1
|
Wang YF, Adamovics J, Wuu CS. Comprehensive stereotactic radiosurgery platform characterization: A novel end-to-end approach with anthropomorphic 3D dosimetry. Med Phys 2024; 51:8524-8537. [PMID: 39042041 DOI: 10.1002/mp.17321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/12/2024] [Accepted: 07/01/2024] [Indexed: 07/24/2024] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is a widely employed strategy for intracranial metastases, utilizing linear accelerators and volumetric modulated arc therapy (VMAT). Ensuring precise linear accelerator performance is crucial, given the small planning target volume (PTV) margins. Rapid dose falloff is vital to minimize brain radiation necrosis. Despite advances in SRS planning, tools for end-to-end testing of SRS treatments are lacking, hindering confidence in the procedure. PURPOSE This study introduces a novel end-to-end three-dimensional (3D) anthropomorphic dosimetry system for characterization of a radiosurgery platform, aiming to measure planning metrics, dose gradient index (DGI), brain volumes receiving at least 10 and 12 Gy (V10, V12), as well as assess delivery uncertainties in multitarget treatments. The study also compares metrics from benchmark plans to enhance understanding and confidence in SRS treatments. METHODS The developed anthropomorphic 3D dosimetry system includes a modified Stereotactic End-to-End Verification (STEEV) phantom with a customized insert integrating 3D dosimeters and a fiber optic CT scanner. Labview and MATLAB programs handle optical scanning, image preprocessing, and dosimetric analysis. SlicerRT is used for 3D dose visualization and analysis. A film stack insert was used to validate the 3D dosimeter measurements at specific slices. Benchmark plans were developed and measured to investigate off-axis errors, dose spillage, small field dosimetry, and multi-target delivery. RESULTS The accuracy of the developed 3D dosimetry system was rigorously assessed using radiochromic films. Two two-dimensional (2D) dose planes, extracted from the 3D dose distribution, were compared with film measurements, resulting in high passing rates of 99.9% and 99.6% in gamma tests. The mean relative dose difference between film and 3D dosimeter measurements was -1%, with a standard deviation of 2.2%, well within dosimeter uncertainties. In the first module, evaluating single-isocenter multitarget treatments, a 1.5 mm dose distribution shift was observed when targets were 7 cm off-axis. This shift was attributed to machine mechanical errors and image-guided system uncertainties, indicating potential limitations in conventional gamma tests. The second module investigated discrepancies in intermediate-to-low dose spillage, revealing higher measured doses in the connecting region between closely positioned targets. This discrepancy was linked to uncertainties in treatment planning system (TPS) modeling of out-of-field dose and multileaf collimator (MLC) characteristics, resulting in lower DGI values and higher V10 and V12 values compared to TPS calculations. In the third module, irradiating multiple targets showed consistent V10 and V12 values within 1 cm3 agreement with dose calculations. However, lower DGI values from measurements compared to calculations suggested intricacies in the treatment process. Conducting vital end-to-end testing demonstrated the anthropomorphic 3D dosimetry system's capacity to assess overall treatment uncertainty, offering a valuable tool for enhancing treatment accuracy in radiosurgery platforms. CONCLUSIONS The study introduces a novel anthropomorphic 3D dosimetry system for end-to-end testing of a radiosurgery platform. The system effectively measures plan quality metrics, captures mechanical errors, and visualizes dose discrepancies in 3D space. The comprehensive evaluation capability enhances confidence in the commissioning and verification process, ensuring patient safety. The system is recommended for commissioning new radiosurgery platforms and remote auditing of existing programs.
Collapse
Affiliation(s)
- Yi-Fang Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - John Adamovics
- Department of Chemistry, Rider University, Lawrenceville, New Jersey, USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
2
|
Raranje C, Mazur TR, Mo A, Laugeman E. Single-Isocenter, Multiple-Target Abdominal Cone-Beam Computed Tomography (CBCT)-Guided Online Adaptive Stereotactic Body Radiotherapy (SBRT). Cureus 2024; 16:e68904. [PMID: 39381481 PMCID: PMC11458792 DOI: 10.7759/cureus.68904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 10/10/2024] Open
Abstract
Stereotactic body radiotherapy (SBRT) is increasingly being prescribed for treating patients with multiple metastases, especially in the setting of oligometastatic disease. Treating multiple targets presents unique challenges in radiotherapy planning and delivery, including practical considerations relating to treatment time, resource allocation, and treatment planning complexity. Treating targets in a common isocenter reduces the time required for treatment and simplifies planning, but historically, it has often not been feasible due to inter- and intra-fractional variation in relative target positions. With online adaptation, individual targets can be re-contoured on each treatment fraction to obviate inter-fractional variation, and with appropriate margin selection intra-fractional motion can be managed. In this case report, we describe single-isocenter, multiple-target treatment via online adaptation of a 93-year-old man with a history of metastatic hepatocellular carcinoma. He initially presented with a 9.1 cm liver mass, suspicious lung lesions, and an enlarged porta hepatis lymph node, which were biopsy proven to be hepatocellular carcinoma. Following 18 months of systemic immunotherapy, he demonstrated a favorable response, including a reduction in primary liver mass to 5.1 cm and resolution of pulmonary lesions; however, recent serial imaging demonstrated oligoprogression of two peripancreatic lymph node conglomerates that were biopsy proven to be poorly differentiated carcinoma. The patient was offered adaptive SBRT to a dose of 35-40 Gy in five fractions as a consolidative approach for treating both the primary liver mass and oligoprogressive lymph nodes. He tolerated treatment without any grade 2 or higher acute toxicity and had stable disease on three-month post-treatment imaging. By leveraging online adaptation, especially for the daily re-definition of target volumes, we were able to treat three targets in the abdomen accurately in a common isocenter. Treating in this manner vastly shortened and simplified the patient's radiation course. Quantitative evaluation of re-contoured targets and post-treatment imaging highlighted the value of online adaption with careful margin specification and alignment instructions.
Collapse
Affiliation(s)
- Chipo Raranje
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Thomas R Mazur
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Allen Mo
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| | - Eric Laugeman
- Radiation Oncology, Washington University School of Medicine, St. Louis, USA
| |
Collapse
|
3
|
May L, Barnes M, Hardcastle N, Hernandez V, Saez J, Rosenfeld A, Poder J. Multi-institutional investigation into the robustness of intra-cranial multi-target stereotactic radiosurgery plans to patient setup errors. Phys Med 2024; 124:103423. [PMID: 38970949 DOI: 10.1016/j.ejmp.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/06/2024] [Accepted: 06/29/2024] [Indexed: 07/08/2024] Open
Abstract
PURPOSE This study aimed to analyse correlations between planning factors including plan geometry and plan complexity with robustness to patient setup errors. METHODS Multiple-target brain stereotactic radiosurgery (SRS) plans were obtained through the Trans-Tasman Radiation Oncology Group (TROG) international treatment planning challenge (2018). The challenge dataset consisted of five intra-cranial targets with a 20 Gy prescription. Setup error was simulated using an in-house tool. Dose to targets was assessed via dose covering 99 % (D99 %) of gross tumour volume (GTV) and 98 % of planning target volume (PTV). Dose to organs at risk was assessed using volume of normal brain receiving 12 Gy and maximum dose covering 0.03 cc of brainstem. Plan complexity was assessed via edge metric, modulation complexity score, mean multi-leaf collimator (MLC) gap, mean MLC speed and plan modulation. RESULTS Even for small (0.5 mm/°) errors, GTV D99 % was reduced by up to 20 %. The strongest correlation was found between lower complexity plans (larger mean MLC gap and lower edge metric) and higher robustness to setup error. Lower complexity plans had 1 %-20 % fewer targets/scenarios with GTV D99 % falling below the specified tolerance threshold. These complexity metrics correlated with 100 % isodose volume sphericity and dose conformity, though similar conformity was achievable with a range of complexities. CONCLUSIONS A higher level of importance should be directed towards plan complexity when considering plan robustness. It is recommended when planning multi-target SRS, larger MLC gaps and lower MLC aperture irregularity be considered during plan optimisation due to higher robustness should patient positioning errors occur.
