1
|
Chen J, Zhang Y, Zhang B, Wang Z. In Vitro Characterization of Inhibition Function of Calcifediol to the Protease Activity of SARS-COV-2 PLpro. J Med Virol 2024; 96:e70085. [PMID: 39588768 DOI: 10.1002/jmv.70085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/27/2024]
Abstract
Vitamin D3 and its metabolites calcifediol have been recommended as effective drugs for novel coronavirus disease 2019 (COVID-19) therapy in many studies, since the outbreak of this global dramatic pandemic. In this study, we made a striking discovery that Calcifediol demonstrates robust inhibitive effect on the of the papain-like cysteine protease (PLpro), a critical proteolytic enzyme for the severe acute respiratory syndrome coronavirus-2(SARS-COV-2), through a small-scale FRET-based screening experiment. The practical bindings of Calcifediol to PLpro were also demonstrated by several in vitro interaction studies. All the evidence had revealed the inhibition might be caused by the targeted binding event. Consequently, our discovery represents a significant finding that the beneficial therapeutic impact of Calcifediol on COVID-19 may be attributed not only to its immunoregulatory properties but also to its inhibition of PLpro. This finding strongly bolsters the case for the clinical use of Vitamin D3 and its derivative Calcifediol in the treatment of COVID-19.
Collapse
Affiliation(s)
- Junjie Chen
- Analysis and Measurement Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Yaya Zhang
- Department of Oncology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Bingchang Zhang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery and Department of Neuroscience, Fujian Key Laboratory of Brain Tumors Diagnosis and Precision Treatment, Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, Xiamen, China
- School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
2
|
Kirkwood K, Van Dyke T, Kirkwood C, Zhang L, Panezai J, Duran-Pinedo A, Figgins E, Ryan L, Frias-Lopez J, Diamond G. Topical Vitamin D Prevents Bone Loss and Inflammation in a Mouse Model. J Dent Res 2024; 103:908-915. [PMID: 39104028 PMCID: PMC11465324 DOI: 10.1177/00220345241259417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024] Open
Abstract
There is a strong association between vitamin D levels and periodontal disease based on numerous epidemiological studies. We have previously shown that experimental deficiency of serum vitamin D in mice leads to gingival inflammation and alveolar bone loss. Treatment of cultured oral epithelial cells with the active form of vitamin D, 1,25(OH)2 vitamin D3 (1,25(OH)2D3), inhibits the extracellular growth and intracellular invasion of bacteria associated with periodontal disease. Maintenance of periodontal health may be due in part to the anti-inflammatory activities of vitamin D. Furthermore, this hormone can induce the expression of an antimicrobial peptide in cultured oral epithelial cells. We have shown that oral epithelial cells are capable of converting inactive vitamin D to the active form, suggesting that topical treatment of the oral epithelium with inactive vitamin D could prevent the development of periodontitis. We subjected mice to ligature-induced periodontitis (LIP), followed by daily treatment with inactive vitamin D or 1,25(OH)2D3. Treatment with both forms led to a reduction in ligature-induced bone loss and inflammation. Gingival tissues obtained from vitamin D-treated LIP showed production of specialized proresolving mediators (SPM) of inflammation. To examine the mechanism, we demonstrated that apical treatment of 3-dimensional cultures of primary gingival epithelial cells with vitamin D prevented lipopolysaccharide-induced secretion of proinflammatory cytokines and led to a similar production of SPM. Analysis of the oral microbiome of the mice treated with vitamin D showed significant changes in resident bacteria, which reflects a shift toward health-associated species. Together, our results show that topical treatment of oral tissues with inactive vitamin D can lead to the maintenance of periodontal health through the regulation of a healthy microbiome and the stimulation of resolution of inflammation. This strongly supports the development of a safe and effective vitamin D-based topical treatment or preventive agent for periodontal inflammation and disease.
