• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643712)   Today's Articles (433)   Subscriber (50629)
For: Lee HS, Hong H, Jung DC, Park S, Kim J. Differentiation of fat-poor angiomyolipoma from clear cell renal cell carcinoma in contrast-enhanced MDCT images using quantitative feature classification. Med Phys 2017;44:3604-3614. [DOI: 10.1002/mp.12258] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/27/2017] [Accepted: 03/27/2017] [Indexed: 11/08/2022]  Open
Number Cited by Other Article(s)
1
Trovato P, Simonetti I, Morrone A, Fusco R, Setola SV, Giacobbe G, Brunese MC, Pecchi A, Triggiani S, Pellegrino G, Petralia G, Sica G, Petrillo A, Granata V. Scientific Status Quo of Small Renal Lesions: Diagnostic Assessment and Radiomics. J Clin Med 2024;13:547. [PMID: 38256682 PMCID: PMC10816509 DOI: 10.3390/jcm13020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]  Open
2
Yao H, Tian L, Liu X, Li S, Chen Y, Cao J, Zhang Z, Chen Z, Feng Z, Xu Q, Zhu J, Wang Y, Guo Y, Chen W, Li C, Li P, Wang H, Luo J. Development and external validation of the multichannel deep learning model based on unenhanced CT for differentiating fat-poor angiomyolipoma from renal cell carcinoma: a two-center retrospective study. J Cancer Res Clin Oncol 2023;149:15827-15838. [PMID: 37672075 PMCID: PMC10620299 DOI: 10.1007/s00432-023-05339-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
3
Dehghani Firouzabadi F, Gopal N, Hasani A, Homayounieh F, Li X, Jones EC, Yazdian Anari P, Turkbey E, Malayeri AA. CT radiomics for differentiating fat poor angiomyolipoma from clear cell renal cell carcinoma: Systematic review and meta-analysis. PLoS One 2023;18:e0287299. [PMID: 37498830 PMCID: PMC10374097 DOI: 10.1371/journal.pone.0287299] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 06/03/2023] [Indexed: 07/29/2023]  Open
4
Shehata M, Abouelkheir RT, Gayhart M, Van Bogaert E, Abou El-Ghar M, Dwyer AC, Ouseph R, Yousaf J, Ghazal M, Contractor S, El-Baz A. Role of AI and Radiomic Markers in Early Diagnosis of Renal Cancer and Clinical Outcome Prediction: A Brief Review. Cancers (Basel) 2023;15:2835. [PMID: 37345172 DOI: 10.3390/cancers15102835] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023]  Open
5
Zhang L, Sun K, Shi L, Qiu J, Wang X, Wang S. Ultrasound Image-Based Deep Features and Radiomics for the Discrimination of Small Fat-Poor Angiomyolipoma and Small Renal Cell Carcinoma. ULTRASOUND IN MEDICINE & BIOLOGY 2023;49:560-568. [PMID: 36376157 DOI: 10.1016/j.ultrasmedbio.2022.10.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/20/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
6
Ferro M, Crocetto F, Barone B, del Giudice F, Maggi M, Lucarelli G, Busetto GM, Autorino R, Marchioni M, Cantiello F, Crocerossa F, Luzzago S, Piccinelli M, Mistretta FA, Tozzi M, Schips L, Falagario UG, Veccia A, Vartolomei MD, Musi G, de Cobelli O, Montanari E, Tătaru OS. Artificial intelligence and radiomics in evaluation of kidney lesions: a comprehensive literature review. Ther Adv Urol 2023;15:17562872231164803. [PMID: 37113657 PMCID: PMC10126666 DOI: 10.1177/17562872231164803] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/04/2023] [Indexed: 04/29/2023]  Open
7
Alhussaini AJ, Steele JD, Nabi G. Comparative Analysis for the Distinction of Chromophobe Renal Cell Carcinoma from Renal Oncocytoma in Computed Tomography Imaging Using Machine Learning Radiomics Analysis. Cancers (Basel) 2022;14:3609. [PMID: 35892868 PMCID: PMC9332006 DOI: 10.3390/cancers14153609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/13/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023]  Open
8
Predictive Value of CT-Based Radiomics in Distinguishing Renal Angiomyolipomas with Minimal Fat from Other Renal Tumors. DISEASE MARKERS 2022;2022:9108129. [PMID: 35669501 PMCID: PMC9167090 DOI: 10.1155/2022/9108129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/03/2022] [Indexed: 01/05/2023]
