1
|
Sharma R, Raza GS, Sodum N, Walkowiak J, Herzig KH. Effect of hypoxia on GLP-1 secretion - an in vitro study using enteroendocrine STC-1 -cells as a model. Pflugers Arch 2024; 476:1613-1621. [PMID: 39075239 PMCID: PMC11381484 DOI: 10.1007/s00424-024-02996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
Glucagon-like peptide (GLP)-1 is a hormone released by enteroendocrine L-cells after food ingestion. L-cells express various receptors for nutrient sensing including G protein-coupled receptors (GPRs). Intestinal epithelial cells near the lumen have a lower O2 tension than at the base of the crypts, which leads to hypoxia in L-cells. We hypothesized that hypoxia affects nutrient-stimulated GLP-1 secretion from the enteroendocrine cell line STC-1, the most commonly used model. In this study, we investigated the effect of hypoxia (1% O2) on alpha-linolenic acid (αLA) stimulated GLP-1 secretion and their receptor expressions. STC-1 cells were incubated for 12 h under hypoxia (1% O2) and treated with αLA to stimulate GLP-1 secretion. 12 h of hypoxia did not change basal GLP-1 secretion, but significantly reduced nutrient (αLA) stimulated GLP-1 secretion. In normoxia, αLA (12.5 μM) significantly stimulated (~ 5 times) GLP-1 secretion compared to control, but under hypoxia, GLP-1 secretion was reduced by 45% compared to normoxia. αLA upregulated GPR120, also termed free fatty acid receptor 4 (FFAR4), expressions under normoxia as well as hypoxia. Hypoxia downregulated GPR120 and GPR40 expression by 50% and 60%, respectively, compared to normoxia. These findings demonstrate that hypoxia does not affect the basal GLP-1 secretion but decreases nutrient-stimulated GLP-1 secretion. The decrease in nutrient-stimulated GLP-1 secretion was due to decreased GPR120 and GPR40 receptors expression. Changes in the gut environment and inflammation might contribute to the hypoxia of the epithelial and L-cells.
Collapse
Affiliation(s)
- Ravikant Sharma
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Ghulam Shere Raza
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Nalini Sodum
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland
| | - Jaroslaw Walkowiak
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland
| | - Karl-Heinz Herzig
- Research Unit of Biomedicine and Internal Medicine, Biocenter of Oulu, Medical Research Center, University of Oulu, Aapistie 5, 90220, Oulu, Finland.
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572, Poznań, Poland.
| |
Collapse
|
2
|
Kondrashina A, Mamone G, Giblin L, Lane JA. Infant Milk Formula Enriched in Dairy Cream Brings Its Digestibility Closer to Human Milk and Supports Intestinal Health in Pre-Clinical Studies. Nutrients 2024; 16:3065. [PMID: 39339664 PMCID: PMC11434767 DOI: 10.3390/nu16183065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Human breast milk (HBM) is the "gold standard" for infant nutrition. When breast milk is insufficient or unavailable, infant milk formula (IMF) can provide a safe and nutritious alternative. However, IMFs differ considerably from HBM in composition and health function. We compared the digestibility and potential health functions of IMF containing low cream (LC-) or high cream (HC-) with pooled HBM. After simulated infant digestion of these samples, the bioavailability of key nutrients and immunomodulatory activities were determined via cell-based in vitro assays. A Caenorhabditis elegans leaky gut model was established to investigate cream effects on gut health. Distinct differences were observed in peptide diversity and sequences released from HC-IMF compared with LC-IMF during simulated digestion (p < 0.05). Higher levels of free fatty acids were absorbed through 21-day differentiated Caco-2/HT-29MTX monolayers from HC-IMF, compared with LC-IMF and HBM (p < 0.05). Furthermore, the immune-modulating properties of HC-IMF appeared to be more similar to HBM than LC-IMF, as observed by comparable secretion of cytokines IL-10 and IL-1β from THP-1 macrophages (p > 0.05). HC-IMF also supported intestinal recovery in C. elegans following distortion versus LC-IMF (p < 0.05). These observations suggest that cream as a lipid source in IMF may provide added nutritional and functional benefits more aligned with HBM.
