1
|
Feng R, Luo L, Han Z, Qi Y, Xiao H, Huang C, Peng W, Liu R, Huang Z. 3'-Daidzein Sulfonate Sodium Protects against Glutamate-induced Neuronal Injuries by Regulating NMDA Receptors. Curr Pharm Des 2024; 30:1762-1770. [PMID: 38778603 DOI: 10.2174/0113816128299123240505172222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND It was previously found that 3'-Daidzein Sulfonate Sodium (DSS) exhibits protective effects on cerebral ischemia/reperfusion injury (CI/RI). AIM This study aimed to explore the underlying molecular mechanisms involved in the neuroprotective effects of DSS against ischemic stroke. METHODS In this study, rats with transient middle cerebral artery occlusion (tMCAO) were used as an in vivo model, whereas PC12 cells treated with glutamate alone and rat primary cortical neurons treated with the combination of glutamate and glycine were used as in vitro models. Cell viability and lactate dehydrogenase (LDH) release were used to evaluate cell injury. Cell apoptosis was determined by flow cytometry. Quantitative polymerase chain reaction (qPCR), Western blotting, and immunofluorescent staining methods were used to determine the mRNA expressions and protein levels and location. RESULTS It was found that DSS significantly suppressed the impaired viability of PC12 cells induced by glutamate. DSS also increased cell viability while reducing the LDH release and apoptosis in primary cortical neurons injured by glutamate and glycine. In addition, DSS decreased GluN2B subunit expression while enhancing the expressions of GluN2A subunit and PSD95 in tMCAO rats' brains. CONCLUSION This study demonstrated that DSS protects against excitotoxic damage in neurons induced by CI/RI through regulating the expression of NMDA receptors and PSD95. Our findings provide experimental evidence for the potential clinical administration of DSS in ischemic stroke.
Collapse
Affiliation(s)
- Ruixue Feng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
| | - Li Luo
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
| | - Zun Han
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
| | - Yue Qi
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Graduate School of Gannan Medical University, Ganzhou 341000, China
| | - Hai Xiao
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- The First Clinical College of Gannan Medical University, Ganzhou 341000, China
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Cheng Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Weijie Peng
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
| | - Ruizhen Liu
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| | - Zhihua Huang
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000, China
- Ganzhou Key Laboratory of Neuroinflammation Research, Gannan Medical University, Ganzhou 341000, China
- School of Basic Medical Sciences, Gannan Medical University, Ganzhou 341000, China
| |
Collapse
|
2
|
Bhat BA, Mir WR, Sheikh BA, Rather MA, Dar TUH, Mir MA. In vitro and in silico evaluation of antimicrobial properties of Delphinium cashmerianum L., a medicinal herb growing in Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115046. [PMID: 35167935 DOI: 10.1016/j.jep.2022.115046] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/19/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Microorganisms are developing resistance to synthetic drugs. As a result, the search for novel antimicrobial compounds has become an urgent need. Medicinal plants are commonly used as traditional medicine and Delphinium is one of the prominent genus used in the treatment of several diseases. AIM OF THE STUDY The present study aimed to determine the in vitro and in silico antimicrobial activities of petroleum ether, ethyl acetate and methanol extracts from the leaf samples of plant (Delphinium cashmerianum L.) against various bacterial and fungal strains. MATERIAL AND METHODS Three extracts of Delphinium cashmerianum prepared and 88 bioactive compounds were analyzed through LC-MS data with the vast majority of them having therapeutic applications. These extracts have been screened for the antimicrobial activity against various bacterial (Escherichia coli, Micrococcus luteus, Klebsiella pneumoniae, Streptococcus pneumonia, Haemophilus influenzae, Neisseria mucosa) and fungal (Candida albicans, Candida glabrata, Candida paropsilosis) species through in silico molecular docking approach using autodock vina software, molecular dynamic simulation (MDS), in vitro disc diffusion and broth microdilution method for minimum inhibitory concentration (MIC) evaluation. RESULTS Our results demonstrated that all three extracts were active against the whole set of microorganisms. The ethyl acetate extract was the most active against S.pneumonia, K. pneumoniae and C. albicans with a minimum inhibitory concentration (MIC) value of 6.25, 25 and 50 μg/ml, respectively. The petroleum ether and methanol extracts were active against S.pneumonia and N.mucosa with MIC values of 25 and 50 μg/ml. Furthermore, we also performed the in silico virtual screening of all these compounds obtained from LC-MS data analysis against various known drug targets of bacterium and fungi. Upon analysis, we obtained 5 compounds that were efficiently binding to the drug targets. However, after performing exhaustive molecular docking and molecular dynamic simulation (MDS) analysis, it was observed that Daidzein compound is bound to drug targets more efficiently. CONCLUSION The results showed that these plant extracts exhibit antimicrobial activity and ethyl acetate extract proved to exhibit the most effective antibacterial and antifungal properties.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Wajahat Rashid Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Bashir Ahmad Sheikh
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| | - Muzafar Ahmad Rather
- Plant Biotechnology and Molecular Biology Lab, CSIR-Indian Institute of Integrative Medicine, Srinagar, 190005, India.