9
Roussel E, Capitanio U, Kutikov A, Oosterwijk E, Pedrosa I, Rowe SP, Gorin MA. Novel Imaging Methods for Renal Mass Characterization: A Collaborative Review. Eur Urol 2022;81:476-488. [PMID: 35216855 PMCID: PMC9844544 DOI: 10.1016/j.eururo.2022.01.040] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/08/2022] [Accepted: 01/21/2022] [Indexed: 01/19/2023]
10
Habibollahi P, Sultan LR, Bialo D, Nazif A, Faizi NA, Sehgal CM, Chauhan A. Hyperechoic Renal Masses: Differentiation of Angiomyolipomas from Renal Cell Carcinomas using Tumor Size and Ultrasound Radiomics. ULTRASOUND IN MEDICINE & BIOLOGY 2022;48:887-894. [PMID: 35219511 DOI: 10.1016/j.ultrasmedbio.2022.01.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 01/18/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
11
Improving segmentation and classification of renal tumors in small sample 3D CT images using transfer learning with convolutional neural networks. Int J Comput Assist Radiol Surg 2022;17:1303-1311. [PMID: 35290645 DOI: 10.1007/s11548-022-02587-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
12
Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography Images. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]  Open
13
Yang R, Chen Y, Sa G, Li K, Hu H, Zhou J, Guan Q, Chen F. CT classification model of pancreatic serous cystic neoplasms and mucinous cystic neoplasms based on a deep neural network. Abdom Radiol (NY) 2022;47:232-241. [PMID: 34636931 PMCID: PMC8776667 DOI: 10.1007/s00261-021-03230-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 11/25/2022]
14
Xu Q, Zhu Q, Liu H, Chang L, Duan S, Dou W, Li S, Ye J. Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists. J Magn Reson Imaging 2021;55:1251-1259. [PMID: 34462986 DOI: 10.1002/jmri.27900] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 12/18/2022]  Open
15
Kuusk T, Neves JB, Tran M, Bex A. Radiomics to better characterize small renal masses. World J Urol 2021;39:2861-2868. [PMID: 33495866 DOI: 10.1007/s00345-021-03602-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/11/2021] [Indexed: 12/23/2022]  Open
16
Moghadas-Dastjerdi H, Rahman SETH, Sannachi L, Wright FC, Gandhi S, Trudeau ME, Sadeghi-Naini A, Czarnota GJ. Prediction of chemotherapy response in breast cancer patients at pre-treatment using second derivative texture of CT images and machine learning. Transl Oncol 2021;14:101183. [PMID: 34293685 PMCID: PMC8319580 DOI: 10.1016/j.tranon.2021.101183] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 01/01/2023]  Open
17
Bae H, Lee H, Kim S, Han K, Rhee H, Kim DK, Kwon H, Hong H, Lim JS. Radiomics analysis of contrast-enhanced CT for classification of hepatic focal lesions in colorectal cancer patients: its limitations compared to radiologists. Eur Radiol 2021;31:8786-8796. [PMID: 33970307 DOI: 10.1007/s00330-021-07877-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/04/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022]
18
Wang XJ, Qu BQ, Zhou JP, Zhou QM, Lu YF, Pan Y, Xu JX, Miu YY, Wang HQ, Yu RS. A Non-Invasive Scoring System to Differential Diagnosis of Clear Cell Renal Cell Carcinoma (ccRCC) From Renal Angiomyolipoma Without Visible Fat (RAML-wvf) Based on CT Features. Front Oncol 2021;11:633034. [PMID: 33968732 PMCID: PMC8103199 DOI: 10.3389/fonc.2021.633034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/31/2021] [Indexed: 11/24/2022]  Open
19
Ma Y, Ma W, Xu X, Guan Z, Pang P. A convention-radiomics CT nomogram for differentiating fat-poor angiomyolipoma from clear cell renal cell carcinoma. Sci Rep 2021;11:4644. [PMID: 33633296 PMCID: PMC7907210 DOI: 10.1038/s41598-021-84244-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/10/2021] [Indexed: 01/12/2023]  Open
20
