1
|
Liu M, Lan Q, Yang L, Deng Q, Wei T, Zhao H, Peng P, Lin X, Chen Y, Ma H, Wei H, Yin Y. Genome-Wide Association Analysis Identifies Genomic Regions and Candidate Genes for Growth and Fatness Traits in Diannan Small-Ear (DSE) Pigs. Animals (Basel) 2023; 13:ani13091571. [PMID: 37174608 PMCID: PMC10177038 DOI: 10.3390/ani13091571] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
In the livestock industry, the growth and fatness traits are directly related to production efficiency and economic profits. As for Diannan small-ear (DSE) pigs, a unique indigenous breed, the genetic architecture of growth and fatness traits is still elusive. The aim of this study was to search the genetic loci and candidate genes associated with phenotypic traits in DSE pigs using GWAS based on the Geneseek Porcine 50K SNP Chip data. A total of 22,146 single nucleotide polymorphisms (SNPs) were detected in 265 DSE pigs and used for Genome-wide association studies (GWAS) analysis. Seven SNPs were found to be associated with back height, chest circumference, cannon bone circumference, and backfat thickness at the suggestive significance level. Based on gene annotation results, these seven SNPs were, respectively, mapped to the following candidate genes, VIPR2, SLC10A2, NUCKS1, MCT1, CHCHD3, SMOX, and GPR1, which are mainly involved with adipocyte differentiation, lipid metabolism, skeletal muscle development, and average daily weight gain. Our work offers novel insights into the genetic architecture of economically important traits in swine and may play an important role in breeding using molecular markers in the DSE breed.
Collapse
Affiliation(s)
- Mei Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Long Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qiuchun Deng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Taiyun Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Heng Zhao
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Peiya Peng
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaoding Lin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Yuhan Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Hongjiang Wei
- Yunnan Province Key Laboratory for Porcine Gene Editing and Xenotransplantation, Yunnan Agricultural University, Kunming 650201, China
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| |
Collapse
|
2
|
Meadows V, Marakovits C, Ekser B, Kundu D, Zhou T, Kyritsi K, Pham L, Chen L, Kennedy L, Ceci L, Wu N, Carpino G, Zhang W, Isidan A, Meyer A, Owen T, Gaudio E, Onori P, Alpini G, Francis H. Loss of apical sodium bile acid transporter alters bile acid circulation and reduces biliary damage in cholangitis. Am J Physiol Gastrointest Liver Physiol 2023; 324:G60-G77. [PMID: 36410025 PMCID: PMC9799145 DOI: 10.1152/ajpgi.00112.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022]
Abstract
Primary sclerosing cholangitis (PSC) is characterized by increased ductular reaction (DR), liver fibrosis, hepatic total bile acid (TBA) levels, and mast cell (MC) infiltration. Apical sodium BA transporter (ASBT) expression increases in cholestasis, and ileal inhibition reduces PSC phenotypes. FVB/NJ and multidrug-resistant 2 knockout (Mdr2-/-) mice were treated with control or ASBT Vivo-Morpholino (VM). We measured 1) ASBT expression and MC presence in liver/ileum; 2) liver damage/DR; 3) hepatic fibrosis/inflammation; 4) biliary inflammation/histamine serum content; and 5) gut barrier integrity/hepatic bacterial translocation. TBA/BA composition was measured in cholangiocyte/hepatocyte supernatants, intestine, liver, serum, and feces. Shotgun analysis was performed to ascertain microbiome changes. In vitro, cholangiocytes were treated with BAs ± ASBT VM, and histamine content and farnesoid X receptor (FXR) signaling were determined. Treated cholangiocytes were cocultured with MCs, and FXR signaling, inflammation, and MC activation were measured. Human patients were evaluated for ASBT/MC expression and histamine/TBA content in bile. Control patient- and PSC patient-derived three-dimensional (3-D) organoids were generated; ASBT, chymase, histamine, and fibroblast growth factor-19 (FGF19) were evaluated. ASBT VM in Mdr2-/- mice decreased 1) biliary ASBT expression, 2) PSC phenotypes, 3) hepatic TBA, and 4) gut barrier integrity compared with control. We found alterations between wild-type (WT) and Mdr2-/- mouse microbiome, and ASBT/MC and bile histamine content increased in cholestatic patients. BA-stimulated cholangiocytes increased MC activation/FXR signaling via ASBT, and human PSC-derived 3-D organoids secrete histamine/FGF19. Inhibition of hepatic ASBT ameliorates cholestatic phenotypes by reducing cholehepatic BA signaling, biliary inflammation, and histamine levels. ASBT regulation of hepatic BA signaling offers a therapeutic avenue for PSC.NEW & NOTEWORTHY We evaluated knockdown of the apical sodium bile acid transporter (ASBT) using Vivo-Morpholino in Mdr2KO mice. ASBT inhibition decreases primary sclerosing cholangitis (PSC) pathogenesis by reducing hepatic mast cell infiltration, altering bile acid species/cholehepatic shunt, and regulating gut inflammation/dysbiosis. Since a large cohort of PSC patients present with IBD, this study is clinically important. We validated findings in human PSC and PSC-IBD along with studies in novel human 3-D organoids formed from human PSC livers.
