1
|
Noflatscher M, Hunjadi M, Schreinlechner M, Sommer P, Lener D, Theurl M, Kirchmair R, Bauer A, Ritsch A, Marschang P. Inverse Correlation of Cholesterol Efflux Capacity with Peripheral Plaque Volume Measured by 3D Ultrasound. Biomedicines 2023; 11:1918. [PMID: 37509557 PMCID: PMC10376979 DOI: 10.3390/biomedicines11071918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
INTRODUCTION Cardiovascular disease (CVD) is a systemic multifocal illness called atherosclerosis that causes artery constriction and blockage. By causing cholesterol to build up in the artery wall, hypercholesterolemia is a major factor in the pathophysiology of atherosclerotic plaque development. Reverse cholesterol transport is the process of transporting cholesterol from the periphery back to the liver through cholesterol efflux mediated by high-density lipoprotein (HDL). It was suggested that the cholesterol efflux capacity (CEC), which is inversely linked with cardiovascular risk, can serve as a stand-in measure for reverse cholesterol transport. In this work, we sought to investigate a potential link between the peripheral plaque volume (PV) and CEC. METHODS Since lipid-lowering therapy interferes with CEC, we performed a cross-sectional study of 176 patients (48.9% females) with one cardiovascular risk factor or known CVD that did not currently take lipid-lowering medication. CEC was determined using cAMP-treated 3H-cholesterol-labeled J774 cells. Cholesterol ester transfer protein (CETP)-mediated cholesterol ester transfer was measured by quantifying the transfer of cholesterol ester from radiolabeled exogenous HDL cholesterol to Apolipoprotein B-containing lipoproteins. PV in the carotid and the femoral artery, defined as the total PV, was measured using a 3D ultrasound system equipped with semi-automatic software. RESULTS In our patients, we discovered an inverse relationship between high total PV and CEC (p = 0.027). However, there was no connection between total PV and low-density lipoprotein cholesterol, lipoprotein (a), or CETP-mediated cholesterol ester transfer. CONCLUSION In patients not receiving lipid-lowering treatment, CEC inversely correlates with peripheral atherosclerosis, supporting its role in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
- Maria Noflatscher
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Monika Hunjadi
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Michael Schreinlechner
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Philip Sommer
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Daniela Lener
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Markus Theurl
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Rudolf Kirchmair
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Axel Bauer
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Peter Marschang
- Department of Internal Medicine III (Cardiology, Angiology), Medical University of Innsbruck, Anichstr. 35, A-6020 Innsbruck, Austria
- Department of Internal Medicine, Central Hospital of Bolzano (SABES-ASDAA), Via Lorenz Boehler 5, I-39100 Bolzano, Italy
| |
Collapse
|
2
|
Ye JH, Fang QT, Zeng L, Liu RY, Lu L, Dong JJ, Yin JF, Liang YR, Xu YQ, Liu ZH. A comprehensive review of matcha: production, food application, potential health benefits, and gastrointestinal fate of main phenolics. Crit Rev Food Sci Nutr 2023; 64:7959-7980. [PMID: 37009832 DOI: 10.1080/10408398.2023.2194419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Matcha, a powder processed from tea leaves, has a unique green tea flavor and appealing color, in addition to many other sought after functional properties for a wide range of formulated food applications (e.g., dairy products, bakery products, and beverage). The properties of matcha are influenced by cultivation method and processing post-harvest. The transition from drinking tea infusion to eating whole leaves provides a healthy option for the delivery of functional component and tea phenolics in various food matrix. The aim of this review is to describe the physico-chemical properties of matcha, the specific requirements for tea cultivation and industrial processing. The quality of matcha mainly depends on the quality of fresh tea leaves, which is affected by preharvest factors including tea cultivar, shading treatment, and fertilization. Shading is the key measure to increase greenness, reduce bitterness and astringency, and enhance umami taste of matcha. The potential health benefits of matcha and the gastrointestinal fate of main phenolics in matcha are covered. The chemical compositions and bioactivities of fiber-bound phenolics in matcha and other plant materials are discussed. The fiber-bound phenolics are considered promising components which endow matcha with boosted bioavailability of phenolics and health benefits through modulating gut microbiota.