Machine learning based quantitative texture analysis of CT images for diagnosis of renal lesions. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2020.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
21
Lin Z, Cui Y, Liu J, Sun Z, Ma S, Zhang X, Wang X. Automated segmentation of kidney and renal mass and automated detection of renal mass in CT urography using 3D U-Net-based deep convolutional neural network. Eur Radiol 2021;31:5021-5031. [PMID: 33439313 DOI: 10.1007/s00330-020-07608-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 11/12/2022]
22
Zhang Y, Li X, Lv Y, Gu X. Review of Value of CT Texture Analysis and Machine Learning in Differentiating Fat-Poor Renal Angiomyolipoma from Renal Cell Carcinoma. Tomography 2020;6:325-332. [PMID: 33364422 PMCID: PMC7744193 DOI: 10.18383/j.tom.2020.00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]  Open
23
Radiomic Features and Machine Learning for the Discrimination of Renal Tumor Histological Subtypes: A Pragmatic Study Using Clinical-Routine Computed Tomography. Cancers (Basel) 2020;12:cancers12103010. [PMID: 33081400 PMCID: PMC7603020 DOI: 10.3390/cancers12103010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]  Open
24
Value of radiomics in differential diagnosis of chromophobe renal cell carcinoma and renal oncocytoma. Abdom Radiol (NY) 2020;45:3193-3201. [PMID: 31664486 PMCID: PMC7455587 DOI: 10.1007/s00261-019-02269-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
25
Artificial Intelligence in Renal Mass Characterization: A Systematic Review of Methodologic Items Related to Modeling, Performance Evaluation, Clinical Utility, and Transparency. AJR Am J Roentgenol 2020;215:1113-1122. [PMID: 32960663 DOI: 10.2214/ajr.20.22847] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
26
Razik A, Goyal A, Sharma R, Kandasamy D, Seth A, Das P, Ganeshan B. MR texture analysis in differentiating renal cell carcinoma from lipid-poor angiomyolipoma and oncocytoma. Br J Radiol 2020;93:20200569. [PMID: 32667833 DOI: 10.1259/bjr.20200569] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
27
Machine Learning in Radiomic Renal Mass Characterization: Fundamentals, Applications, Challenges, and Future Directions. AJR Am J Roentgenol 2020;215:920-928. [PMID: 32783560 DOI: 10.2214/ajr.19.22608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
28
Moghadas-Dastjerdi H, Sha-E-Tallat HR, Sannachi L, Sadeghi-Naini A, Czarnota GJ. A priori prediction of tumour response to neoadjuvant chemotherapy in breast cancer patients using quantitative CT and machine learning. Sci Rep 2020;10:10936. [PMID: 32616912 PMCID: PMC7331583 DOI: 10.1038/s41598-020-67823-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 06/08/2020] [Indexed: 12/19/2022]  Open
29
Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion. Eur Radiol 2020;30:5183-5190. [PMID: 32350661 DOI: 10.1007/s00330-020-06787-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/20/2020] [Accepted: 03/02/2020] [Indexed: 12/22/2022]
30
Xi IL, Zhao Y, Wang R, Chang M, Purkayastha S, Chang K, Huang RY, Silva AC, Vallières M, Habibollahi P, Fan Y, Zou B, Gade TP, Zhang PJ, Soulen MC, Zhang Z, Bai HX, Stavropoulos SW. Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging. Clin Cancer Res 2020;26:1944-1952. [PMID: 31937619 DOI: 10.1158/1078-0432.ccr-19-0374] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/30/2019] [Accepted: 01/10/2020] [Indexed: 11/16/2022]
31
Quantitative Analysis of Multiphase Contrast-Enhanced CT Images: A Pilot Study of Preoperative Prediction of Fat-Poor Angiomyolipoma and Renal Cell Carcinoma. AJR Am J Roentgenol 2019;214:370-382. [PMID: 31799870 DOI: 10.2214/ajr.19.21625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
32