Collapse
Affiliation(s)
- Lauren May
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia.
| | - Micah Barnes
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nicholas Hardcastle
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; Physical Sciences, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Victor Hernandez
- Department of Medical Physics, Hospital Universitari Sant Joan de Reus, IISPV, Tarragona, Spain
| | - Jordi Saez
- Department of Radiation Oncology, Hospital Clínic de Barcelona, Spain
| | - Anatoly Rosenfeld
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia
| | - Joel Poder
- Centre for Medical and Radiation Physics, University of Wollongong, NSW, Australia; St George Cancer Care Centre, St George Hospital, Kogarah, NSW, Australia; School of Physics, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
4
|
Schindhelm R, Razinskas G, Ringholz J, Kraft J, Sauer OA, Wegener S. Evaluation of a head rest prototype for rotational corrections in three degrees of freedom. J Appl Clin Med Phys 2024; 25:e14172. [PMID: 37793069 PMCID: PMC10860431 DOI: 10.1002/acm2.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/22/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023] Open
Abstract
Cranial stereotactic irradiations require accurate reproduction of the planning CT patient position at the time of treatment, including removal of rotational offsets. A device prototype was evaluated for potential clinical use to correct rotational positional offsets in image-guided radiotherapy workflow. Analysis was carried out with a prototype device "RPS head" by gKteso GmbH, rotatable up to 4° in three dimensions by hand wheels. A software tool accounts for the nonrectangular rotation axes and also indicates translational motions to be performed with the standard couch to correct the initial offset and translational shifts introduced by the rotational motion. The accuracy of angular corrections and positioning of an Alderson RANDO head phantom using the prototype device was evaluated for nine treatment plans for cranial targets. Corrections were obtained from cone beam computed tomography (CBCT) imaging. The phantom position was adjusted and the final position was then verified by another CBCT. The long-term stability of the prototype device was evaluated. Attenuation by the device along its three main axes was assessed. A planning study was performed to evaluate if regions of high-density material can be avoided during plan generation. The device enabled the accurate correction of rotational offsets in a clinical setup with a mean residual angular difference of (0.0 ± 0.1)° and a maximum deviation of 0.2°. Translational offsets were less than 1 mm. The device was stable over a period of 20 min, not changing the head support plate position by more than (0.7 ± 0.6) mm. The device contains high-density material in the adjustment mechanism and slightly higher density in the support structures. These can be avoided during planning generation maintaining comparable plan quality. The head positioning device can be used to correct rotational offsets in a clinical setting.
Collapse
Affiliation(s)
| | - Gary Razinskas
- Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| | - Jonas Ringholz
- Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| | - Johannes Kraft
- Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| | - Otto A. Sauer
- Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| | - Sonja Wegener
- Radiation OncologyUniversity Hospital WurzburgWurzburgGermany
| |
Collapse
|
5
|
Golmakani S, McGrath AN, Williams TJ. Dosimetric effects of rotational errors for single isocenter multiple targets in HyperArc plans: A phantom and retrospective imaging analysis study. J Appl Clin Med Phys 2024; 25:e14214. [PMID: 38102815 PMCID: PMC10795450 DOI: 10.1002/acm2.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 12/17/2023] Open
Abstract
PURPOSE This study uses a phantom to investigate the dosimetric impact of rotational setup errors for Single Isocenter Multiple Targets (SIMT) HyperArc plans. Additionally, it evaluates intra-fractional rotational setup errors in patients treated with Encompass immobilization system. METHODS The Varian HyperArc system (Varian Medical systems) was used to create plans targeting spherical PTVs with diameters of 5, 10, and 15 mm and with offsets of 1.3-5.3 cm from the isocenter. Dosimetric parameters, including mean and maximum dose, D99% and D95% were evaluated for various rotational setup errors ranging from 0.5° to 2° for the PTVs and certain CTVs created within PTVs. These rotational errors were applied in an order and direction that resulted in the maximum displacement of targets. The rotation was applied both uniformly around all three axes and individually around each axis. Furthermore, to link the findings to actual treatment scenarios, the intra-fractional rotational setup errors were obtained for stereotactic cranial patients treated with the Encompass system using CBCT images acquired during treatments. RESULTS The maximum displacement of 2.7 mm was observed for targets located at 4.4 and 4.5 cm from the isocenter with rotational setup errors of 2°. The dose reduction for D99% values corresponding to this displacement were about 50%, 40%, and 30% for PTVs with diameters of 5, 10, and 15 mm, respectively. Both D99% and D95% showed a consistent trend of dose reduction across various rotational errors and PTV volumes. While the maximum dose remained consistent for different targets with various rotational errors, the mean dose decreased by approximately 25%, 12%, and 6% for PTVs with diameters of 5, 10, and 15 cm, respectively, with rotational errors of 2°. In addition, by analyzing CBCT images, the absolute mean rotational setup errors obtained during treatment with Encompass for pitch, roll, and yaw were 0.17° ± 0.13°, 0.11° ± 0.10°, and 0.12° ± 0.10° respectively. This data, combined with existing studies, suggest that a 0.5° rotational setup error is a safe choice to consider for calculating additional PTV margin to ensure adequate CTV coverage. Therefore, the assessment of maximum displacement and dosimetric parameters in this study, for a 0.5° rotational error, highlights the need for an additional 0.7 mm PTV margin for targets positioned at distances of 4.4 cm or greater from the isocenter. CONCLUSIONS For SIMT Plans, a 0.5° rotational setup error is recommended as a basis for calculating additional PTV margins to ensure adequate CTV coverage when using the Encompass system.
Collapse
|
6
|
Becksfort J, Uh J, Saunders A, Byrd JA, Worrall HM, Marker M, Melendez-Suchi C, Li Y, Chang J, Raghavan K, Merchant TE, Hua CH. Setup Uncertainty of Pediatric Brain Tumor Patients Receiving Proton Therapy: A Prospective Study. Cancers (Basel) 2023; 15:5486. [PMID: 38001746 PMCID: PMC10670653 DOI: 10.3390/cancers15225486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study quantifies setup uncertainty in brain tumor patients who received image-guided proton therapy. Patients analyzed include 165 children, adolescents, and young adults (median age at radiotherapy: 9 years (range: 10 months to 24 years); 80 anesthetized and 85 awake) enrolled in a single-institution prospective study from 2020 to 2023. Cone-beam computed tomography (CBCT) was performed daily to calculate and correct manual setup errors, once per course after setup correction to measure residual errors, and weekly after treatments to assess intrafractional motion. Orthogonal radiographs were acquired consecutively with CBCT for paired comparisons of 40 patients. Translational and rotational errors were converted from 6 degrees of freedom to a scalar by a statistical approach that considers the distance from the target to the isocenter. The 95th percentile of setup uncertainty was reduced by daily CBCT from 10 mm (manual positioning) to 1-1.5 mm (after correction) and increased to 2 mm by the end of fractional treatment. A larger variation existed between the roll corrections reported by radiographs vs. CBCT than for pitch and yaw, while there was no statistically significant difference in translational variation. A quantile mixed regression model showed that the 95th percentile of intrafractional motion was 0.40 mm lower for anesthetized patients (p=0.0016). Considering additional uncertainty in radiation-imaging isocentricity, the commonly used total plan robustness of 3 mm against positional uncertainty would be appropriate for our study cohort.
Collapse
Affiliation(s)
- Jared Becksfort
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Jinsoo Uh
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Andrew Saunders
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Julia A. Byrd
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Hannah M. Worrall
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Matt Marker
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Christian Melendez-Suchi
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Yimei Li
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jenghwa Chang
- Department of Radiation Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Kavitha Raghavan
- Department of Pediatric Medicine, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA;
| | - Thomas E. Merchant
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| | - Chia-ho Hua
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA; (J.U.); (J.A.B.); (H.M.W.); (T.E.M.); (C.-h.H.)
| |
Collapse
|
7
|
Yock AD, Grees B, Luo G. Innovative margin design and optimized isocenter to minimize the normal tissue in target volumes for single-isocenter multi-target stereotactic radiosurgery. Phys Med Biol 2023; 68:195025. [PMID: 37673075 DOI: 10.1088/1361-6560/acf751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 09/08/2023]
Abstract
Objective.Treating multiple brain metastases in a single plan is a popular radiosurgery technique. However, targets positioned off-isocenter are subject to rotational uncertainties. This work introduces two new planning target volumes (PTVs) that address this increased uncertainty. The volume of normal tissue included in these PTVs when paired with optimized isocenters are evaluated and compared with conventional methods.Approach.Sets of 1000 random multi-target radiosurgery patients were simulated, each patient with a random number of spherical targets (2-10). Each target had a random volume (0.1-15 cc) and was randomly positioned between 5 and 50 mm or 100 mm from isocenter. Two new PTVs ('LensPTV' and 'SwipePTV') and conventional isotropic PTVs were created using isocenters derived from the center-of-centroids, the center-of-mass, or optimized per PTV type. The total volume of normal tissue in the PTVs for each patient was calculated and compared using 1 mm translations and 0.5°, 1.0°, and 2.0° rotations.Main results.Using the new PTVs and/or using optimized isocenters decreased the total volume of normal tissue in the PTVs per patient. The SwipePTV, in particular, provided the greatest decrease. Compared to the SwipePTV, the LensPTV and the conventional isotropic PTV included an extra 0.68 and 0.73 cc of normal tissue per patient (median), respectively, when using 50 mm max distance to isocenter and 1° max rotation angle. Under these conditions, 25% of patients had extra volume of normal tissue ≥ 0.96 and 1.04 cc. When using 100 mm max distance to isocenter and 2° max rotation angle, 25% of patients had extra volume of normal tissue ≥ 4.35 and 5.75 cc.Significance.PTVs like those presented here, especially when paired with optimized isocenters, can decrease the total volume of included normal tissue and reduce the risk of toxicity without compromising target coverage.
