated and strongly influenced by dietary factors, and their alteration entails a great risk of hypogonadism. Substantial evidence suggests a bidirectional relationship between nutrient metabolism (e.g., glucose, lipids, and iron) and T levels in men; however, T-related dietary patterns remain unclear. This study investigated the dietary patterns associated with serum total T levels and its predictive effect on hypogonadism and the body composition. Anthropometry, blood biochemistry, and food frequency questionnaires were collected for 125 adult men. Dietary patterns were derived using a reduced rank regression from 32 food groups. Overall prevalence rates of central obesity and hypogonadism were 48.0% and 15.7%, respectively. An adjusted linear regression showed that age, insulin, red blood cell (RBC) aggregation, and transferrin saturation independently predicted serum total T levels (all p < 0.01). The total T-related dietary pattern (a high consumption of bread and pastries, dairy products, and desserts, eating out, and a low intake of homemade foods, noodles, and dark green vegetables) independently predicted hypogonadism (odds ratio: 5.72; 95% confidence interval: 1.11‒29.51, p < 0.05) for those with the highest dietary pattern scores (Q4) compared to those with the lowest (Q1). Scores were also negatively correlated with the skeletal muscle mass (p for trend = 0.002) but positively correlated with the total body fat mass (p for trend = 0.002), visceral fat mass (p for trend = 0.001), and to a lesser extent, subcutaneous fat mass (p for trend = 0.035) after adjusting for age. Randomized controlled trials are needed to confirm that improvement in dietary pattern can improve T levels and reduce hypogonadism.
Collapse
|
14
|
Huang SY, Sabrina N, Chien YW, Chen YC, Lin SH, Chang JS. A Moderate Interleukin-6 Reduction, Not a Moderate Weight Reduction, Improves the Serum Iron Status in Diet-Induced Weight Loss with Fish Oil Supplementation. Mol Nutr Food Res 2018; 62:e1800243. [PMID: 30052315 DOI: 10.1002/mnfr.201800243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Whether moderate weight loss or a reduction in IL-6 improves the serum iron status in overweight (OW) and obese adults supplemented with or without fish oil is explored. METHODS AND RESULTS In total, 93 OW/obese Taiwanese adults with ≥2 metabolic components are randomized to a 12-week calorie-restricted diet with meal replacement alone (CRMR, n = 45) or supplemented with fish oil (CRMRF, n = 48). Mean reductions in the %body weight and serum IL-6 are 7.5% versus 5.9% and 21% versus 35% for the CRMR and CRMRF groups, respectively. In the CRMRF group, a moderate loss of IL-6 (reduced ≥35%) also significantly improves the serum iron and transferrin saturation compared to those with loss of <35% in the mean serum IL-6 or those of the CRMR group who has a moderate loss of IL-6 (reduced ≥21%) (all p < 0.05). In contrast, modest weight loss does not improve the serum iron status. CONCLUSIONS Fish oil is ineffective as an adjunct for weight or fat loss but has beneficial effects on preserving the lean body mass. A significant improvement in the iron status is only observed in those with moderate loss of serum IL-6 supplemented with fish oil.
Collapse
Affiliation(s)
- Shih-Yi Huang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan
| | - Nindy Sabrina
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan.,Nutrition Program, Faculty of Food Technology and Health, Sahid Jakarta University, Jakarta, 12870, Indonesia
| | - Yi-Wen Chien
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan
| | - Yi-Chun Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan.,Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 110, Taiwan.,Nutrition Research Center, Taipei Medical University Hospital, Taipei, 110, Taiwan.,Chinese Taipei Society for the Study of Obesity, CTSSO, Taipei, 110, Taiwan
| |
Collapse
|