Cui EM, Lin F, Li Q, Li RG, Chen XM, Liu ZS, Long WS. Differentiation of renal angiomyolipoma without visible fat from renal cell carcinoma by machine learning based on whole-tumor computed tomography texture features. Acta Radiol 2019;60:1543-1552. [PMID: 30799634 DOI: 10.1177/0284185119830282] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
33
Radiomics of Renal Masses: Systematic Review of Reproducibility and Validation Strategies. AJR Am J Roentgenol 2019;214:129-136. [PMID: 31613661 DOI: 10.2214/ajr.19.21709] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
34
Nie P, Yang G, Wang Z, Yan L, Miao W, Hao D, Wu J, Zhao Y, Gong A, Cui J, Jia Y, Niu H. A CT-based radiomics nomogram for differentiation of renal angiomyolipoma without visible fat from homogeneous clear cell renal cell carcinoma. Eur Radiol 2019;30:1274-1284. [PMID: 31506816 DOI: 10.1007/s00330-019-06427-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/14/2019] [Indexed: 02/07/2023]
35
Yang R, Wu J, Sun L, Lai S, Xu Y, Liu X, Ma Y, Zhen X. Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat. Eur Radiol 2019;30:1254-1263. [PMID: 31468159 DOI: 10.1007/s00330-019-06384-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/09/2019] [Accepted: 07/19/2019] [Indexed: 12/22/2022]
36
Thomas R, Qin L, Alessandrino F, Sahu SP, Guerra PJ, Krajewski KM, Shinagare A. A review of the principles of texture analysis and its role in imaging of genitourinary neoplasms. Abdom Radiol (NY) 2019;44:2501-2510. [PMID: 30448920 DOI: 10.1007/s00261-018-1832-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
37
Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Abdom Radiol (NY) 2019;44:2009-2020. [PMID: 30778739 DOI: 10.1007/s00261-019-01929-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
38
Reliability of Single-Slice-Based 2D CT Texture Analysis of Renal Masses: Influence of Intra- and Interobserver Manual Segmentation Variability on Radiomic Feature Reproducibility. AJR Am J Roentgenol 2019;213:377-383. [PMID: 31063427 DOI: 10.2214/ajr.19.21212] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
39
Treatment Response Prediction of Hepatocellular Carcinoma Patients from Abdominal CT Images with Deep Convolutional Neural Networks. PREDICTIVE INTELLIGENCE IN MEDICINE 2019. [DOI: 10.1007/978-3-030-32281-6_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
40
A computer-aided diagnosis scheme of breast lesion classification using GLGLM and shape features: Combined-view and multi-classifiers. Phys Med 2018;55:61-72. [PMID: 30471821 DOI: 10.1016/j.ejmp.2018.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/21/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022]  Open
41
Differentiation of Predominantly Solid Enhancing Lipid-Poor Renal Cell Masses by Use of Contrast-Enhanced CT: Evaluating the Role of Texture in Tumor Subtyping. AJR Am J Roentgenol 2018;211:W288-W296. [PMID: 30240299 DOI: 10.2214/ajr.18.19551] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
42
Lee H, Hong H, Kim J, Jung DC. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Med Phys 2018;45:1550-1561. [DOI: 10.1002/mp.12828] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/20/2017] [Accepted: 02/07/2018] [Indexed: 01/05/2023]  Open
43
Razik A, Das CJ, Sharma S. Angiomyolipoma of the Kidneys: Current Perspectives and Challenges in Diagnostic Imaging and Image-Guided Therapy. Curr Probl Diagn Radiol 2018;48:251-261. [PMID: 29685402 DOI: 10.1067/j.cpradiol.2018.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/22/2022]
44
Feng Z, Rong P, Cao P, Zhou Q, Zhu W, Yan Z, Liu Q, Wang W. Machine learning-based quantitative texture analysis of CT images of small renal masses: Differentiation of angiomyolipoma without visible fat from renal cell carcinoma. Eur Radiol 2017;28:1625-1633. [PMID: 29134348 DOI: 10.1007/s00330-017-5118-z] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 09/23/2017] [Accepted: 10/03/2017] [Indexed: 12/25/2022]
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA