1
|
Salvo LM, Joineau MEG, Santiago MR. In vitro cytotoxicity assessment of different solvents used in pesticide dilution. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:778-782. [PMID: 39558613 DOI: 10.1080/03601234.2024.2429298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/10/2024] [Indexed: 11/20/2024]
Abstract
Pesticides are diluted in products called solvents for spraying fields and for cell viability studies. This study aimed to determine whether pesticide solvents can alter the toxicity of endosulfan and Vero cell viability. Thus, the cytotoxicity of some diluents commonly used in pesticide solutions was evaluated by the neutral red incorporation technique and cell growth. Vero cells were exposed to endosulfan dissolved in sunflower (Helianthus annus, Linnaeus) oil, corn (Zea mays, Linnaeus) oil, dimethylsulfoxide (DMSO), and Tween 80, at a concentration of 1 µg L-1 for a period of 96 h. The results showed that both DMSO and Tween 80 induced a significant increase in cytotoxicity compared to sunflower oil and corn oil. Moreover, Tween 80 had a significant cytotoxic effect (P < 0.05) when compared to DMSO. The solvent can alter the toxicity of endosulfan, decreasing Vero cell viability, as was the case with DMSO and Tween 80.
Collapse
Affiliation(s)
- Ligia Maria Salvo
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mara Elisa Gazino Joineau
- Animal Sanitary Defense Agency of Paraná State | ADAPAR Centro de Diagnóstico "Marcos Enrietti", Curitiba, Brazil
| | - Magda Regina Santiago
- Centre of Research and Development of Environmental Protection, Biological Institute, APTA, São Paulo, Brazil
| |
Collapse
|
2
|
Katsa ME, Ketselidi K, Kalliostra M, Ioannidis A, Rojas Gil AP, Diamantakos P, Melliou E, Magiatis P, Nomikos T. Acute Antiplatelet Effects of an Oleocanthal-Rich Olive Oil in Type II Diabetic Patients: A Postprandial Study. Int J Mol Sci 2024; 25:908. [PMID: 38255980 PMCID: PMC10815739 DOI: 10.3390/ijms25020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Postprandial dysmetabolism is a common entity of type 2 diabetes mellitus (T2DM) and may act as a daily stressor of the already dysfunctional diabetic platelets. This study aims to investigate whether oleocanthal-rich olive oils (OO), incorporated into a carbohydrate-rich meal, can affect postprandial dysmetabolism and platelet aggregation. Oleocanthal is a cyclooxygenase inhibitor with putative antiplatelet properties. In this randomized, single-blinded, crossover study, ten T2DM patients consumed five isocaloric meals containing 120 g white bread combined with: (i) 39 g butter, (ii) 39 g butter and 400 mg ibuprofen, (iii) 40 mL OO (phenolic content < 10 mg/Kg), (iv) 40 mL OO with 250 mg/Kg oleocanthal and (v) 40 mL OO with 500 mg/Kg oleocanthal. Metabolic markers along with ex vivo ADP- and thrombin receptor-activating peptide (TRAP)-induced platelet aggregation were measured before and for 4 h after the meals. The glycemic and lipidemic response was similar between meals. However, a sustained (90-240 min) dose-dependent reduction in platelets' sensitivity to both ADP (50-100%) and TRAP (20-50%) was observed after the oleocanthal meals in comparison to OO or butter meals. The antiplatelet effect of the OO containing 500 mg/Kg oleocanthal was comparable to that of the ibuprofen meal. In conclusion, the consumption of meals containing oleocanthal-rich OO can reduce platelet activity during the postprandial period, irrespective of postprandial hyperglycemia and lipidemia.
Collapse
Affiliation(s)
- Maria Efthymia Katsa
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| | - Kleopatra Ketselidi
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| | - Marianna Kalliostra
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| | - Anastasios Ioannidis
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, GR-22100 Tripoli, Greece; (A.I.); (A.P.R.G.)
| | - Andrea Paola Rojas Gil
- Laboratory of Biology and Biochemistry, Department of Nursing, Faculty of Health Sciences, University of Peloponnese, GR-22100 Tripoli, Greece; (A.I.); (A.P.R.G.)
| | - Panagiotis Diamantakos
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, GR-15774 Athens, Greece; (P.D.); (E.M.); (P.M.)
| | - Eleni Melliou
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, GR-15774 Athens, Greece; (P.D.); (E.M.); (P.M.)
| | - Prokopios Magiatis
- Laboratory of Pharmacognosy and Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, GR-15774 Athens, Greece; (P.D.); (E.M.); (P.M.)
| | - Tzortzis Nomikos
- Department of Nutrition and Dietetics, School of Health Sciences and Education, Harokopio University of Athens, GR-17676 Athens, Greece; (M.E.K.); (K.K.); (M.K.)
| |
Collapse
|
3
|
Rizzolo-Brime L, Orta-Ramirez A, Puyol Martin Y, Jakszyn P. Nutritional Assessment of Plant-Based Meat Alternatives: A Comparison of Nutritional Information of Plant-Based Meat Alternatives in Spanish Supermarkets. Nutrients 2023; 15:nu15061325. [PMID: 36986056 PMCID: PMC10058979 DOI: 10.3390/nu15061325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 03/30/2023] Open
Abstract
Since the classification of processed meat as carcinogenic by the International Agency for Research on Cancer (IARC) in 2015, an increase in consumption of plant-based meat alternatives (PBMAs) has been observed worldwide. This occurs in a context characterized by concern for health, animal welfare, and sustainability; however, evidence of their nutritional quality is still limited. Therefore, our objective was to evaluate the nutritional profile and processing degree of PBMAs available in Spain. In 2020, products from seven Spanish supermarkets were analyzed for their nutritional content and ingredients. Of the 148 products, the majority were low in sugars but moderate in carbohydrates, total and saturated fat, and high in salt. The main vegetable protein sources were soy (91/148) and wheat gluten (42/148). Comparatively, 43/148 contained animal protein, the most common being egg. Overall, PBMAs had a long list of ingredients and additives, and they were classified as ultra-processed foods (UPFs) according to the NOVA system. This study shows that the PBMAs available in Spanish supermarkets have a variable nutritional composition within and between categories. Further research is needed to determine if replacing meat with these UPFs could be a good alternative towards healthier and more sustainable dietary patterns.