Collapse
Affiliation(s)
- Adam D Yock
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Beshoi Grees
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| | - Guozhen Luo
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, United States of America
| |
Collapse
|
8
|
Gutiérrez A, Gevaert T, Boussaer M, Everaert T, Ferro Teixeira C, De Ridder M. Gantry triggered x-ray verification during single-isocenter stereotactic radiosurgery: Increased certainty for a no-margin strategy. Radiother Oncol 2023; 186:109808. [PMID: 37468067 DOI: 10.1016/j.radonc.2023.109808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Single-isocenter linac-based stereotactic radiosurgery (SRS) has emerged as a dedicated treatment option for multiple brain metastases. Consequently, image-guidance for patient positioning and motion management has become very important. The purpose of this study was to analyze intra-fraction errors measured with stereoscopic x-rays and their impact on the dose distribution. MATERIALS AND METHODS Treatments were planned with non- coplanar dynamic conformal arcs for 33 patients corresponding to 127 brain lesions and 356 arcs. Intra-arc positioning errors were measuredusing stereoscopic x-rays (ExacTrac Dynamic, Brainlab), triggered during arc delivery. Couch corrections above 0.7 mm and 0.5° were always applied. Intra-arc positioning data was analyzed. The dose impact was evaluated by applying the measured errors to the dose given in each arc. RESULTS Median residual errors were 0.10 mm, 0.13 mm and 0.08 mm for the lateral, longitudinal and vertical directions and 0.10°, 0.08° and 0.13° for the pitch, roll and yaw angles respectively. 90% of the treatment arcs showed shifts of less than 0.4 mm and 0.4°in all directions. Dosimetric impact of motion showed the largest losses in coverage on small targets. All targets achieved at least 95% of the prescription dose to 95% of their volume, even when planned without margins. CONCLUSIONS Intra-fractional errors measured during beam delivery were found to be notably low with a dose impact that showed acceptable target coverage when applying these intra-arc errors to the dose distributions of the individual treatment arcs. Using an adequate immobilization and intra-fraction imaging prior to and during irradiation, no margins need to be added to compensate for intra-fraction motion.
Collapse
Affiliation(s)
- Adrián Gutiérrez
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Thierry Gevaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Marlies Boussaer
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tim Everaert
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | | | - Mark De Ridder
- Department of Radiotherapy, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
9
|
Pokhrel D, Mallory R, Bernard ME, Kudrimoti M. How much rotational error is clinically acceptable for single-isocenter/two-lesion lung SBRT treatment on halcyon ring delivery system (RDS)? J Appl Clin Med Phys 2023:e14068. [PMID: 37311070 DOI: 10.1002/acm2.14068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023] Open
Abstract
PURPOSE SBRT treatment of two separate lung lesions via single-isocenter/multi-target (SIMT) plan on Halcyon RDS could improve patient comfort, compliance, patient throughput, and clinic efficiency. However, aligning two separate lung lesions synchronously via a single pre-treatment CBCT scan on Halcyon can be difficult due to rotational patient setup errors. Thus, to quantify the dosimetric impact, we simulated loss of target(s) coverage due to small, yet clinically observable rotational patient setup errors on Halcyon for SIMT treatments. METHODS Seventeen previously treated 4D-CT based SIMT lung SBRT patients with two separate lesions (total 34 lesions, 50 Gy in five fractions to each lesion) on TrueBeam (6MV-FFF) were re-planned on Halcyon (6MV-FFF) using a similar arc geometry (except couch rotation), dose engine (AcurosXB algorithm), and treatment planning objectives. Rotational patient setup errors of [± 0.5⁰ to ± 3.0⁰] on Halcyon were simulated via Velocity registration software in all three rotation axes and recalculated dose distributions in Eclipse treatment planning system. Dosimetric impact of rotational errors was evaluated for target coverage and organs at risk (OAR). RESULTS Average PTV volume and distance to isocenter were 23.7 cc and 6.1 cm. Average change in Paddick's conformity indexes were less than -5%, -10%, and -15% for 1°, 2°, and 3°, respectively for yaw, roll, and pitch rotation directions. Maximum drop off of PTV(D100%) coverage for 2° rotation was -2.0% (yaw), -2.2% (roll), and -2.5% (pitch). With ±1° rotational error, no PTV(D100%) loss was found. Due to anatomical complexity: irregular and highly variable tumor sizes and locations, highly heterogenous dose distribution, and steep dose gradient, no trend for loss of target(s) coverage as a function of distance to isocenter and PTV size was found. Change in maximum dose to OAR were acceptable per NRG-BR001 within ±1.0° rotation, but were up to 5 Gy higher to heart with 2° in the pitch rotation axis. CONCLUSION Our clinically realistic simulation results show that rotational patient setup errors up to 1.0° in any rotation axis could be acceptable for selected two separate lung lesions SBRT patients on Halcyon. Multivariable data analysis in large cohort is ongoing to fully characterize Halcyon RDS for synchronous SIMT lung SBRT.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Richard Mallory
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mark E Bernard
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - Mahesh Kudrimoti
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Shen Z, Wang H, Shao Y, Duan Y, Gu H, Chen H, Feng A, Huang Y, Xu Z. Optimization of isocenter position for multiple brain metastases single-isocenter stereotactic radiosurgery to minimize dosimetric variations due to rotational uncertainty. Phys Med 2023; 111:102614. [PMID: 37295129 DOI: 10.1016/j.ejmp.2023.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/03/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
PURPOSE This paper studied a novel calculation framework that can determine the optimal value isocenter position of single isocenter SRS treatment plan for multiple brain metastases, in order to minimize the dosimetric variations caused by rotational uncertainty. MATERIALS AND METHODS 21 patients with 2-4 GTVswho received SRS treatment for multiple brain metastases in our institution were selected for the retrospective study. The PTVwas obtained by expanding GTV 1 mm isotropic margin. We studied a stochastic optimization framework, which determined the optimal value isocenter location by maximizing the average target dose coverageCtarget,meanwith a rotation error of no more than 1°. We evaluated the performance of the optimal isocenter by comparing theCtarget,meanand average dice similarity coefficient (DSC)with the optimal value and the center of mass (CM) respectively as the treatment isocenter. The extra PTV margin to achieve 100% target dose coverage was calculated by our framework. RESULTS Compared to the CM method, the optimal value isocenter method increased the averageCtarget,meanof all targets from 97.0% to 97.7%and the average DSC from 0.794to 0.799. Throughout all the cases, the average extra PTV margin to obtain full target dose coverage was 0.7 mmwhen using the optimal value isocenter as the treatment isocenter. CONCLUSION We studied a novel computational framework using stochastic optimization to determine the optimal isocenter position of SRS treatment plan for multiple brain metastases. At the same time, our framework gave the extra PTV margin to obtain full target dose coverage.
Collapse
Affiliation(s)
- Zhenjiong Shen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Wang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Shao
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhua Duan
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengle Gu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Chen
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihui Feng
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Huang
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiyong Xu
- Department of Radiation Oncology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
11
|
Pokhrel D, Mallory R, Bernard ME. The spatial accuracy of ring-mounted halcyon linac versus C-arm TrueBeam linac for single-isocenter/multi-target SBRT treatment. Med Dosim 2023:S0958-3947(23)00026-2. [PMID: 37059628 DOI: 10.1016/j.meddos.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
Stereotactic body radiotherapy (SBRT) treatment of oligometastatic lesions via single-isocenter/multi-target (SIMT) plan is more efficient than using multi-isocenter/multitarget SBRT. This study quantifies the spatial positioning accuracy of 2 commercially available LINAC systems for SIMT treatment pertaining to the potential amplification of error as a function of the target's distance-to-isocenter. We compare the Ring-Gantry Halcyon LINAC equipped with the fast iterative conebeam-CT (iCBCT) for image-guided SIMT treatment, and the SBRT-dedicated C-Arm TrueBeam with standard pretreatment CBCT imaging. For both systems, Sun Nuclear's MultiMet Winston-Lutz Cube phantom with 6 metallic BBs distributed at different planes up to 7 cm away from the isocenter was used. The phantom was aligned and imaged via CBCT, and then couch corrections were applied. To treat all 6 BBs, an Eclipse 10-field 3D-conformal Field-in-Field (2×2 cm2 MLC field to each BB) plan for varying gantry, collimator, and couch (TrueBeam only) positions was developed for both machines with 6MV-FFF beam. The plan was delivered through ARIA once a week. The EPID images were analyzed via Sun Nuclear's software for spatial positioning accuracy. On TrueBeam, the treatment plan was delivered twice: once with 3DoF translational corrections and once with PerfectPitch 6DoF couch corrections. The average 3D spatial positioning accuracy was 0.55 ± 0.30 mm, 0.54 ± 0.24 mm, and 0.56 ± 0.28 mm at isocenter, and 0.59 ± 0.30 mm, 0.69 ± 0.30 mm, and 0.70 ± 0.35 mm at 7 cm distance-to-isocenter for Halcyon, TrueBeam 3DoF, and TrueBeam 6DoF, respectively. This suggests there are no clinically significant deviations of spatial uncertainty between the platforms with the distance-to-isocenter. On both platforms, our weekly independent measurements demonstrated the reproducibility for less than 1.0 mm positional accuracy of off-axis targets up to 7 cm from the isocenter. Due to this, no additional PTV-margin is suggested for lesions within 7 cm of isocenter. This study confirms that Halcyon can deliver similar positional accuracy to SBRT-dedicated TrueBeam to off-axis targets up to 7 cm from isocenter. These results further benchmark the spatial uncertainty of our extensively used SBRT-dedicated TrueBeam LINAC for SIMT SBRT treatments.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA.