| | - Tanver Ul Hassan Dar
- Department of Biotechnology, School of Biosciences and Biotechnology, BGSB University, Rajouri, India.
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India.
| |
Collapse
|
3
|
Wang X, Yin Z, Meng X, Yang D, Meng H, Liao C, Wei L, Chen Y, Yang X, Han J, Duan Y, Zhang S. Daidzein alleviates neuronal damage and oxidative stress via GSK3β/Nrf2 pathway in mice. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
4
|
Chen M, Fang X, Wang Z, Shangguan L, Liu T, Chen C, Liu Z, Ge M, Zhang C, Zheng T, Fang J. Multi-omics analyses on the response mechanisms of 'Shine Muscat' grapevine to low degree of excess copper stress (Low-ECS). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117278. [PMID: 33964687 DOI: 10.1016/j.envpol.2021.117278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Copper stress is one of the most severe heavy metal stresses in plants. Grapevine has a relatively higher copper tolerance than other fruit crops. However, there are no reports regarding the tolerance mechanisms of the 'Shine Muscat' ('SM') grape to a low degree of excess copper stress (Low-ECS). Based on the physiological indicators and multi-omics (transcriptome, proteome, metabolome, and microRNAome) data, 8 h (h) after copper treatment was the most severe stress time point. Nonetheless, copper stress was alleviated 64 h after treatment. Cu ion transportation, photosynthesis pathway, antioxidant system, hormone metabolism, and autophagy were the primary response systems in 'SM' grapevine under Low-ECS. Numerous genes and proteins, such as HMA5, ABC transporters, PMM, GME, DHAR, MDHAR, ARGs, and ARPs, played essential roles in the 'SM' grapevine's response to Low-ECS. This work was carried out to gain insights into the multi-omics responses of 'SM' grapevine to Low-ECS. This study provides genetic and agronomic information that will guide better vinery management and breeding copper-resistant grape cultivars.
Collapse
Affiliation(s)
- Mengxia Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Xiang Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zicheng Wang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Lingfei Shangguan
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China.
| | - Tianhua Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chun Chen
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Zhongjie Liu
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Mengqing Ge
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Chuan Zhang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Ting Zheng
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| | - Jinggui Fang
- Department of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, China; Fruit Crop Genetic Improvement and Seedling Propagation Engineering Center of Jiangsu Province, Nanjing, 210095, China
| |
Collapse
|
5
|
Zhu Y, Yang Z, Xie Y, Yang M, Zhang Y, Deng Z, Cai L. Investigation of inhibition effect of daidzein on osteosarcoma cells based on experimental validation and systematic pharmacology analysis. PeerJ 2021; 9:e12072. [PMID: 34540371 PMCID: PMC8415282 DOI: 10.7717/peerj.12072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 12/20/2022] Open
Abstract
Objective This study aims to explore the effect of daidzein, which is a natural isoflavone compound mainly extracted from soybeans, on osteosarcoma and the potential molecular mechanism. Material and Methods 143B and U2OS osteosarcoma cells were treated with gradient concentrations of daidzein, and MTT assay was used to determine the cell proliferation capacity and IC50. Hoechst 33342 staining and Annexin V-FITC/PI detection were used to determine apoptosis. Cell cycle was analyzed by flow cytometry, and migration ability were detected by transwell assays and scratch wound assay. An osteosarcoma xenograft mice model was applied to investigate the effect of daidzein on osteosarcoma in vivo. Systematic pharmacology and molecular modeling analysis were applied to predict the target of daidzein to osteosarcoma, and the target Src was verified by western blotting. We also observed the effect of daidzein on cell proliferation and apoptosis of Src-overexpressing osteosarcoma cells. Results In vitro, daidzein significantly inhibited 143B and U2OS osteosarcoma cell proliferation and migration, and induced cell cycle arrest. In vivo, daidzein exerts antitumor effects in osteosarcoma xenograft mice. After systematic screening and analysis, Src-MAPK signaling pathway was predicted as the highest-ranked pathway. Western blot demonstrated that daidzein inhibited phosphorylation of the Src-ERK pathway in osteosarcoma cells. Also, overexpression of Src could partially reverse the inhibitory effects of daidzein on osteosarcoma cell proliferation. Conclusion Daidzein exerts an antitumor effect on osteosarcoma, and the mechanism may be through the Src-ERK pathway.