Collapse
Affiliation(s)
- Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qi-Ting Fang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Lin Zeng
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Ru-Yi Liu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Lu Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jun-Jie Dong
- Research and Development Department, Zhejiang Camel Transworld (Organic Food) Co., Ltd, Hangzhou, China
| | - Jun-Feng Yin
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yong-Quan Xu
- Tea Research Institute Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Zhong-Hua Liu
- Key Laboratory of Ministry of Education for Tea Science, Hunan Agricultural University, Changsha, China
| |
Collapse
|
3
|
The therapeutic potential of matcha tea: A critical review on human and animal studies. Curr Res Food Sci 2022; 6:100396. [PMID: 36582446 PMCID: PMC9792400 DOI: 10.1016/j.crfs.2022.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/24/2022] Open
Abstract
Matcha is a powdered form of Japanese green tea that has been gaining global popularity recently. Matcha tea has various health benefits, including an enhancing effect on cognitive function, cardio-metabolic health, and anti-tumorogenesis. To date, randomized clinical trials (RCT) showed that matcha decreases stress, slightly enhances attention and memory, and has no effect on mood. Results regarding the effect of matcha on cognitive function are contradictory and more RCTs are warranted. The cardio-metabolic effects of matcha have only been studied in animals, but findings were more homogenous. Consuming matcha with a high-fat diet resulted in decreased weight gain velocity, food intake, improved serum glucose and lipid profile, reduced inflammatory cytokines and ameliorated oxidative stress. Evidence regarding the anti-tumor function of matcha is very limited. Findings showed that matcha can affect proliferation, viability, antioxidant response, and cell cycle regulation of breast cancer cells. Nonetheless, more studies are needed to examine this effect on different types of cancer cells, and there is also a need to verify it using animal models. Overall, the evidence regarding the effect of matcha tea on cognitive function, cardio-metabolic function, and anti-tumor role is still limited, and conclusions cannot be drawn.
Collapse
|
4
|
Lv X, Jiang Y, Yang D, Zhu C, Yuan H, Yuan Z, Suo C, Chen X, Xu K. The role of metabolites under the influence of genes and lifestyles in bone density changes. Front Nutr 2022; 9:934951. [PMID: 36118775 PMCID: PMC9481263 DOI: 10.3389/fnut.2022.934951] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Osteoporosis is a complex bone disease influenced by numerous factors. Previous studies have found that some metabolites are related to bone mineral density (BMD). However, the associations between metabolites and BMD under the influence of genes and lifestyle have not been fully investigated. Methods We analyzed the effect of metabolites on BMD under the synergistic effect of genes and lifestyle, using the data of 797 participants aged 55–65 years from the Taizhou Imaging Study. The cumulative sum method was used to calculate the polygenic risk score of SNPs, and the healthful plant-based diet index was used to summarize food intake. The effect of metabolites on BMD changes under the influence of genes and lifestyle was analyzed through interaction analysis and mediation analysis. Results Nineteen metabolites were found significantly different in the osteoporosis, osteopenia, and normal BMD groups. We found two high-density lipoprotein (HDL) subfractions were positively associated with osteopenia, and six very-low-density lipoprotein subfractions were negatively associated with osteopenia or osteoporosis, after adjusting for lifestyles and genetic factors. Tea drinking habits, alcohol consumption, smoking, and polygenic risk score changed BMD by affecting metabolites. Conclusion With the increased level of HDL subfractions, the risk of bone loss in the population will increase; the risk of bone loss decreases with the increased level of very-low-density lipoprotein subfractions. Genetic factors and lifestyles can modify the effects of metabolites on BMD. Our results show evidence for the precise prevention of osteoporosis.