Collapse
Affiliation(s)
- K.L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - T.E. Van Dyke
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
- Department of Oral Medicine, Infection and Immunity, Faculty of Medicine, Harvard University, Cambridge, MA, USA
| | - C.L. Kirkwood
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - L. Zhang
- Department of Oral Biology, University at Buffalo, Buffalo, New York, USA
| | - J. Panezai
- Department of Applied Oral Sciences, The Forsyth Institute, Cambridge, MA, USA
| | - A.E. Duran-Pinedo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - E.L. Figgins
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - L.K. Ryan
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Division of Infectious Disease and Global Medicine, Department of Medicine, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| | - J.J. Frias-Lopez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - G. Diamond
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, USA
| |
Collapse
|
3
|
Yu X, Li X, Yang H. Unraveling intestinal microbiota's dominance in polycystic ovary syndrome pathogenesis over vaginal microbiota. Front Cell Infect Microbiol 2024; 14:1364097. [PMID: 38606298 PMCID: PMC11007073 DOI: 10.3389/fcimb.2024.1364097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a prevalent endocrine disease in women, intricately linked to hormonal imbalances. The microbiota composition plays a pivotal role in influencing hormonal levels within the body. In this study, we utilized a murine model to investigate how intestinal and vaginal microbiota interact with hormones in the development of PCOS. Methods Twenty female mice were randomly assigned to the normal group (N) and the model group (P), where the latter received daily subcutaneous injections of 0.1 mL DHEA (6 mg/100 g). Throughout the experiment, we evaluated the PCOS mouse model by estrus cycle, serum total testosterone (T), prolactin (PRL) and luteinizing hormone (LH) levels, and ovarian pathological morphology. The microbial composition in both intestinal content and vaginal microbiota were studied by 16S rRNA gene high-throughput sequencing. Results Compared with the N group, the P group showed significant increases in body weight, T, and PRL, with significant decrease in LH. Ovaries exhibited polycystic changes, and the estrous cycle was disrupted. The intestinal microbiota result shows that Chao1, ACE, Shannon and Simpson indexes were decreased, Desulfobacterota and Acidobacteriota were increased, and Muribaculaceae, Limosilactobacillus and Lactobacillus were decreased in the P group. T was significantly positively correlated with Enterorhabdus, and LH was significantly positively correlated with Lactobacillus. The analysis of vaginal microbiota revealed no significant changes in Chao1, ACE, Shannon, and Simpson indices. However, there were increased in Firmicutes, Bacteroidota, Actinobacteriota, Streptococcus, and Muribaculaceae. Particularly, Rodentibacter displayed a robust negative correlation with other components of the vaginal microbiota. Conclusion Therefore, the response of the intestinal microbiota to PCOS is more significant than that of the vaginal microbiota. The intestinal microbiota is likely involved in the development of PCOS through its participation in hormonal regulation.
Collapse
Affiliation(s)
- Xia Yu
- Hunan Women and Children’s Hospital, Changsha, China
| | | | - Hui Yang
- Hunan Women and Children’s Hospital, Changsha, China
| |
Collapse
|
4
|
Dai C, Lin X, Qi Y, Wang Y, Lv Z, Zhao F, Deng Z, Feng X, Zhang T, Pu X. Vitamin D3 improved hypoxia-induced lung injury by inhibiting the complement and coagulation cascade and autophagy pathway. BMC Pulm Med 2024; 24:9. [PMID: 38166725 PMCID: PMC10759436 DOI: 10.1186/s12890-023-02784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 11/23/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Pulmonary metabolic dysfunction can cause lung tissue injury. There is still no ideal drug to protect against hypoxia-induced lung injury, therefore, the development of new drugs to prevent and treat hypoxia-induced lung injury is urgently needed. We aimed to explore the ameliorative effects and molecular mechanisms of vitamin D3 (VD3) on hypoxia-induced lung tissue injury. METHODS Sprague-Dawley (SD) rats were randomly divided into three groups: normoxia, hypoxia, and hypoxia + VD3. The rat model of hypoxia was established by placing the rats in a hypobaric chamber. The degree of lung injury was determined using hematoxylin and eosin (H&E) staining, lung water content, and lung permeability index. Transcriptome data were subjected to differential gene expression and pathway analyses. In vitro, type II alveolar epithelial cells were co-cultured with hepatocytes and then exposed to hypoxic conditions for 24 h. For VD3 treatment, the cells were treated with low and high concentrations of VD3. RESULTS Transcriptome and KEGG analyses revealed that VD3 affects the complement and coagulation cascade pathways in hypoxia-induced rats, and the genes enriched in this pathway were Fgb/Fga/LOC100910418. Hypoxia can cause increases in lung edema, inflammation, and lung permeability disruption, which are attenuated by VD3 treatment. VD3 weakened the complement and coagulation cascade in the lung and liver of hypoxia-induced rats, characterized by lower expression of fibrinogen alpha chain (Fga), fibrinogen beta chain (Fgb), protease-activated receptor 1 (PAR1), protease-activated receptor 3 (PAR3), protease-activated receptor 4 (PAR4), complement (C) 3, C3a, and C5. In addition, VD3 improved hypoxic-induced type II alveolar epithelial cell damage and inflammation by inhibiting the complement and coagulation cascades. Furthermore, VD3 inhibited hypoxia-induced autophagy in vivo and in vitro, which was abolished by the mitophagy inducer, carbonyl cyanide-m-chlorophenylhydrazone (CCCP). CONCLUSION VD3 alleviated hypoxia-induced pulmonary edema by inhibiting the complement and coagulation cascades and autophagy pathways.