Collapse
Affiliation(s)
- Alina Kondrashina
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| | - Gianfranco Mamone
- Institute of Food Science, National Research Council, 83100 Avellino, Italy
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 P302 Co. Cork, Ireland
| | - Jonathan A Lane
- Health and Happiness (H&H) Group, H&H Research, Global Research and Technology Centre, Fermoy, P61 K202 Co. Cork, Ireland
| |
Collapse
|
3
|
Browne N, Horgan K. The Impact of a Proprietary Blend of Yeast Cell Wall, Short-Chain Fatty Acids, and Zinc Proteinate on Growth, Nutrient Utilisation, and Endocrine Hormone Secretion in Intestinal Cell Models. Animals (Basel) 2024; 14:238. [PMID: 38254407 PMCID: PMC10812779 DOI: 10.3390/ani14020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
In piglets, it is observed that early weaning can lead to poor weight gain due to an underdeveloped gastrointestinal (GI) tract, which is unsuitable for an efficient absorption of nutrients. Short-chain fatty acids (SCFAs) such as butyrate have demonstrated their ability to improve intestinal development by increasing cell proliferation, which is vital during this transition period when the small and large intestinal tracts are rapidly growing. Previous reports on butyrate inclusion in feed demonstrated significantly increased feed intakes (FIs) and average daily gains (ADGs) during piglet weaning. Similar benefits in piglet performance have been observed with the inclusion of yeast cell wall in diets. A proprietary mix of yeast cell wall, SCFAs, and zinc proteinate (YSM) was assessed here in vitro to determine its impact on cellular growth, metabolism and appetite-associated hormones in ex vivo small intestinal pig cells and STC-1 mouse intestinal neuroendocrine cells. Intestinal cells demonstrated greater cell densities with the addition of YSM (150 ppm) compared to the control and butyrate (150 ppm) at 24 h. This coincided with the higher utilisation of both protein and glucose from the media of intestinal cells receiving YSM. Ghrelin (an appetite-inducing hormone) demonstrated elevated levels in the YSM-treated cells on a protein and gene expression level compared to the cells receiving butyrate and the control, while satiety hormone peptide YY protein levels were lower in the cells receiving YSM compared to the control and butyrate-treated cells across each time point. Higher levels of ghrelin and lower PYY secretion in cells receiving YSM may drive the uptake of protein and glucose, which is potentially facilitated by elevated gene transporters for protein and glucose. Greater ghrelin levels observed with the inclusion of YSM may contribute to higher cell densities that could support pig performance to a greater extent than butyrate alone.
Collapse
Affiliation(s)
- Niall Browne
- Alltech Biotechnology Centre, Sarney, Summerhill Road, Dunboyne, A86 X006 Co. Meath, Ireland
| | - Karina Horgan
- Alltech Biotechnology Centre, Sarney, Summerhill Road, Dunboyne, A86 X006 Co. Meath, Ireland
| |
Collapse
|
4
|
Xu F, Xu B, Chen H, Ju X, Gonzalez de Mejia E. Enhancement of DPP-IV inhibitory activity and the capacity for enabling GLP-1 secretion through RADA16-assisted molecular designed rapeseed peptide nanogels. Food Funct 2022; 13:5215-5228. [PMID: 35438092 DOI: 10.1039/d1fo04367f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential of pentapeptide IPQVS (RAP1) and octapeptide ELHQEEPL (RAP2) derived from rapeseed napin as natural dipeptidyl-peptidase IV (DPP-IV) inhibitors is promising. The objective was to develop a nanogel strategy to resist the hydrolysis of digestive and intestinal enzymes to enhance the DPP-IV inhibitory activity of RAP1 and RAP2, and stimulate glucagon-like peptide 1 (GLP-1) secretion of RAP2 by a RADA16-assisted molecular design. The linker of double Gly was used in the connection of RADA16 and the functional oligopeptide region (RAP1 and RAP2). Compared to the original oligopeptides, DPP-IV IC50 of the nanogels RADA16-RAP1 and RADA16-RAP2 decreased by 26.43% and 17.46% in Caco-2 cell monolayers, respectively. The results showed that the two nanogel peptides with no toxicity to cells had higher contents of stable β-sheet structures (increased by 5.6-fold and 5.2-fold, respectively) than the original oligopeptides, and a self-assembled fibrous morphology. Rheological results suggested that the nanogels RADA16-RAP1 and RADA16-RAP2 exhibit good rheological properties for potential injectable applications; the storage modulus (G') was 10 times higher than the low modulus (G''). Furthermore, the RAP2 and its RADA16-assisted nanogel peptide at the concentration of 250 μM significantly (P < 0.05) increased the release of GLP-1 by 35.46% through the calcium-sensing receptor pathway in the enteroendocrine STC-1 cells. Hence, the innovative and harmless nanogels with the sequence of RADA16-GG-Xn have the potential for use by oral and injection administration for treating or relieving type 2 diabetes.
Collapse
Affiliation(s)
- Feiran Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China.,Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive, Urbana, Illinois 61801, USA.
| | - Baocai Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, People's Republic of China
| | - Hong Chen
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive, Urbana, Illinois 61801, USA.
| | - Xingrong Ju
- National Engineering Laboratory for Cereal Fermentation Technology, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, People's Republic of China
| | - Elvira Gonzalez de Mejia
- Department of Food Science and Human Nutrition, Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 228 Edward R. Madigan Laboratory (ERML), 1201 West Gregory Drive, Urbana, Illinois 61801, USA.