| | - Richard Mallory
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA
| | - Mark E Bernard
- Department of Radiation Medicine, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Miao J, Xu Y, Dai J. Optimization of isocenter position for multiple targets with nonuniform-margin expansion. J Appl Clin Med Phys 2023; 24:e13853. [PMID: 36924428 PMCID: PMC10018668 DOI: 10.1002/acm2.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/13/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The single isocenter for multiple-target (SIMT) technique has become a popular treatment technique for multiple brain metastases. We have implemented a method to obtain a nonuniform margin for SIMT technique. In this study, we further propose a method to determine the isocenter position so that the total expanded margin volume is minimal. MATERIALS AND METHOD Based on a statistical model, the relationship between nonuniform margin and the distance d (from isocenter to target point), setup uncertainties, and significance level was established. Due to the existence of rotational error, there is a nonlinear relationship between the margin volume and the isocenter position. Using numerical simulation, we study the relationship between optimal isocenter position and translational error, rotational error, and target size. In order to find the optimal isocenter position quickly, adaptive simulated annealing (ASA) algorithm was used. This method was implemented in the Pinnacle3 treatment planning system and compared with isocenter at center-of-geometric (COG), center-of-volume (COV), and center-of-surface (COS). Ten patients with multiple brain metastasis targets treated with the SIMT technique was selected for evaluation. RESULTS When the size of tumors is equal, the optimal isocenter obtained by ASA and numerical simulation coincides with COG, COV, and COS. When the size of tumors is different, the optimal isocenter is close to the large tumor. The position of COS point is closer to the optimal point than the COV point for nearly all cases. Moreover, in some cases the COS point can be approximately selected as the optimal point. The ASA algorithm can reduce the calculating time from several hours to tens of seconds for three or more tumors. Using multiple brain metastases targets, a series of volume difference and calculating time were obtained for various tumor number, tumor size, and separation distances. Compared with the margin volume with isocenter at COG, the margin volume for optimal point can be reduced by up to 27.7%. CONCLUSION Optimal treatment isocenter selection of multiple targets with large differences could reduce the total margin volume. ASA algorithm can significantly improve the speed of finding the optimal isocenter. This method can be used for clinical isocenter selection and is useful for the protection of normal tissue nearby.
Collapse
Affiliation(s)
- Junjie Miao
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yingjie Xu
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianrong Dai
- Department of Radiation OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
13
|
Chang S, Liu G, Zhao L, Zheng W, Yan D, Chen P, Li X, Deraniyagala R, Stevens C, Grills I, Chinnaiyan P, Li X, Ding X. Introduce a rotational robust optimization framework for spot-scanning proton arc (SPArc) therapy. Phys Med Biol 2022; 68. [PMID: 36546347 DOI: 10.1088/1361-6560/aca874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
Objective. Proton dosimetric uncertainties resulting from the patient's daily setup errors in rotational directions exist even with advanced image-guided radiotherapy techniques. Thus, we developed a new rotational robust optimization SPArc algorithm (SPArcrot) to mitigate the dosimetric impact of the rotational setup error in Raystation ver. 6.02 (RaySearch Laboratory AB, Stockholm, Sweden).Approach.The initial planning CT was rotated ±5° simulating the worst-case setup error in the roll direction. The SPArcrotuses a multi-CT robust optimization framework by taking into account of such rotational setup errors. Five cases representing different disease sites were evaluated. Both SPArcoriginaland SPArcrotplans were generated using the same translational robust optimized parameters. To quantitatively investigate the mitigation effect from the rotational setup errors, all plans were recalculated using a series of pseudo-CT with rotational setup error (±1°/±2°/±3°/±5°). Dosimetric metrics such as D98% of CTV, and 3D gamma analysis were used to assess the dose distribution changes in the target and OARs.Main results.The magnitudes of dosimetric changes in the targets due to rotational setup error were significantly reduced by the SPArcrotcompared to SPArc in all cases. The uncertainties of the max dose to the OARs, such as brainstem, spinal cord and esophagus were significantly reduced using SPArcrot. The uncertainties of the mean dose to the OARs such as liver and oral cavity, parotid were comparable between the two planning techniques. The gamma passing rate (3%/3 mm) was significantly improved for CTV of all tumor sites through SPArcrot.Significance.Rotational setup error is one of the major issues which could lead to significant dose perturbations. SPArcrotplanning approach can consider such rotational error from patient setup or gantry rotation error by effectively mitigating the dose uncertainties to the target and in the adjunct series OARs.
Collapse
Affiliation(s)
- Sheng Chang
- Department of Radiation Oncology, Wuhan University, Renmin Hospital, Wuhan, 430060 Hubei Province, People's Republic of China.,Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Gang Liu
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, People's Republic of China
| | - Lewei Zhao
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Weili Zheng
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Di Yan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Peter Chen
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xiangpan Li
- Department of Radiation Oncology, Wuhan University, Renmin Hospital, Wuhan, 430060 Hubei Province, People's Republic of China
| | - Rohan Deraniyagala
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Craig Stevens
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Inga Grills
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Prakash Chinnaiyan
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xiaoqiang Li
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| | - Xuanfeng Ding
- Department of Radiation Oncology, Corewell Health William Beaumont University Hospital, Royal Oak, MI 48074, United States of America
| |
Collapse
|
14
|
Dial C, Sarkar V, Nelson G, Paxton A, Salter B. Technical note: A method for generating lesion-specific nonuniform rotational margins for targets remote from isocenter. Med Phys 2022; 49:7438-7446. [PMID: 36201254 DOI: 10.1002/mp.16013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 12/27/2022] Open
Abstract
PURPOSE To present a novel method for generating nonuniform lesion-specific rotational margins for targets remote from isocenter, as encountered in single isocenter multiple metastasis radiotherapy. METHODS Target contours are rotated using a large series of 3D rotations, corresponding to a given range of rotational uncertainty, and combined to create a rotational envelope that encompasses potential motion. A set of artificial spherical targets ranging from 0.5 to 2.0 cm in diameter, and residing a distance of 1 - 15 cm from isocenter, is used to generate rotational envelopes assuming uncertainties of 0.5-3.0°. Computing time and number of samples are reported for simulated scenarios. Hausdorff distances (HD) between rotational envelopes and original target structures are calculated to represent the magnitude of uniform expansion required to encompass potential rotation. Volume differences between uniform expansions (based on HD) and rotational envelopes are reported to articulate potential advantages. RESULTS Median time to generate rotational envelopes was 60 s (31-974 s). Median required samples was 86 (61-851). Maximum HD for all targets located 10 cm from isocenter was 1.5 mm, 3.0 mm, 5.8 mm, and 8.6 mm assuming 0.5°, 1.0°, 2.0°, and 3.0° of rotational uncertainty, respectively. At 5 cm from isocenter and assuming 0.5° of rotational uncertainty, volumes were decreased by 0.07 cc (60%), 0.24 cc (39%), and 1.08 cc (19%) for 5 mm, 10 mm, and 20 mm targets respectively. At 10 cm from isocenter and 1.0° of uncertainty, volumes decreased by 0.42 cc (58%), 2.0 cc (40%), and 2.5 cc (27%). On average target volumes decreased 45% (SD = 17%) when compared with uniform expansions based on HD. CONCLUSION Rotational margins may be generated by sampling a set of 3D rotations. Resulting margins explicitly account for target shape, distance from isocenter, and magnitude of rotational uncertainty, while reducing treated volumes when compared with uniform expansions.