Collapse
Affiliation(s)
- Xuewei Lv
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Dantong Yang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Chengkai Zhu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Chen Suo
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
- *Correspondence: Xingdong Chen,
| | - Kelin Xu
- Ministry of Education Key Laboratory of Public Health Safety, Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
- Kelin Xu,
| |
Collapse
|
5
|
Zhou C, Hu L, Mu R, Mei X, Wu X, Wang C, Zhou X. Compound green tea (CGT) regulates lipid metabolism in high-fat diet induced mice. RSC Adv 2022; 12:24301-24310. [PMID: 36128535 PMCID: PMC9412714 DOI: 10.1039/d2ra02831j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
This work aims to study the effect of compound green tea (CGT) on liver lipid metabolism in mice based on metabolomics of liquid chromatography-mass spectrometry (LC-MS), and preliminarily identify potential biomarkers and pathways of action by using a metabonomic network database to explore the lipid-lowering effect of CGT. In this study, forty mice were randomly divided into four groups: compound tea treatment group (DH), high-fat model control group (NK), normal control group (CK) and positive drug group (YK). After a month of different interventions, the mice were weighed and the blood lipid indexes were detected. In addition, differential liver metabolites were monitored by using LC-MS. The results showed that CGT and positive drug treatment were able to decrease body weight, liver coefficient, TC, TG and LDL levels of obese mice, while increasing HDL levels. Among the 110 compounds obtained, 54 metabolites were significantly altered in the four comparisons. More importantly, 15 remarkably downregulated metabolites involved in Lysopc 16:1, Lysopc 18:1, and Lysopc 18:2 were found in the DH group when the mice were treated with CGT; meanwhile, the positive drug Xuezhikang was able to significantly downregulate 14 compounds, including (±)18-HEPE, and 6 keto-PGF1α, compared with the NK group. Besides, KEGG enrichment analysis also revealed the important metabolic pathways, such as linoleic acid metabolism, Biosynthesis of unsaturated fatty acids, and α-linolenic acid metabolism, were related to fatty acid metabolism. These results suggested that CGT could regulate the lipid metabolism in the liver of hyperlipidemia mice, and may regulate 54 potential biomarkers in mice through a related metabolic pathway to make them return to a normal state and improve the disorder of lipid metabolism.
Collapse
Affiliation(s)
- Caibi Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Liuhong Hu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| | - Ren Mu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
| | - Xin Mei
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
| | - Xingli Wu
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
| | - Chuanming Wang
- The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine Guizhou 550000 China
| | - Xiaolu Zhou
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities 5 Jianjiang Avenue Middle Section Duyun Guizhou 558000 China
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology Nakhon Ratchasima 30000 Thailand
| |
Collapse
|
6
|
Stadler JT, Marsche G. Dietary Strategies to Improve Cardiovascular Health: Focus on Increasing High-Density Lipoprotein Functionality. Front Nutr 2021; 8:761170. [PMID: 34881279 PMCID: PMC8646038 DOI: 10.3389/fnut.2021.761170] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular disease is one of the leading causes of morbidity and mortality worldwide, with increasing incidence. A cornerstone of cardiovascular disease prevention is lifestyle modification through dietary changes to influence various risk factors such as obesity, hypertension and diabetes. The effects of diet on cardiovascular health are complex. Some dietary components and metabolites directly affect the composition and structure of high-density lipoproteins (HDL) and increase anti-inflammatory and vasoprotective properties. HDLs are composed of distinct subpopulations of particles of varying size and composition that have several dynamic and context-dependent functions. The identification of potential dietary components that improve HDL functionality is currently an important research goal. One of the best-studied diets for cardiovascular health is the Mediterranean diet, consisting of fish, olive oil, fruits, vegetables, whole grains, legumes/nuts, and moderate consumption of alcohol, most commonly red wine. The Mediterranean diet, especially when supplemented with extra virgin olive oil rich in phenolic compounds, has been shown to markedly improve metrics of HDL functionality and reduce the burden, or even prevent the development of cardiovascular disease. Particularly, the phenolic compounds of extra virgin olive oil seem to exert the significant positive effects on HDL function. Moreover, supplementation of anthocyanins as well as antioxidants such as lycopene or the omega-3 fatty acid eicosapentaenoic acid improve parameters of HDL function. In this review, we aim to highlight recent discoveries on beneficial dietary patterns as well as nutritional components and their effects on cardiovascular health, focusing on HDL function.
Collapse
Affiliation(s)
- Julia T. Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Graz, Austria
| |
Collapse
|