Collapse
Affiliation(s)
- Vik Meadows
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Corinn Marakovits
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Burcin Ekser
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Linh Pham
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lixian Chen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico," Rome, Italy
| | - Wenjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Abdulkadir Isidan
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Alison Meyer
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Travis Owen
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L. Roudebush Department of Veterans Affairs Medical Center, Indianapolis, Indiana
| |
Collapse
|
3
|
Liu X, Cheng F, Bai X, Zhao T, Zhao L, Wang L, Li M, Wu X, Chen X, Tang P, Wang M, Jiang L, Yan C, Pei F, Gao X, Ma N, Yang B, Zhang Y. MiR-203 is an anti-obese miRNA by targeting ASBT. iScience 2022; 25:104708. [PMID: 35856025 PMCID: PMC9287609 DOI: 10.1016/j.isci.2022.104708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022] Open
Abstract
Obesity is characterized by excessive fat deposition within the body. Bile acids (BA) are important regulators for controlling the absorption of lipid. Here we show that miR-203 exerts weight-loss and lipid-lowering effects by increasing total BA excretion in obese rodents. miR-203 overexpression transgenic mice are resistant to high-fat diet (HFD)-induced obesity and dyslipidemia. Moreover, the knockdown of miR-203 deteriorates metabolic disorders. ASBT plays important role in regulating BA homeostasis and is a direct target of miR-203. In human intestinal epithelial cells, overexpression of miR-203 decreases the cellular uptake of BA by inhibiting ASBT. Furthermore, TCF7L2 is downregulated in obese mice and acts as a transcription factor of miR-203. The ASBT mRNA level was positively correlated with the body mass index (BMI) of population, while the miR-203 level was negatively associated with BMI. Taken together, these data suggest miR-203 could be a new therapeutic BA regulator for obesity and dyslipidemia. miR-203 is downregulated in obese rodents and overweight/obese population ASBT is a direct target of miR-203 in obesity TCF7L2 acts as an upstream activator of miR-203 in obesity miR-203 ameliorates obesity and dyslipidemia by increasing TBAs and lipids excretion
Collapse
|
4
|
RNA-Seq Analysis of Protection against Chronic Alcohol Liver Injury by Rosa roxburghii Fruit Juice (Cili) in Mice. Nutrients 2022; 14:nu14091974. [PMID: 35565941 PMCID: PMC9104053 DOI: 10.3390/nu14091974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/06/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
Rosa roxburghii Tratt. fruit juice (Cili) is used as a medicinal and edible resource in China due to its antioxidant and hypolipidemic potentials. The efficacy of Cili in protecting alcohol-induced liver injury and its underlying mechanism was investigated. C57BL/6J mice received a Lieber-DeCarli liquid diet containing alcohol to produce liver injury. After the mice were adapted gradually to 5% alcohol, Cili (4 mL and 8 mL/kg/day for 4 weeks) were gavaged for treatment. The serum enzyme activities, triglyceride levels, histopathology and Oil-red O staining were examined. The RNA-Seq and qPCR analyses were performed to determine the protection mechanisms. Cili decreased serum and liver triglyceride levels in mice receiving alcohol. Hepatocyte degeneration and steatosis were improved by Cili. The RNA-Seq analyses showed Cili brought the alcohol-induced aberrant gene pattern towards normal. The qPCR analysis verified that over-activation of CAR and PXR (Cyp2a4, Cyp2b10 and Abcc4) was attenuated by Cili. Cili alleviated overexpression of oxidative stress responsive genes (Hmox1, Gsta1, Gstm3, Nqo1, Gclc, Vldlr, and Cdkn1a), and rescued alcohol-downregulated metabolism genes (Angptl8, Slc10a2, Ces3b, Serpina12, C6, and Selenbp2). Overall, Cili was effective against chronic alcohol liver injury, and the mechanisms were associated with decreased oxidative stress, improved lipid metabolism through modulating nuclear receptor CAR-, PXR-and Nrf2-mediated pathways.