Collapse
Affiliation(s)
- Christian Dial
- Department of Radiation Oncology, University of Utah, 1950 Circle of Hope Dr., Salt Lake City, Utah, USA
| | - Vikren Sarkar
- Department of Radiation Oncology, University of Utah, 1950 Circle of Hope Dr., Salt Lake City, Utah, USA
| | - Geoff Nelson
- Department of Radiation Oncology, University of Utah, 1950 Circle of Hope Dr., Salt Lake City, Utah, USA
| | - Adam Paxton
- Department of Radiation Oncology, University of Utah, 1950 Circle of Hope Dr., Salt Lake City, Utah, USA
| | - Bill Salter
- Department of Radiation Oncology, University of Utah, 1950 Circle of Hope Dr., Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Uto M, Torizuka D, Mizowaki T. Single isocenter stereotactic irradiation for multiple brain metastases: current situation and prospects. Jpn J Radiol 2022; 40:987-994. [PMID: 36057071 PMCID: PMC9529683 DOI: 10.1007/s11604-022-01333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/24/2022] [Indexed: 10/29/2022]
Abstract
The prognosis of patients with brain metastases has dramatically improved, and long-term tumor control and reduction of the risk of late toxicities, including neurocognitive dysfunction, are important for patient quality of life. Stereotactic irradiation for multiple brain metastases, rather than whole-brain radiotherapy, can result in high local control rate with low incidence of neurocognitive deterioration and leukoencephalopathy. Recent advances in radiotherapy devices, treatment-planning systems, and image-guided radiotherapy can realize single isocenter stereotactic irradiation for multiple brain metastases (SI-STI-MBM), in which only one isocenter is sufficient to treat multiple brain metastases simultaneously. SI-STI-MBM has expanded the indications for linear accelerator-based stereotactic irradiation and considerably reduced patient burden. This review summarizes the background, methods, clinical outcomes, and specific consideration points of SI-STI-MBM. In addition, the prospects of SI-STI-MBM are addressed.
Collapse
Affiliation(s)
- Megumi Uto
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Daichi Torizuka
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
16
|
De Ornelas M, Diwanji T, Monterroso I, Bossart E, Yechieli R, Dogan N, Mellon EA. Assessment of intra-fraction motion during automated linac-based SRS treatment delivery with an open face mask system. Phys Med 2021; 92:69-74. [PMID: 34871889 DOI: 10.1016/j.ejmp.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/17/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022] Open
Abstract
PURPOSE/OBJECTIVE To evaluate intra-fraction target shift during automated mono-isocentric linac-based stereotactic radiosurgery with open-face mask system and optical real-time tracking. MATERIALS/METHODS Ninety-five patients were treated using automated linac-based stereotactic radiosurgery in 1-5 fractions with single isocenter for a total of 195 fractions. During treatment, patient positioning was tracked real-time with optical surface guidance and immobilized with a rigid open-face mask. Patients were re-positioned if optical surface guidance error exceeded 1 mm magnitude or 1°. Translational and rotational intra-fractional changes were determined by post-treatment CBCT matched to the planning CT. Target specific error was calculated by translation and rotation matrices applied to isocenter and target spatial coordinates. RESULTS For 132 fractions with isocenter within a single target, the median shift magnitude was 0.40 mm with a maximum shift of 1.17 mm. A total of 398 targets treated for plans having multiple or single targets that lied outside isocenter, resulted in a median shift magnitude of 0.46 mm, with median translational shifts of 0.20 mm and 0.20° rotational shifts. A 1 mm PTV margin was insufficient in 18% of targets at a distance greater than 6 cm away from isocenter, but sufficient for 96% of targets within 6 cm. CONCLUSIONS The findings of this study support 1 mm PTV expansion due to intra-fraction motion to ensure target coverage for plans with isocenter placement less than 6 cm away from the targets.
Collapse
Affiliation(s)
- Mariluz De Ornelas
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Tejan Diwanji
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Irene Monterroso
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Elizabeth Bossart
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Raphael Yechieli
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Nesrin Dogan
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| |
Collapse
|
17
|
Agazaryan N, Tenn S, Lee C, Steinberg M, Hegde J, Chin R, Pouratian N, Yang I, Kim W, Kaprealian T. Simultaneous radiosurgery for multiple brain metastases: technical overview of the UCLA experience. Radiat Oncol 2021; 16:221. [PMID: 34789300 PMCID: PMC8597274 DOI: 10.1186/s13014-021-01944-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/01/2021] [Indexed: 11/10/2022] Open
Abstract
PURPOSE/OBJECTIVE(S) To communicate our institutional experience with single isocenter radiosurgery treatments for multiple brain metastases, including challenges with determining planning target volume (PTV) margins and resulting consequences, image-guidance translational and rotational tolerances, intra-fraction patient motion, and prescription considerations with larger PTV margins. MATERIALS/METHODS Eight patient treatments with 51 targets were planned with various margins using Elements Multiple Brain Mets SRS treatment planning software (Brainlab, Munich, Germany). Forty-eight plans with 0 mm, 1 mm and 2 mm margins were created, including plans with variable margins, where targets more than 6 cm away from the isocenter were planned with larger margins. The dosimetric impact of the margins were analyzed with V5Gy, V8Gy, V10Gy, V12Gy values. Additionally, 12 patient motion data were analyzed to determine both the impact of the repositioning threshold and the distributions of the patient translational and rotational movements. RESULTS The V5Gy, V8Gy, V10Gy, V12Gy volumes approximately doubled when margins change from 0 to 1 mm and tripled when change from 0 to 2 mm. With variable margins, the aggregated results are similar to results from plans using the lower of two margins, since only 12.2% of the targets were more than 6 cm away from the isocenter. With 0.5 mm re-positioning threshold, 57.4% of the time the patients are repositioned. Reducing the threshold to 0.25 mm results in 91.7% repositioning rate, due to limitations of the fusion algorithm and actual patient motion. The 90th percentile of translational movements in all directions is 0.7 mm, while the 90th percentile of rotational movements in all directions is 0.6 degrees. Median translations and rotations are 0.2 mm and 0.2 degrees, respectively. CONCLUSIONS Based on the data presented, we have switched our modus operandi from 2 to 1 mm PTV margins, with an eventual goal of using 0.5 and 1.0 mm variable margins when an automated margin assignment method becomes available. The 0.5 mm and 0.5 degrees repositioning thresholds are clinically appropriate with small residual patient movements.
Collapse
Affiliation(s)
- Nzhde Agazaryan
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | - Steve Tenn
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Chul Lee
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michael Steinberg
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John Hegde
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Robert Chin
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Isaac Yang
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Won Kim
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tania Kaprealian
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
18
|
Cui T, Zhou Y, Yue NJ, Vergalasova I, Zhang Y, Zhu J, Nie K. Optimization of treatment isocenter location in single-isocenter LINAC-based stereotactic radiosurgery for management of multiple brain metastases. Med Phys 2021; 48:7632-7640. [PMID: 34655249 DOI: 10.1002/mp.15294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Single-isocenter linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) has become a promising treatment technique for the management of multiple brain metastases. Because of the high prescription dose and steep dose gradient, SRS plans are sensitive to geometric errors, resulting in loss of target coverage and suboptimal local tumor control. Current planning techniques rely on adding a uniform and isotropic setup margin to all gross tumor volumes (GTVs) to account for rotational uncertainties. However, this setup margin may be insufficient, since the magnitude of rotational uncertainties varies and is dependent upon the distance between a GTV and the isocenter. In this study, we designed a framework to determine the optimal isocenter of a single-isocenter SRS plan for multiple brain metastases using stochastic optimization to mitigate potential errors resulting from rotational uncertainties. METHODS Planning target volumes (PTVs), defined as GTVs plus a 1-mm margin following common SRS planning convention, were assumed to be originally treated with a prescription dose and therefore covered by the prescription isodose cloud. The dose distribution, including the prescription isodose, was considered invariant assuming small rotations throughout the study. A stochastic optimization scheme was developed to determine the location of the optimal isocenter, so that the prescription dose coverage of rotated GTVs, equivalent to the intersecting volumes between the rotated GTVs and original PTVs, was maximized for any random small rotations about the isocenter. To evaluate the coverage of GTVs, the expected V 100 % undergoing random rotations was approximated as the sample average V 100 % undergoing a predetermined number of rotations. The expected V 100 % of each individual GTV and total GTVs was then compared between the plans using the optimal isocenter and the center-of-mass (CoM), respectively. RESULTS Twenty-two patients previously treated for multiple brain metastases in a single institute were included in this retrospective study. Each patient was initially treated for more than three brain metastases (mean: 7.6; range: 3-15) with the average GTV volume of 0.89 cc (range: 0.03-11.78 cc). The optimal isocenter found for each patient was significantly different from the CoM, with the average Euclidean distance between the optimal isocenter and the CoM being 4.36 ± 2.59 cm. The dose coverage to GTVs was also significantly improved (paired t-test; p < 0.001) when the optimal isocenter was used, with the average V 100 % of total GTVs increasing from 87.1% (standard deviation as std: 11.7%; range: 39.9-98.2%) to 94.2% (std: 5.4%; range: 77.7-99.4%). The volume of a GTV was positively correlated with the expected V 100 % regardless of the isocenter used (Spearman coefficient: ρ = 0.66 ; p < 0.001). The distance between a GTV and the isocenter was negatively correlated with the expected V 100 % when the CoM was used ( ρ = - 0.21 ; p = 0.004), however no significant correlation was found when the optimal isocenter was used ( ρ = - 0.11 ; p = 0.137). CONCLUSION The proposed framework provides an effective approach to determine the optimal isocenter of single-isocenter LINAC-based SRS plans for multiple brain metastases. The implementation of the optimal isocenter results in SRS plans with consistently higher target coverage despite potential rotational uncertainties, and therefore significantly improves SRS plan robustness against random rotational uncertainties.
