1
|
McGrath FM, Francis A, Fatovich DM, Macdonald SPJ, Arendts G, Woo AJ, Bosio E. Genes involved in platelet aggregation and activation are downregulated during acute anaphylaxis in humans. Clin Transl Immunology 2022; 11:e1435. [PMID: 36583159 PMCID: PMC9791329 DOI: 10.1002/cti2.1435] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/20/2022] [Accepted: 12/05/2022] [Indexed: 12/27/2022] Open
Abstract
Objective Mechanisms underlying the anaphylactic reaction in humans are not fully understood. Here, we aimed at improving our understanding of anaphylaxis by investigating gene expression changes. Methods Microarray data set GSE69063 was analysed, describing emergency department (ED) patients with severe anaphylaxis (n = 12), moderate anaphylaxis (n = 6), sepsis (n = 20) and trauma (n = 11). Samples were taken at ED presentation (T0) and 1 h later (T1). Healthy controls were age and sex matched to ED patient groups. Gene expression changes were determined using limma, and pathway analysis applied. Differentially expressed genes were validated in an independent cohort of anaphylaxis patients (n = 31) and matched healthy controls (n = 10), using quantitative reverse transcription-polymerase chain reaction. Results Platelet aggregation was dysregulated in severe anaphylaxis at T0, but not in moderate anaphylaxis, sepsis or trauma. Dysregulation was not observed in patients who received adrenaline before T0. Seven genes (GATA1 (adjusted P-value = 5.57 × 10-4), TLN1 (adjusted P-value = 9.40 × 10-4), GP1BA (adjusted P-value = 2.15 × 10-2), SELP (adjusted P-value = 2.29 × 10-2), MPL (adjusted P-value = 1.20 × 10-2), F13A1 (adjusted P-value = 1.39 × 10-2) and SPARC (adjusted P-value = 4.06 × 10-2)) were significantly downregulated in severe anaphylaxis patients who did not receive adrenaline before ED arrival, compared with healthy controls. One gene (TLN1 (adjusted P-value = 1.29 × 10-2)) was significantly downregulated in moderate anaphylaxis patients who did not receive adrenaline before ED arrival, compared with healthy controls. Conclusion Downregulation of genes involved in platelet aggregation and activation is a unique feature of the early anaphylactic reaction not previously reported and may be associated with reaction severity.
Collapse
Affiliation(s)
- Francesca M McGrath
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia
| | - Abbie Francis
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Telethon Kids Institute, Centre for Child Health Research, The University of Western AustraliaNedlandsWAAustralia
| | - Daniel M Fatovich
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia,Emergency DepartmentRoyal Perth HospitalPerthWAAustralia
| | - Stephen PJ Macdonald
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia,Emergency DepartmentRoyal Perth HospitalPerthWAAustralia
| | - Glenn Arendts
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia,Emergency DepartmentFiona Stanley HospitalPerthWAAustralia
| | - Andrew J Woo
- Laboratory for Cancer MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,School of Medical and Health SciencesEdith Cowan UniversityPerthWAAustralia
| | - Erika Bosio
- Centre for Clinical Research in Emergency MedicineHarry Perkins Institute of Medical ResearchPerthWAAustralia,Discipline of Emergency Medicine, Medical SchoolUniversity of Western AustraliaPerthWAAustralia
| |
Collapse
|
2
|
Núñez R, Rodríguez MJ, Lebrón-Martín C, Martín-Astorga MDC, Palomares F, Ramos-Soriano J, Rojo J, Torres MJ, Cañas JA, Mayorga C. Methylation changes induced by a glycodendropeptide immunotherapy and associated to tolerance in mice. Front Immunol 2022; 13:1094172. [PMID: 36643916 PMCID: PMC9832389 DOI: 10.3389/fimmu.2022.1094172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
Introduction Allergen-specific immunotherapy (AIT) is applied as treatment to rise tolerance in patients with food allergies. Although AIT is thoroughly used, the underlying epigenetic events related to tolerant induction are still unknown. Thus, we aim to investigate epigenetic changes that could be related to tolerance in dendritic cells (DCs) from anaphylactic mice to lipid transfer proteins, Pru p 3, in the context of a sublingual immunotherapy (SLIT) with a glycodendropeptide (D1ManPrup3) that has demonstrated tolerant or desensitization responses depending on the treatment dose. Methods Changes in DNA methylation in CpG context were determined comparing Sensitized (Antigen-only) animals and two groups receiving SLIT with the D1ManPrup3 nanostructure (D1ManPrup3-SLIT): Tolerant (2nM D1ManPrup3) and Desensitized (5nM D1ManPrup3), against anaphylactic animals. DNA from lymph nodes-DCs were isolated and then, Whole Genome Bisulphite Sequencing was performed to analyze methylation. Results Most differentially methylated regions were found on the area of influence of gene promoters (DMPRs). Compared to the Anaphylactic group, the highest value was found in Desensitized mice (n = 7,713 DMPRs), followed by Tolerant (n = 4,091 DMPRs) and Sensitized (n = 3,931 DMPRs) mice. Moreover, many of these epigenetic changes were found in genes involved in immune and tolerance responses (Il1b, Il12b, Il1a, Ifng, and Tnf) as shown by functional enrichment (DCs regulation, B cell-mediated immunity, and effector mechanisms). Discussion In conclusion, different doses of D1ManPrup3-SLIT induce different DNA methylation changes, which are reflected in the induction of distinct responses, tolerance, or desensitization.