Collapse
Affiliation(s)
- Yufan Zhu
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhiqiang Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yuanlong Xie
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Min Yang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Yufeng Zhang
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhouming Deng
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Lin Cai
- Department of Spine Surgery & Musculoskeletal Tumor, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
6
|
Jiang W, Xia T, Liu C, Li J, Zhang W, Sun C. Remodeling the Epigenetic Landscape of Cancer-Application Potential of Flavonoids in the Prevention and Treatment of Cancer. Front Oncol 2021; 11:705903. [PMID: 34235089 PMCID: PMC8255972 DOI: 10.3389/fonc.2021.705903] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Epigenetics, including DNA methylation, histone modification, and noncoding RNA regulation, are physiological regulatory changes that affect gene expression without modifying the DNA sequence. Although epigenetic disorders are considered a sign of cell carcinogenesis and malignant events that affect tumor progression and drug resistance, in view of the reversible nature of epigenetic modifications, clinicians believe that associated mechanisms can be a key target for cancer prevention and treatment. In contrast, epidemiological and preclinical studies indicated that the epigenome is constantly reprogrammed by intake of natural organic compounds and the environment, suggesting the possibility of utilizing natural compounds to influence epigenetics in cancer therapy. Flavonoids, although not synthesized in the human body, can be consumed daily and are common in medicinal plants, vegetables, fruits, and tea. Recently, numerous reports provided evidence for the regulation of cancer epigenetics by flavonoids. Considering their origin in natural and food sources, few side effects, and remarkable biological activity, the epigenetic antitumor effects of flavonoids warrant further investigation. In this article, we summarized and analyzed the multi-dimensional epigenetic effects of all 6 subtypes of flavonoids (including flavonols, flavones, isoflavones, flavanones, flavanols, and anthocyanidin) in different cancer types. Additionally, our report also provides new insights and a promising direction for future research and development of flavonoids in tumor prevention and treatment via epigenetic modification, in order to realize their potential as cancer therapeutic agents.
Collapse
Affiliation(s)
- Weiyi Jiang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xia
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Cun Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jie Li
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- Clinical Medical Colleges, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| |
Collapse
|
7
|
Chen Y, Li T, Ji H, Wang X, Sun X, Miao M, Wang Y, Wu Q, Liang H, Yuan W. Associations of maternal soy product consumption and urinary isoflavone concentrations with neonatal anthropometry: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115752. [PMID: 33190984 DOI: 10.1016/j.envpol.2020.115752] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Isoflavones (ISOs) are naturally occurring endocrine-disrupting compounds. Few human studies have evaluated the effects of ISO exposure on neonatal anthropometry. This study aimed to examine the associations of maternal soy product consumption and urinary ISO concentrations, including genistein, daidzein, glycitein, and equol, with neonatal anthropometry, based on a Chinese cohort study. In Shanghai-Minhang Birth Cohort Study, pregnant women at 12-16 weeks of gestation were recruited, and they completed a structured questionnaire to assess soy product consumption during pregnancy. They also provided a single spot urine sample for the ISO assay. Neonatal anthropometric indices (birth weight; arm, waist, and head circumference; and triceps, back, and abdominal skinfold thickness) were measured at birth. Multivariable linear regression analysis was performed among the 1188 mother-infant pairs to examine the associations between maternal soy product consumption and neonatal anthropometry. The same statistical model was applied to examine the associations between maternal ISO exposure and neonatal anthropometry among 480 mother-infant pairs. Neonate girls born to mothers who "sometimes" and "frequent" consumed soy products had 169.1 g (95% confidence interval [CI], -68.9-407.1) and 256.5 g (95% CI, 17.1-495.8) higher birth weight, respectively, than those born to mothers who "never" consumed soy products during pregnancy. We observed consistent associations between higher maternal urine ISO concentrations and increased anthropometric indices (birth weight, arm and waist circumference, and triceps and abdominal skinfold thickness) in neonate girls, while no association was observed among boys. The findings suggested that maternal dietary ISO intake during pregnancy is associated with fetal development in a sex-specific pattern. In addition, follow-up studies are required to evaluate whether the observed changes in anthropometric indices at birth are associated with health conditions later in life.