| |
Collapse
|
5
|
Aly E, Sánchez‐Moya T, Darwish AA, Ros‐Berruezo G, López‐Nicolás R. In vitro digestion effect on CCK and GLP‐1 release and antioxidant capacity of some plant‐based milk substitutes. J Food Sci 2022; 87:1999-2008. [DOI: 10.1111/1750-3841.16140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Esmat Aly
- Dairy Research Department, Food Technology Research Institute Agricultural Research Center Giza Egypt
- Department of Food Science and Nutrition, Faculty of Veterinary Science, Regional Campus of International Excellence Campus Mare Nostrum University of Murcia Murcia Spain
| | - Teresa Sánchez‐Moya
- Department of Food Science and Nutrition, Faculty of Veterinary Science, Regional Campus of International Excellence Campus Mare Nostrum University of Murcia Murcia Spain
| | - Aliaa A. Darwish
- Dairy Research Department, Food Technology Research Institute Agricultural Research Center Giza Egypt
- Department of Food Science and Nutrition, Faculty of Veterinary Science, Regional Campus of International Excellence Campus Mare Nostrum University of Murcia Murcia Spain
| | - Gaspar Ros‐Berruezo
- Department of Food Science and Nutrition, Faculty of Veterinary Science, Regional Campus of International Excellence Campus Mare Nostrum University of Murcia Murcia Spain
| | - Rubén López‐Nicolás
- Department of Food Science and Nutrition, Faculty of Veterinary Science, Regional Campus of International Excellence Campus Mare Nostrum University of Murcia Murcia Spain
| |
Collapse
|
6
|
Kondrashina A, Brodkorb A, Giblin L. Sodium butyrate converts Caco-2 monolayers into a leaky but healthy intestinal barrier resembling that of a newborn infant. Food Funct 2021; 12:5066-5076. [PMID: 33960994 DOI: 10.1039/d1fo00519g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and reliable in vitro model of the infant intestinal barrier is needed to study nutrient absorption and drug permeability specifically for this life stage. This study investigated the treatment of 20 day old differentiated Caco-2 monolayers with sodium butyrate at various concentrations (0-250 mM). Monolayer integrity, cytotoxicity, permeability and inflammatory response were tracked. An intestinal barrier model, with infant gut characteristics, was developed based on the treatment of mature monolayers with 125 mM sodium butyrate for 24 h. Such treatment was not cytotoxic but caused a stable transepithelial electrical resistance value of 408 ± 52 Ω cm2. The ratio of lactulose to mannitol transport across the intestinal barrier increased 1.79-fold. Redistribution of the tight junction proteins, occludin and ZO-1, in response to sodium butyrate treatment was visualized with immunofluorescence. Levels of the cytokines, TNF-α and IL-6, although modestly increased did not indicate an inflammatory response by Caco-2 to sodium butyrate. This intestinal barrier demonstrated physiologically relevant transport rates for dairy protein of 0.01-0.06%, suggesting it may be used to track permeability of proteins in infant nutritional products.
Collapse
Affiliation(s)
- Alina Kondrashina
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.
| | - Andre Brodkorb
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.
| | - Linda Giblin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, P61C996, Ireland.
| |
Collapse
|
7
|
Assessment of the biological activity of fish muscle protein hydrolysates using in vitro model systems. Food Chem 2021; 359:129852. [PMID: 33940471 DOI: 10.1016/j.foodchem.2021.129852] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/08/2021] [Accepted: 04/11/2021] [Indexed: 12/13/2022]
Abstract
The generation of biologically active fish protein hydrolysates (FPH) is a useful technique to produce value-added products with potential application in the functional food and nutraceutical industries. Fish muscle is an attractive substrate for the production of protein hydrolysates due to its rich protein content, containing 15-25% of total fish protein. This paper reviews the production of protein hydrolysates from fish muscle, most commonly via enzymatic hydrolysis, and their subsequent bioactivities including anti-obesity, immunomodulatory, antioxidant, angiotensin I-converting enzyme (ACE)-inhibitory, anti-microbial, and anti-cancer activities as measured by in vitro testing methods. Disease prevention with FPH potentially offers a safe and natural alternative to synthetic drugs. Small molecular weight (MW) FPHs generally exhibit favourable bioactivity than large MW fractions via enhanced absorption through the gastrointestinal tract. This review also discusses the relationship between amino acid (AA) composition and AA sequence of FPH and peptides and their exhibited in vitro bioactivity.
Collapse
|
8
|
Kuang MT, Li JY, Yang XB, Yang L, Xu JY, Yan S, Lv YF, Ren FC, Hu JM, Zhou J. Structural characterization and hypoglycemic effect via stimulating glucagon-like peptide-1 secretion of two polysaccharides from Dendrobium officinale. Carbohydr Polym 2020; 241:116326. [DOI: 10.1016/j.carbpol.2020.116326] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/12/2022]
|
9
|
|
10
|
Irish Cheddar cheese increases glucagon-like peptide-1 secretion in vitro but bioactivity is lost during gut transit. Food Chem 2018; 265:9-17. [DOI: 10.1016/j.foodchem.2018.05.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/10/2018] [Accepted: 05/13/2018] [Indexed: 12/22/2022]
|
11
|
Kondrashina A, Bruen C, McGrath B, Murray B, McCarthy T, Schellekens H, Buzoianu S, Cryan JF, Kelly AL, McSweeney PL, Lawlor P, Giblin L. Satiating effect of a sodium caseinate hydrolysate and its fate in the upper gastrointestinal tract. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
12
|
Corrochano AR, Arranz E, De Noni I, Stuknytė M, Ferraretto A, Kelly PM, Buckin V, Giblin L. Intestinal health benefits of bovine whey proteins after simulated gastrointestinal digestion. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.08.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|