Collapse
Affiliation(s)
- Rafael Núñez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María J. Rodríguez
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Clara Lebrón-Martín
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - María del Carmen Martín-Astorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain
| | - Francisca Palomares
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Javier Ramos-Soriano
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Glycosystems, Institute of Chemical Research (IIQ), Spanish National Research Council (CSIC)- Universidad de Sevilla, Sevilla, Spain
| | - María J. Torres
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Department of Medicine, Universidad de Málaga (UMA), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - José Antonio Cañas
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain
| | - Cristobalina Mayorga
- Laboratory of Allergy, Allergy Research Group, Instituto de Investigación Biomédica de Málaga-Plataforma Andalusian Centre for Nanomedicine and Biotechnology (IBIMA-BIONAND), Málaga, Spain,Clinical Unit of Allergy, Hospital Regional Universitario de Málaga, Málaga, Spain,*Correspondence: Cristobalina Mayorga,
| |
Collapse
|
3
|
Radzikowska U, Baerenfaller K, Cornejo‐Garcia JA, Karaaslan C, Barletta E, Sarac BE, Zhakparov D, Villaseñor A, Eguiluz‐Gracia I, Mayorga C, Sokolowska M, Barbas C, Barber D, Ollert M, Chivato T, Agache I, Escribese MM. Omics technologies in allergy and asthma research: An EAACI position paper. Allergy 2022; 77:2888-2908. [PMID: 35713644 PMCID: PMC9796060 DOI: 10.1111/all.15412] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023]
Abstract
Allergic diseases and asthma are heterogenous chronic inflammatory conditions with several distinct complex endotypes. Both environmental and genetic factors can influence the development and progression of allergy. Complex pathogenetic pathways observed in allergic disorders present a challenge in patient management and successful targeted treatment strategies. The increasing availability of high-throughput omics technologies, such as genomics, epigenomics, transcriptomics, proteomics, and metabolomics allows studying biochemical systems and pathophysiological processes underlying allergic responses. Additionally, omics techniques present clinical applicability by functional identification and validation of biomarkers. Therefore, finding molecules or patterns characteristic for distinct immune-inflammatory endotypes, can subsequently influence its development, progression, and treatment. There is a great potential to further increase the effectiveness of single omics approaches by integrating them with other omics, and nonomics data. Systems biology aims to simultaneously and longitudinally understand multiple layers of a complex and multifactorial disease, such as allergy, or asthma by integrating several, separated data sets and generating a complete molecular profile of the condition. With the use of sophisticated biostatistics and machine learning techniques, these approaches provide in-depth insight into individual biological systems and will allow efficient and customized healthcare approaches, called precision medicine. In this EAACI Position Paper, the Task Force "Omics technologies in allergic research" broadly reviewed current advances and applicability of omics techniques in allergic diseases and asthma research, with a focus on methodology and data analysis, aiming to provide researchers (basic and clinical) with a desk reference in the field. The potential of omics strategies in understanding disease pathophysiology and key tools to reach unmet needs in allergy precision medicine, such as successful patients' stratification, accurate disease prognosis, and prediction of treatment efficacy and successful prevention measures are highlighted.