Collapse
|
5
|
van de Peppel IP, Rao A, Dommerholt MB, Bongiovanni L, Thomas R, de Bruin A, Karpen SJ, Dawson PA, Verkade HJ, Jonker JW. The Beneficial Effects of Apical Sodium-Dependent Bile Acid Transporter Inactivation Depend on Dietary Fat Composition. Mol Nutr Food Res 2020; 64:e2000750. [PMID: 33079450 PMCID: PMC7757219 DOI: 10.1002/mnfr.202000750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/25/2020] [Indexed: 02/06/2023]
Abstract
SCOPE The apical sodium-dependent bile acid transporter (ASBT, SLC10A2) is important in the enterohepatic cycling of bile acids and thereby in the intestinal absorption of lipids. ASBT inhibition has been shown to improve aspects of the metabolic syndrome, but the underlying mechanisms have remained unclear. Here, the effect of ASBT inhibition on the uptake of specific fatty acids and its consequences for diet-induced obesity and non-alcoholic fatty liver disease (NAFLD) are investigated. METHODS Intestinal fat absorption is determined in mice receiving an ASBT inhibitor and in Asbt-/- mice. Metabolic disease development is determined in Asbt-/- mice receiving a low-fat control diet (LFD) or high-fat diet (HFD) rich in saturated fatty acids (SFAs) or PUFAs. RESULTS Both ASBT inhibition and Asbt gene inactivation reduce total fat absorption, particularly of SFAs. Asbt gene inactivation lowers bodyweight gain, improves insulin sensitivity, and decreases the NAFLD activity score upon feeding a HFD rich in SFAs, but not in PUFAs. CONCLUSIONS The beneficial metabolic effects of ASBT inactivation on diet-induced obesity depend on decreased intestinal absorption of SFAs, and thus on the dietary fatty acid composition. These findings highlight the importance of dietary fatty acid composition in the therapeutic effects of ASBT inhibition.
Collapse
Affiliation(s)
- Ivo P. van de Peppel
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| | - Anuradha Rao
- Department of PediatricsEmory University School of Medicine1760 Haygood Drive NortheastAtlantaGA 30322USA
| | - Marleen B. Dommerholt
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| | - Laura Bongiovanni
- Dutch Molecular Pathology CentreDepartment of PathobiologyFaculty of Veterinary MedicineUtrecht UniversityYalelaan 1Utrecht3584 CLThe Netherlands
| | - Rachel Thomas
- Dutch Molecular Pathology CentreDepartment of PathobiologyFaculty of Veterinary MedicineUtrecht UniversityYalelaan 1Utrecht3584 CLThe Netherlands
| | - Alain de Bruin
- Dutch Molecular Pathology CentreDepartment of PathobiologyFaculty of Veterinary MedicineUtrecht UniversityYalelaan 1Utrecht3584 CLThe Netherlands
| | - Saul J. Karpen
- Department of PediatricsEmory University School of Medicine1760 Haygood Drive NortheastAtlantaGA 30322USA
| | - Paul A. Dawson
- Department of PediatricsEmory University School of Medicine1760 Haygood Drive NortheastAtlantaGA 30322USA
| | - Henkjan J. Verkade
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| | - Johan W. Jonker
- Section of Molecular Metabolism and NutritionDepartment of PediatricsUniversity of GroningenUniversity Medical Center GroningenHanzeplein 1Groningen9713 GZThe Netherlands
| |
Collapse
|