Collapse
Affiliation(s)
- Taoran Cui
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Yongkang Zhou
- Department of Radiation Oncology, Zhongshan Hospital, Shanghai, China
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Yin Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Jiahua Zhu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| | - Ke Nie
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
19
|
Tomihara J, Takatsu J, Sugimoto S, Shikama N, Sasai K. Intrafraction stability using full head mask for brain stereotactic radiotherapy. J Appl Clin Med Phys 2021; 22:360-370. [PMID: 34347933 PMCID: PMC8425876 DOI: 10.1002/acm2.13382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 06/09/2021] [Accepted: 07/19/2021] [Indexed: 11/11/2022] Open
Abstract
Purpose We investigated the immobilization accuracy of a new type of thermoplastic mask—the Double Shell Positioning System (DSPS)—in terms of geometry and dose delivery. Methods Thirty‐one consecutive patients with 1–5 brain metastases treated with stereotactic radiotherapy (SRT) were selected and divided into two groups. Patients were divided into two groups. One group of patients was immobilized by the DSPS (n = 9). Another group of patients was immobilized by a combination of the DSPS and a mouthpiece (n = 22). Patient repositioning was performed with cone beam computed tomography (CBCT) and six‐degree of freedom couch. Additionally, CBCT images were acquired before and after treatment. Registration errors were analyzed with off‐line review. The inter‐ and intrafractional setup errors, and planning target volume (PTV) margin were also calculated. Delivered doses were calculated by shifting the isocenter according to inter‐ and intrafractional setup errors. Dose differences of GTV D99% were compared between planned and delivered doses against the modified PTV margin of 1 mm. Results Interfractional setup errors associated with the mouthpiece group were significantly smaller than the translation errors in another group (p = 0.03). Intrafractional setup errors for the two groups were almost the same in all directions. PTV margins were 0.89 mm, 0.75 mm, and 0.90 mm for the DSPS combined with the mouthpiece in lateral, vertical, and longitudinal directions, respectively. Similarly, PTV margins were 1.20 mm, 0.72 mm, and 1.37 mm for the DSPS in the lateral, vertical, and longitudinal directions, respectively. Dose differences between planned and delivered doses were small enough to be within 1% for both groups. Conclusions The geometric and dosimetric assessments revealed that the DSPS provides sufficient immobilization accuracy. Higher accuracy can be expected when the immobilization is combined with the use of a mouthpiece.
Collapse
Affiliation(s)
- Jun Tomihara
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Juntendo University Hospital, Tokyo, Japan
| | - Jun Takatsu
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| | - Satoru Sugimoto
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| | - Naoto Shikama
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology, Juntendo University, Tokyo, Japan
| |
Collapse
|
20
|
Xu Y, Miao J, Liu Q, Huang P, Ma P, Chen X, Men K, Xiao J, Dai J. Longitudinal Grouping of Target Volumes for Volumetric-Modulated Arc Therapy of Multiple Brain Metastases. Front Oncol 2021; 11:578934. [PMID: 34277388 PMCID: PMC8278313 DOI: 10.3389/fonc.2021.578934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 06/07/2021] [Indexed: 11/30/2022] Open
Abstract
Purpose Treatment of multiple brain metastases with single-isocenter volumetric modulated arc therapy causes unnecessary exposure to normal brain tissue. In this study, a longitudinal grouping method was developed to reduce such unnecessary exposure. Materials and Methods This method has two main aspects: grouping brain lesions longitudinally according to their longitudinal projection positions in beam’s eye view, and rotating the collimator to 90° to make the multiple leaf collimator leaves conform to the targets longitudinally group by group. For 11 patients with multiple (5–30) brain metastases, two single-isocenter volumetric modulated arc therapy plans were generated using a longitudinal grouping strategy (LGS) and the conventional strategy (CVS). The prescription dose was 52 Gy for 13 fractions. Dose normalization to 100% of the prescription dose in 95% of the planning target volume was adopted. For plan quality comparison, Paddick conformity and the gradient index of the planning target volume, and the mean dose, the V100%, V50%, V25%, and V10% volumes of normal brain tissue were calculated. Results There were no significant differences between the LGS and CVS plans in Paddick conformity (p = 0.374) and the gradient index (p = 0.182) of the combined planning target volumes or for V100% (p = 0.266) and V50% (p = 0.155) of the normal brain. However, the V25% and V10% of the normal brain which represented the low-dose region were significantly reduced in the LGS plans (p = 0.004 and p = 0.003, respectively). Consistently, the mean dose of the entire normal brain was 12.04 and 11.17 Gy in the CVS and LGS plans, respectively, a significant reduction in the LGS plans (p = 0.003). Conclusions The longitudinal grouping method can decrease unnecessary exposure and reduces the low-dose range in normal brain tissue.
Collapse
Affiliation(s)
- Yingjie Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junjie Miao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingfeng Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Huang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Pan Ma
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinyuan Chen
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kuo Men
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianping Xiao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
21
|
Nakano H, Tanabe S, Sasamoto R, Takizawa T, Utsunomiya S, Sakai M, Nakano T, Ohta A, Kaidu M, Ishikawa H. Radiobiological evaluation considering setup error on single-isocenter irradiation in stereotactic radiosurgery. J Appl Clin Med Phys 2021; 22:266-275. [PMID: 34151498 PMCID: PMC8292684 DOI: 10.1002/acm2.13322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/06/2022] Open
Abstract
Purpose We calculated the dosimetric indices and estimated the tumor control probability (TCP) considering six degree‐of‐freedom (6DoF) patient setup errors in stereotactic radiosurgery (SRS) using a single‐isocenter technique. Methods We used simulated spherical gross tumor volumes (GTVs) with diameters of 1.0 cm (GTV 1), 2.0 cm (GTV 2), and 3.0 cm (GTV 3), and the distance (d) between the target center and isocenter was set to 0, 5, and 10 cm. We created the dose distribution by convolving the blur component to uniform dose distribution. The prescription dose was 20 Gy and the dose distribution was adjusted so that D95 (%) of each GTV was covered by 100% of the prescribed dose. The GTV was simultaneously rotated within 0°–1.0° (δR) around the x‐, y‐, and z‐axes and then translated within 0–1.0 mm (δT) in the x‐, y‐, and z‐axis directions. D95, conformity index (CI), and conformation number (CN) were evaluated by varying the distance from the isocenter. The TCP was estimated by translating the calculated dose distribution into a biological response. In addition, we derived the x‐y‐z coordinates with the smallest TCP reduction rate that minimize the sum of squares of the residuals as the optimal isocenter coordinates using the relationship between 6DoF setup error, distance from isocenter, and GTV size. Results D95, CI, and CN were decreased with increasing isocenter distance, decreasing GTV size, and increasing setup error. TCP of GTVs without 6DoF setup error was estimated to be 77.0%. TCP were 25.8% (GTV 1), 35.0% (GTV 2), and 53.0% (GTV 3) with (d, δT,δR) = (10 cm, 1.0 mm, 1.0°). The TCP was 52.3% (GTV 1), 54.9% (GTV 2), and 66.1% (GTV 3) with (d, δT,δR) = (10 cm, 1.0 mm, 1.0°) at the optimal isocenter position. Conclusion The TCP in SRS for multiple brain metastases with a single‐isocenter technique may decrease with increasing isocenter distance and decreasing GTV size when the 6DoF setup errors are exceeded (1.0 mm, 1.0°). Additionally, it might be possible to better maintain TCP for GTVs with 6DoF setup errors by using the optimal isocenter position.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Ryuta Sasamoto
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan.,Department of Radiation Oncology, Niigata Neurosurgical Hospital, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Niigata, Japan
| | - Madoka Sakai
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
22
|
Pokhrel D, Webster A, Stephen J, St Clair W. SBRT treatment of abdominal and pelvic oligometastatic lymph nodes using ring-mounted Halcyon Linac. J Appl Clin Med Phys 2021; 22:162-171. [PMID: 34032367 PMCID: PMC8200515 DOI: 10.1002/acm2.13268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/31/2022] Open
Abstract
PURPOSE/OBJECTIVES This work seeks to evaluate the plan quality, treatment delivery efficiency, and accuracy of single-isocenter volumetric modulated arc therapy (VMAT) of abdominal/pelvic oligometastatic lymph nodes (LNs) stereotactic body radiation therapy (SBRT) on Halcyon Linac. MATERIALS AND METHODS After completing the in-house multitarget end-to-end phantom testing and independent dose verification using MD Anderson's single-isocenter/multi-target (lung and spine target inserts) thorax phantom, eight patients with two to three abdominal/pelvic oligometastatic LNs underwent highly conformal single-isocenter VMAT-SBRT treatment using the Halcyon Linac 6MV flattening filter free (FFF) beam. Targets were identified using an Axumin PET/CT scan co-registered with planning CT images and a single-isocenter was placed between/among the targets. Doses between 25 and 36.25 Gy in 5 fractions were delivered. Patients were treated every other day. Plans were calculated in Eclipse with advanced AcurosXB algorithm for heterogeneity corrections. For comparison, Halcyon VMAT-SBRT plans were retrospectively generated for SBRT-dedicated TrueBeam with a 6MV-FFF beam using identical planning geometry and objectives. Target coverage, conformity index (CI), dose to 2 cm away from each target (D2cm) and dose to adjacent organs-at-risk (OAR) were evaluated. Additionally, various treatment delivery parameters including beam-on time were recorded. RESULTS Phantom measurements showed acceptable spatial accuracy of conebeam CT-guided Halcyon SBRT treatments including compliance with MD Anderson's single-isocenter/multi-targets phantom credentialing results. For patients, the mean isocenter to tumor center distance was 3.4 ± 1.2 cm (range, 1.5-4.8 cm). The mean combined PTV was 18.9 ± 10.9 cc (range, 5.6-39.5 cc). There was no clinically significant difference in dose to LNs, CI, D2cm and maximal doses to OAR between single-isocenter Halcyon and Truebeam VMAT-SBRT plans, although, Halcyon plans provided preferably lower maximal dose to adjacent OAR. Additionally, total monitor units, beam-on time and overall treatment time was lower with Halcyon plans. Halcyon's portal dosimetry demonstrated a high pass rate of 98.1 ± 1.6% for clinical gamma passing criteria of 2%/2 mm. CONCLUSION SBRT treatment of abdominal/pelvic oligometastatic LNs with single-isocenter VMAT on Halcyon was dosimetrically equivalent to TrueBeam. Faster treatment delivery to oligometastatic LNs via single-isocenter Halcyon VMAT can improve clinic workflow and patient compliance, potentially reducing intrafraction motion errors for well-suited patients. Clinical follow-up of these patients is ongoing.