Collapse
Affiliation(s)
- Chongyang Dai
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xue Lin
- West China Hospital, Sichuan University, Chengdu, Sichuan Province, 610000, People's Republic of China
| | - Yinglian Qi
- Qinghai Normal University, Xining, Qinghai Province, 810008, People's Republic of China
| | - Yaxuan Wang
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhongkui Lv
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Fubang Zhao
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Zhangchang Deng
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China
| | - Xiaokai Feng
- Department of Pulmonary and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, People's Republic of China.
- Department of Respiratory and Critical Care Medicine, Qinghai Provincial People's Hospital, Qinghai University, Xining, Qinghai Province, 810007, People's Republic of China.
| | - Tongzuo Zhang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai Province, 810001, People's Republic of China.
| | - Xiaoyan Pu
- Qinghai University, Xining, Qinghai Province, 810016, People's Republic of China.
| |
Collapse
|
5
|
Jin A, Li L, Zhao Y, Li M, Zhang S, Chen J, Li Y, Huang L, Ren H, Lu S, Yang X, Sun Q. Modulating the m6A Modified Transcription Factor GATA6 Impacts Epithelial Cytokines in Acute Lung Injury. Am J Respir Cell Mol Biol 2023; 69:521-532. [PMID: 37494067 DOI: 10.1165/rcmb.2022-0243oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/26/2023] [Indexed: 07/27/2023] Open
Abstract
The methylation of m6A (N6-position of adenosine) has been found to be associated with inflammatory response. We hypothesize that m6A modification plays a role in the inflammation of airway epithelial cells during lung inflammation. However, the precise changes and functions of m6A modification in airway epithelial cells in acute lung injury (ALI) are not well understood. Here we report that METTL3 (methyltransferase-like 3)-mediated m6A of GATA6 (GATA-binding factor 6) mRNA inhibits ALI and the secretion of proinflammatory cytokines in airway epithelial cells. The expression of METTL3 and m6A levels decrease in lung tissues of mice with ALI. In cocultures, peripheral blood monocytes secreted TNF-α, which reduces METTL3 and m6A levels in the human bronchial epithelial cell line BEAS-2B. Knockdown of METTL3 promotes IL-6 and TNF-α release in BEAS-2B cells. Conversely, overexpression of METTL3 increases total RNA m6A level and reduces the levels of proinflammatory cytokines TNF-α, transforming growth factor-β, and thymic stromal lymphopoietin. Increasing METTL3 in mouse lungs prevented LPS-induced ALI and reduced the synthesis of proinflammatory cytokines. Mechanistically, sequencing and functional analysis show that METTL3 catalyzes m6A in the 3' untranslated region of GATA6 read by YTH N6-Methyladenosine RNA Binding Protein 2 and triggers mRNA degradation. GATA6 knockdown rescues TNF-α-induced inflammatory cytokine secretion of epithelial cells, indicating that GATA6 is a main substrate of METTL3 in airway epithelial cells. Overall, this study provides evidence of a novel role for METTL3 in the inflammatory cytokine release of epithelial cells and provides an innovative therapeutic target for ALI.