Collapse
Affiliation(s)
- Urszula Radzikowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Katja Baerenfaller
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - José Antonio Cornejo‐Garcia
- Research LaboratoryIBIMA, ARADyAL Instituto de Salud Carlos III, Regional University Hospital of Málaga, UMAMálagaSpain
| | - Cagatay Karaaslan
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Elena Barletta
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Basak Ezgi Sarac
- Department of Biology, Molecular Biology SectionFaculty of ScienceHacettepe UniversityAnkaraTurkey
| | - Damir Zhakparov
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Swiss Institute of Bioinformatics (SIB)DavosSwitzerland
| | - Alma Villaseñor
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain,Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Ibon Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain
| | - Cristobalina Mayorga
- Allergy UnitHospital Regional Universitario de MálagaMálagaSpain,Allergy Research GroupInstituto de Investigación Biomédica de Málaga‐IBIMAMálagaSpain,Andalusian Centre for Nanomedicine and Biotechnology – BIONANDMálagaSpain
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZurichDavosSwitzerland,Christine‐Kühne Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO)Department of Chemistry and BiochemistryFacultad de FarmaciaUniversidad San Pablo‐CEU, CEU UniversitiesMadridSpain
| | - Domingo Barber
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | - Markus Ollert
- Department of Infection and ImmunityLuxembourg Institute of HealthyEsch‐sur‐AlzetteLuxembourg,Department of Dermatology and Allergy CenterOdense Research Center for AnaphylaxisOdense University Hospital, University of Southern DenmarkOdenseDenmark
| | - Tomas Chivato
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain,Department of Clinic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| | | | - Maria M. Escribese
- Institute of Applied Molecular Medicine Nemesio Diaz (IMMAND)Department of Basic Medical SciencesFacultad de MedicinaUniversidad San Pablo CEU, CEU UniversitiesMadridSpain
| |
Collapse
|
4
|
Nuñez R, Rodriguez MJ, Palomares F, Gomez F, Jabato FM, Cordoba-Caballero J, Seoane P, Losada J, Rojo J, Torres MJ, Perkins JR, Mayorga C. Transcriptional changes in dendritic cells underlying allergen specific induced tolerance in a mouse model. Sci Rep 2022; 12:2797. [PMID: 35181694 PMCID: PMC8857182 DOI: 10.1038/s41598-022-06186-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
To investigate food allergy-tolerance mechanisms induced through allergen-specific immunotherapy we used RNA-Sequencing to measure gene expression in lymph-node-derived dendritic cells from Pru p 3-anaphylactic mice after immunotherapy with glycodendropeptides at 2 nM and 5 nM, leading to permanent tolerance and short-term desensitization, respectively. Gene expression was also measured in mice receiving no immunotherapy (anaphylaxis); and in which anaphylaxis could never occur (antigen-only). Compared to anaphylaxis, the antigen-only group showed the greatest number of expression-changes (411), followed by tolerant (186) and desensitized (119). Only 29 genes changed in all groups, including Il12b, Cebpb and Ifngr1. The desensitized group showed enrichment for genes related to chronic inflammatory response, secretory granule, and regulation of interleukin-12 production; the tolerant group showed genes related to cytokine receptor activity and glucocorticoid receptor binding, suggesting distinct pathways for similar outcomes. We identified genes and processes potentially involved in the restoration of long-term tolerance via allergen-specific immunotherapy, representing potential prognostic biomarkers.
Collapse
Affiliation(s)
- Rafael Nuñez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Maria Jose Rodriguez
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Palomares
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
| | - Francisca Gomez
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Fernando M Jabato
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
| | | | - Pedro Seoane
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Jorge Losada
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Javier Rojo
- Laboratory of Carbohydrates, Instituto de Investigaciones Químicas (IIQ), CSIC-Universidad de Sevilla, Sevilla, Spain
| | - Maria Jose Torres
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain
- Medicine Department, Universidad de Málaga-UMA, Málaga, Spain
| | - James Richard Perkins
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain
- Department of Molecular Biology and Biochemistry, University of Malaga, Malaga, Spain
- CIBER de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Cristobalina Mayorga
- Allergy Research Group, Research Laboratory, Allergy Unit, Hospital Regional Universitario de Málaga-IBIMA, Instituto de Investigación Biomédica de Málaga-IBIMA, 29009, Málaga, Spain.
- Allergy Clinical Unit, Hospital Regional Universitario de Málaga, Málaga, Spain.
- Nanostructures for Diagnosing and Treatment of Allergic Diseases Laboratory, Centro Andaluz de Nanomedicina y Biotecnología-BIONAND, Málaga, Spain.
| |
Collapse
|