Collapse
Affiliation(s)
- Damodar Pokhrel
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| | - Aaron Webster
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| | - Joseph Stephen
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| | - William St Clair
- Medical Physics Graduate ProgramDepartment of Radiation MedicineUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
23
|
Amaya D, Shinde A, Wohlers C, Wong KCC, Novak J, Neylon J, Han C, Liu A, Dandapani S, Glaser S. Dosimetric comparison of multiple vs single isocenter technique for linear accelerator-based stereotactic radiosurgery: The Importance of the six degree couch. J Appl Clin Med Phys 2021; 22:45-49. [PMID: 34021698 PMCID: PMC8200442 DOI: 10.1002/acm2.13286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 04/02/2021] [Accepted: 04/15/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Single isocenter technique (SIT) for linear accelerator-based stereotactic radiosurgery (SRS) is feasible. However, SIT introduces the potential for rotational error which can lead to geographical miss. Additional planning treatment volume (PTV) margin is required when using SIT. With the six degrees of freedom (6DoF) couch, rotational error can be minimized. We sought to evaluate the effect of the 6DoF couch on the dosimetry of patients with multiple brain metastases treated with SIT. MATERIALS AND METHODS Ten consecutive patients treated with SRS to ≥3 metastases were identified. Original treatments had MIT plans (MITP). The lesions were replanned using SIT. Lesions 5-10 cm from isocenter had an additional 1mm of margin. Patients were replanned with these additional margins to account for inability to correct rotational error (SITPM). Multiple dosimetric variables and time metrics were evaluated. Dosimetry planning time (DPT) and patient treatment time (PTT) were evaluated. Statistics were calculated using the Wilcoxon signed-rank test. RESULTS A total of 73 brain metastases receiving SRS, to a median of 6 lesions per patient, were identified. MITPs treated 73 lesions with 63 isocenters. On average, MITPs had a 19.2% higher brain V12 than SITPs (P = 0.017). For creation of SITPM, 30 lesions required 1 mm of additional margin, while none required 2 mm of margin. This increased V12 by 47.8% on average per patient (P = 0.008) from SITP to SITPM. DPT was 5.5 hours for SITP, while median for MITP was 12.5 hours (P = 0.005) PTT was 30 minutes for SITP, while median for MITP was 144 minutes (P = 0.005). CONCLUSIONS SITPs are comparable to MITPs if rotational error can be corrected with the use of a 6DoF couch. Increasing margin to account for rotational error leads to a nearly 50% increase in V12, which could result in higher rates of radiation necrosis. Time savings are significant using SIT.
Collapse
Affiliation(s)
- Dania Amaya
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Ashwin Shinde
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Christopher Wohlers
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Ka Chun Carson Wong
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Jennifer Novak
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - John Neylon
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Chunhui Han
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - An Liu
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Savita Dandapani
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Scott Glaser
- Department of Radiation OncologyCity of Hope National Medical CenterDuarteCAUSA
| |
Collapse
|
24
|
Rojas-López JA, Díaz Moreno RM, Venencia CD. Use of genetic algorithm for PTV optimization in single isocenter multiple metastases radiosurgery treatments with Brainlab Elements™. Phys Med 2021; 86:82-90. [PMID: 34062337 DOI: 10.1016/j.ejmp.2021.05.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To optimize PTV margins for single isocenter multiple metastases stereotactic radiosurgery through a genetic algorithm (GA) that determines the maximum effective displacement of each target (GTV) due to rotations. METHOD 10 plans were optimized. The plans were created with Elements Multiple Mets™ (Brainlab AG, Munchen, Germany) from a predefined template. The mean number of metastases per plan was 5 ± 2 [3,9] and the mean volume of GTV was 1.1 ± 1.3 cc [0.02, 5.1]. PTV margin criterion was based on GTV-isocenter distance and target dimensions. The effective displacement to perform specific rotational combination (roll, pitch, yaw) was optimized by GA. The original plans were re-calculated using the PTV optimized margin and new dosimetric variations were obtained. The Dmean, D99, Paddick conformity index (PCI), gradient index (GI) and dose variations in healthy brain were studied. RESULTS Regarding targets located shorter than 50 mm from the isocenter, the maximum calculated displacement was 2.5 mm. The differences between both PTV margin criteria were statistically significant for Dmean (p = 0.0163), D99 (p = 0.0439), PCI (p = 0.0242), GI (p = 0.0160) and for healthy brain V12 (p = 0.0218) and V10 (p = 0.0264). CONCLUSION The GA allows to determine an optimized PTV margin based on the maximum displacement. Optimized PTV margins reduce the detriment of dosimetric parameters. Greater PTV margins are associated with an increase in healthy brain volume.
Collapse
|
25
|
Kraft J, van Timmeren JE, Mayinger M, Frei S, Borsky K, Stark LS, Krayenbuehl J, Zamburlini M, Guckenberger M, Tanadini-Lang S, Andratschke N. Distance to isocenter is not associated with an increased risk for local failure in LINAC-based single-isocenter SRS or SRT for multiple brain metastases. Radiother Oncol 2021; 159:168-175. [PMID: 33798610 DOI: 10.1016/j.radonc.2021.03.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/07/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the impact of the distance between treatment isocenter and brain metastases on local failure in patients treated with a frameless linear-accelerator-based single-isocenter volumetric modulated arc (VMAT) SRS/SRT for multiple brain metastases. METHODS AND MATERIALS Patients treated with SRT for brain metastases (BM) between April 2014 and May 2019 were included in this retrospective study. BM treated with a single-isocenter multiple-target (SIMT) SRT were evaluated for local recurrence-free intervals in dependency to their distance to the treatment isocenter. A Cox-regression model was used to investigate different predictor variables for local failure. Results were compared to patients treated with a single-isocenter-single-target (SIST) approach. RESULTS In total 315 patients with a cumulative number of 1087 BM were analyzed in this study of which 140 patients and 708 BM were treated with SIMT SRS/SRT. Median follow-up after treatment was 13.9 months for SIMT approach and 11.9 months for SIST approach. One-year freedom from local recurrence was 87% and 94% in the SIST and SIMT group, respectively. Median distance to isocenter (DTI) was 4.7 cm (range 0.2-10.5) in the SIMT group. Local recurrence-free interval was not associated with the distance to the isocenter in univariable or multivariable Cox-regression analysis. Multivariable analysis revealed only volume as an independent significant predictor for local failure (p-value <0.05). CONCLUSION SRS/SRT using single-isocenter VMAT for multiple targets achieved high local metastases control rates irrespective of distance to the isocenter, supporting efficacy of single-isocenter stereotactic radiation therapy for multiple brain metastases.