Collapse
Affiliation(s)
- Lucía Rizzolo-Brime
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Alicia Orta-Ramirez
- Blanquerna School of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
| | - Yael Puyol Martin
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO), Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908 Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, 08025 Barcelona, Spain
| |
Collapse
|
4
|
Wang Y, Wu Y, Wang A, Wang A, Alkhalidy H, Helm R, Zhang S, Ma H, Zhang Y, Gilbert E, Xu B, Liu D. An olive-derived elenolic acid stimulates hormone release from L-cells and exerts potent beneficial metabolic effects in obese diabetic mice. Front Nutr 2022; 9:1051452. [PMID: 36386896 PMCID: PMC9664001 DOI: 10.3389/fnut.2022.1051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Insulin resistance and progressive decline in functional β-cell mass are two key factors for developing type 2 diabetes (T2D), which is largely driven by overweight and obesity, a significant obstacle for effective metabolic control in many patients with T2D. Thus, agents that simultaneously ameliorate obesity and act on multiple pathophysiological components could be more effective for treating T2D. Here, we report that elenolic acid (EA), a phytochemical, is such a dual-action agent. we show that EA dose-dependently stimulates GLP-1 secretion in mouse clonal L-cells and isolated mouse ileum crypts. In addition, EA induces L-cells to secrete peptide YY (PYY). EA induces a rapid increase in intracellular [Ca2+]i and the production of inositol trisphosphate in L-cells, indicating that EA activates phospholipase C (PLC)-mediated signaling. Consistently, inhibition of (PLC) or Gαq ablates EA-stimulated increase of [Ca2+]i and GLP-1 secretion. In vivo, a single dose of EA acutely stimulates GLP-1 and PYY secretion in mice, accompanied with an improved glucose tolerance and insulin levels. Oral administration of EA at a dose of 50 mg/kg/day for 2 weeks normalized the fasting blood glucose and restored glucose tolerance in high-fat diet-induced obese (DIO) mice to levels that were comparable to chow-fed mice. In addition, EA suppresses appetite, reduces food intake, promotes weight loss, and reverses perturbated metabolic variables in obese mice. These results suggest that EA could be a dual-action agent as an alternative or adjuvant treatment for both T2D and obesity.
Collapse
Affiliation(s)
- Yao Wang
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Yajun Wu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Aiping Wang
- College of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Aihua Wang
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Hana Alkhalidy
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Richard Helm
- Department of Biochemistry, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Shijun Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, United States
| | - Elizabeth Gilbert
- School of Animal Sciences, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Bin Xu
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technology Enterprise, North Carolina Central University, Durham, NC, United States
| | - Dongmin Liu
- Department of Human Nutrition, Foods, and Exercise, College of Agricultural and Life Sciences, Virginia Tech, Blacksburg, VA, United States
- Virginia Tech Drug Discovery Center, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Amodeo S, Mirarchi L, Seidita A, Citarrella R, Licata A, Soresi M, Iovanna JL, Giannitrapani L. EVOO's Effects on Incretin Production: Is There a Rationale for a Combination in T2DM Therapy? Int J Mol Sci 2022; 23:10120. [PMID: 36077515 PMCID: PMC9456130 DOI: 10.3390/ijms231710120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/24/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a serious public health concern as it is one of the most common chronic diseases worldwide due to social and economic developments that have led to unhealthy lifestyles, with a considerable impact both in terms of morbidity and mortality. The management of T2DM, before starting specific therapies, includes cornerstones such as healthy eating, regular exercise and weight loss. Strict adherence to the Mediterranean diet (MedDiet) has been related to an inverse association with the risk of T2DM onset, as well as an improvement in glycaemic control; in particular, thanks to the consumption of extra virgin olive oil (EVOO). Agonists of gut-derived glucagon-like peptide-1 (GLP-1), gastrointestinal hormones able to increase insulin secretion in response to hyperglycaemia (incretins), have been recently introduced in T2DM therapy, quickly entering the international guidelines. Recent studies have linked the action of EVOO in reducing postprandial glycaemia to the increase in GLP-1 and the reduction of its inactivating protease, dipeptidyl peptidase-4 (DPP-4). In this review, we explore observations regarding the pathophysiological basis of the existence of an enhanced effect between the action of EVOO and incretins and, consequently, try to understand whether there is a rationale for their use in combination for T2DM therapy.
Collapse
Affiliation(s)
- Simona Amodeo
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Luigi Mirarchi
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Aurelio Seidita
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Roberto Citarrella
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Anna Licata
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Maurizio Soresi
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
| | - Juan Lucio Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, F-13288 Marseille, France
| | - Lydia Giannitrapani
- Department of Health Promotion Sciences, Maternal and Infant Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, 90127 Palermo, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Via U. La Malfa 153, 90146 Palermo, Italy
| |
Collapse
|