Collapse
Affiliation(s)
- Yao Chen
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Tao Li
- Affiliated Hospital of Shanghai Institute of Planned Parenthood Research, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Xin Wang
- Affiliated Hospital of Shanghai Institute of Planned Parenthood Research, China
| | - Xiaowei Sun
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiaotong University, China
| | - Qian Wu
- Shanghai Center for Bioinformation Technology & Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai Industrial Technology Institute, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China.
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| |
Collapse
|
8
|
Edlow AG, Guedj F, Sverdlov D, Pennings JLA, Bianchi DW. Significant Effects of Maternal Diet During Pregnancy on the Murine Fetal Brain Transcriptome and Offspring Behavior. Front Neurosci 2019; 13:1335. [PMID: 31920502 PMCID: PMC6928003 DOI: 10.3389/fnins.2019.01335] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Maternal over- and undernutrition in pregnancy plays a critical role in fetal brain development and function. The effects of different maternal diet compositions on intrauterine programing of the fetal brain is a lesser-explored area. The goal of this study was to investigate the impact of two chowmaternal diets on fetal brain gene expression signatures, fetal/neonatal growth, and neonatal and adult behavior in a mouse model. METHODS Throughout pregnancy and lactation, female C57Bl/6J mice were fed one of two standard, commercially available chow diets (pellet versus powder). The powdered chow diet was relatively deficient in micronutrients and enriched for carbohydrates and n-3 long-chain polyunsaturated fatty acids compared to the pelleted chow. RNA was extracted from embryonic day 15.5 forebrains and hybridized to whole genome expression microarrays (N = 5/maternal diet group). Functional analyses of significantly differentially expressed fetal brain genes were performed using Ingenuity Pathways Analysis and Gene Set Enrichment Analysis. Neonatal behavior was assessed using a validated scale (N = 62 pellet-exposed and 31 powder-exposed). Hippocampal learning, locomotor behavior, and motor coordination were assessed in a subset of adults using fear conditioning, open field testing, and Rotarod tests (N = 16 pellet-exposed, 14 powder-exposed). RESULTS Comparing powdered to pelleted chow diets, neither maternal weight trajectory in pregnancy nor embryo size differed. Maternal powdered chow diet was associated with 1647 differentially expressed fetal brain genes. Functional analyses identified significant upregulation of canonical pathways and upstream regulators involved in cell cycle regulation, synaptic plasticity, and sensory nervous system development in the fetal brain, and significant downregulation of pathways related to cell and embryo death. Pathways related to DNA damage response, brain immune response, amino acid and fatty acid transport, and dopaminergic signaling were significantly dysregulated. Powdered chow-exposed neonates were significantly longer but not heavier than pelleted chow-exposed counterparts. On neonatal behavioral testing, powdered chow-exposed neonates achieved coordination- and strength-related milestones significantly earlier, but sensory maturation reflexes significantly later. On adult behavioral testing, powdered chow-exposed offspring exhibited hyperactivity and hippocampal learning deficits. CONCLUSION In wild-type offspring, two diets that differed primarily with respect to micronutrient composition had significant effects on the fetal brain transcriptome, neonatal and adult behavior. These effects did not appear to be mediated by alterations in gross maternal nutritional status nor fetal/neonatal weight. Maternal dietary content is an important variable to consider for investigators evaluating fetal brain development and offspring behavior.
Collapse
Affiliation(s)
- Andrea G. Edlow
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Faycal Guedj
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| | - Deanna Sverdlov
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
- Department of Obstetrics and Gynecology, Tufts Medical Center, Boston, MA, United States
| | | | - Diana W. Bianchi
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, United States
| |
Collapse
|