Collapse
Affiliation(s)
- Ai Jin
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Li Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Yan Zhao
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Mei Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Shanshan Zhang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Jian Chen
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Yuwen Li
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Lei Huang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Hui Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi Province, China; and
| | - Xiaojun Yang
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| | - Qingzhu Sun
- Department of Animal Science, College of Animal Science and Technology, Northwest A&F University, Xianyang, Shaanxi Province, China
| |
Collapse
|
6
|
Fu J, Liang Y, Shi Y, Yu D, Wang Y, Chen P, Liu S, Lu F. HuangQi ChiFeng decoction maintains gut microbiota and bile acid homeostasis through FXR signaling to improve atherosclerosis. Heliyon 2023; 9:e21935. [PMID: 38034657 PMCID: PMC10685252 DOI: 10.1016/j.heliyon.2023.e21935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Huangqi Chifeng Decoction (HQCFT), a traditional Chinese medicine preparation, has long been used to treat cardiovascular and cerebrovascular diseases. However, the mechanism of the beneficial effect of HQCFT on atherosclerosis remains to be explored. In this work, to investigate the effects of HQCFT on bile acid (BA) metabolism and the gut microbiome in atherosclerosis, ApoE-/- mice were fed a with high-fat diet for 16 weeks to establish the AS model. HQCFT(1.95 g kg-1 and 3.9 g kg-1 per day) was administered intragastrically for 8 weeks to investigate the regulatory effects of HQCFT on gut microbiota and bile acid metabolism and to inhibit the occurrence and development of AS induced by a high-fat diet. Histopathology, liver function and blood lipids were used to assess whether HQCFT can reduce plaque area, regulate lipid levels and alleviate liver steatosis in AS mice. In addition, 16S rDNA sequencing was used to screen the gut microbiota structure, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC‒MS/MS) was used to determine the bile acid profile. The mRNA and protein expression levels of bile acid metabolism were detected by RT‒PCR and WB to find the potential correlation. Results: HQCFT can regulate gut microbiota disorders, which was achieved by increasing gut microbiota diversity and altering Proteobacteria, Desulfobacterota, Deferribacteres, Rodentibacter, Parasutterella, and Mucispirillum interference abundance to improve AS-induced gut microbiota. HQCFT can also adjust the content of bile acids (TCA, LCA, DCA, TDCA, TLCA, UDCA, etc.), regulate bile acid metabolism, relieve liver fat accumulation, and inhibit the process of AS. In addition, HQCFT can restore the abnormal metabolism of bile acid caused by AS by regulating the expression of farnesoid X receptor (FXR), liver X receptor α (LXRα), ABCA1, ABCG1 and CYP7A1. Conclusion: HQCFT may play a part in the prevention of atherosclerosis by inhibiting the FXR/LXRα axis, increasing the expression of CYP7A1 in the liver, and regulating the interaction between the gut microbiota and bile acid metabolism.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yuqin Liang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yunhe Shi
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Donghua Yu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Yu Wang
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Pingping Chen
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Shumin Liu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Fang Lu
- Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Decursin alleviates LPS-induced lung epithelial cell injury by inhibiting NF-κB pathway activation. Allergol Immunopathol (Madr) 2023; 51:37-43. [PMID: 36617820 DOI: 10.15586/aei.v51i1.689] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/20/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To reveal the possible effects of decursin on viability, oxidative stress, and inflammatory response in lipopolysaccharide (LPS)-treated human bronchial epithelial cells-2B (BEAS-2B) and human pulmonary artery endothelial cells (HPAEC) cells, and revealed the potential mechanisms. METHODS LPS was used to induce acute lung injury (ALI) in normal human lung epithelial cells, including BEAS-2B and HPAEC cells. Cell viability and apoptosis in response to LPS and decursin in BEAS-2B and HPAEC cells were, respectively, evaluated by MTT colorimetric and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assays. The oxidative stress and inflammatory response in LPS-treated BEAS-2B and HPAEC cells were detected by enzyme-linked-immunosorbent serologic assay. In addition, the role of decursin in nuclear -factor-kappa B (NF-κB) activation was analyzed by immunoblot and immunofluorescence assays. RESULTS Our data revealed that decursin could alleviate the viability of LPS-induced BEAS-2B and HPAEC cells. Decursin could also reduce LPS-induced oxidative stress in BEAS-2B and HPAEC cells. In addition, it could reduce LPS-induced inflammation in BEAS-2B and HPAEC cells. Mechanically, decursin suppressed the activation of NF-κB pathway. CONCLUSION Decursin suppressed NF-κB pathway, and therefore alleviated ALI.
Collapse
|