Collapse
Affiliation(s)
- Johannes Kraft
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland; Department of Radiation Oncology, University Hospital Wuerzburg, Germany.
| | - Janita E van Timmeren
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Simon Frei
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Kim Borsky
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Luisa Sabrina Stark
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Jerome Krayenbuehl
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Mariangela Zamburlini
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Switzerland
| |
Collapse
|
26
|
Nakano H, Tanabe S, Yamada T, Utsunomiya S, Takizawa T, Sakai M, Sasamoto R, Sakai H, Nakano T, Saito H, Ohta A, Kaidu M, Ishikawa H. Maximum distance in single-isocenter technique of stereotactic radiosurgery with rotational error using margin-based analysis. Radiol Phys Technol 2021; 14:57-63. [PMID: 33393057 DOI: 10.1007/s12194-020-00602-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022]
Abstract
Through geometrical simulation, we evaluated the effect of rotational error in patient setup on geometrical coverage and calculated the maximum distance between the isocenter and target, where the clinical PTV margin secures geometrical coverage with a single-isocenter technique. We used simulated spherical GTVs with diameters of 1.0 (GTV 1), 1.5 (GTV 2), 2.0 (GTV 3), and 3.0 cm (GTV 4). The location of the target center was set such that the distance between the target and isocenter ranged from 0 to 15 cm. We created geometrical coverage vectors so that each target was entirely covered by 100% of the prescribed dose. The vectors of the target positions were simultaneously rotated within a range of 0°-2.0° around the x-, y-, and z-axes. For each rotational error, the reduction in geometrical coverage of the targets was calculated and compared with that obtained for a rotational error of 0°. The tolerance value of the geometrical coverage reduction was defined as 5% of the GTV. The maximum distance that satisfied the 5% tolerance value for different values of rotational error at a clinical PTV margin of 0.1 cm was calculated. When the rotational errors were 0.5° for a 0.1 cm PTV margin, the maximum distances were as follows: GTV 1: 7.6 cm; GTV 2: 10.9 cm; GTV 3: 14.3 cm; and GTV 4: 21.4 cm. It might be advisable to exclude targets that are > 7.6 cm away from the isocenter with a single-isocenter technique to satisfy the tolerance value for all GTVs.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan.
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Takumi Yamada
- Section of Radiology, Department of Clinical Support, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan.,Department of Radiation Oncology, Niigata Neurosurgical Hospital, Yamada, Nishi-ku, Niigata, 3057, Japan
| | - Madoka Sakai
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Ryuta Sasamoto
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, 2-746 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hironori Sakai
- Section of Radiology, Department of Clinical Support, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hirotake Saito
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| | - Hiroyuki Ishikawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, 1-757 Asahimachi-dori, Chuo-ku, Niigata, Japan
| |
Collapse
|
27
|
Radiosurgery and stereotactic irradiation of multiple and contiguous brain metastases: A practical proposal of dose prescription methods and a literature review. Cancer Radiother 2020; 25:92-102. [PMID: 33390318 DOI: 10.1016/j.canrad.2020.06.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 11/23/2022]
Abstract
PURPOSE In literature, there are no guidelines on how to prescribe dose in the case of radiosurgery (SRS) or stereotactic irradiation of multiple and adjacent BM. Aim of this work is to furnish practical proposals of dosimetric methods for multiple neighboring BM, and to make a literature review about the SRS treatment of multiple BM, comparing radiotherapy techniques on the basis of different dosimetric parameters. MATERIALS AND METHODS A theoretical proposal of dosimetric approaches to prescribe dose in case of multiple contiguous BM is done. A literature review between 2010 and 2020 was performed on MEDLINE and Cochrane databases according to the PRISMA methodology, with the following keywords dose prescription, radiosurgery, multiple BM. Papers not reporting dosimetric solutions to irradiate multiple BM were excluded. RESULTS Only one article in the literature reports a practical modality of dose prescription for multiple adjacent BM. Thus, we proposed other five practical solutions to prescribe radiation dose in case of two or more neighboring BM, describing advantages and drawbacks of each method in terms of different dosimetric parameters. The literature review about dosimetric solutions to irradiate multiple BM led to 56 titles; 14 articles met the chosen criteria and we reported their results in terms of dosimetric indexes and low doses to the normal brain tissue. CONCLUSIONS The six dosimetric approaches here described can be used by physicians for multiple contiguous BM, depending on the clinical situation. These methods may be applied in clinical studies to better evaluate their usefulness in practice.
Collapse
|
28
|
Parikh NR, Kundu P, Levin-Epstein R, Chang EM, Agazaryan N, Hegde JV, Steinberg ML, Tenn SE, Kaprealian TB. Time-Driven Activity-Based Costing Comparison of Stereotactic Radiosurgery to Multiple Brain Lesions Using Single-Isocenter Versus Multiple-Isocenter Technique. Int J Radiat Oncol Biol Phys 2020; 108:999-1007. [PMID: 32603774 DOI: 10.1016/j.ijrobp.2020.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 06/22/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Stereotactic radiosurgery (SRS) historically has been used to treat multiple brain lesions using a multiple-isocenter technique-frequently associated with significant complexity in treatment planning and long treatment times. Recently, given innovations in planning algorithms, patients with multiple brain lesions may now be treated with a single-isocenter technique using fewer total arcs and less time spent during image guidance (though with stricter image guided radiation therapy tolerances). This study used time-driven activity-based costing to determine the difference in cost to a provider for delivering SRS to multiple brain lesions using single-isocenter versus multiple-isocenter techniques. METHODS AND MATERIALS Process maps, consisting of discrete steps, were created for each phase of the SRS care cycle and were based on interviews with department personnel. Actual treatment times (including image guidance) were extracted from treatment record and verify software. Additional sources of data to determine costs included salary/benefit data of personnel and average list price/maintenance costs for equipment. RESULTS Data were collected for 22 patients who underwent single-isocenter SRS (mean lesions treated, 5.2; mean treatment time, 30.2 minutes) and 51 patients who underwent multiple-isocenter SRS (mean lesions treated, 4.4; mean treatment time, 75.2 minutes). Treatment time for multiple-isocenter SRS varied substantially with increasing number of lesions (11.8 minutes/lesion; P < .001), but to a much lesser degree in single-isocenter SRS (1.8 minutes/lesion; P = .029). The resulting cost savings from single-isocenter SRS based on number of lesions treated ranged from $296 to $3878 for 2 to 10 lesions treated. The 2-mm planning treatment volume margin used with single-isocenter SRS resulted in a mean 43% increase of total volume treated compared with a 1-mm planning treatment volume expansion. CONCLUSIONS In a comparison of time-driven activity-based costing assessment of single-isocenter versus multiple-isocenter SRS for multiple brain lesions, single-isocenter SRS appears to save time and resources for as few as 2 lesions, with incremental benefits for additional lesions treated.
Collapse
Affiliation(s)
- Neil R Parikh
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Palak Kundu
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Rebecca Levin-Epstein
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Eric M Chang
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Nzhde Agazaryan
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - John V Hegde
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Michael L Steinberg
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Stephen E Tenn
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California
| | - Tania B Kaprealian
- Department of Radiation Oncology, University of California Los Angeles, Los Angeles, California.
| |
Collapse
|
29
|
Palmiero AN, Critchfield L, St Clair W, Randall M, Pokhrel D. Single-Isocenter Volumetric Modulated Arc Therapy (VMAT) Radiosurgery for Multiple Brain Metastases: Potential Loss of Target(s) Coverage Due to Isocenter Misalignment. Cureus 2020; 12:e11267. [PMID: 33274143 PMCID: PMC7707911 DOI: 10.7759/cureus.11267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023] Open
Abstract
Purpose A single-isocenter volumetric modulated arc therapy (VMAT) treatment to multiple brain metastatic patients is an efficient stereotactic radiosurgery (SRS) option. However, the current clinical practice of single-isocenter SRS does not account for patient setup uncertainty, which degrades treatment delivery accuracy. This study quantifies the loss of target coverage and potential collateral dose to normal tissue due to clinically observable isocenter misalignment. Methods and materials Nine patients with 61 total tumors (2-16 tumors/patient) who underwent Gamma Knife® SRS were replanned in Eclipse™ using 10 megavoltages (MV) flattening-filter-free (FFF) bream (2400 MU/min), using a single-isocenter VMAT plan, similar to HyperArc™ VMAT plan. Isocenter was placed in the geometric center of the tumors. The prescription was 20 Gy to each tumor. Average gross tumor volume (GTV) and planning target volume (PTV) were 1.1 cc (0.02-11.5 cc) and 1.9 cc (0.11-18.8 cc), respectively, derived from MRI images. The average isocenter to tumor distance was 5.5 cm (1.6-10.1 cm). Six-degrees of freedom (6DoF) random and systematic residual set up errors within [±2 mm, ±2o] were generated using an in-house script in Eclipse based on our pre-treatment daily cone-beam CT imaging shifts and recomputed for the simulated VMAT plan. Relative loss of target coverage as a function of tumor size and distance to isocenter were evaluated as well as collateral dose to organs-at risk (OAR). Results The average beam-on time was less than six minutes. However, loss of target coverage for clinically observable setup errors were, on average, 7.9% (up to 73.1%) for the GTV (p < 0.001) and 21.5% for the PTV (up to 93.7%; p < 0.001). The correlation was found for both random and systematic residual setup errors with tumor sizes; there was a greater loss of target coverage for small tumors. Due to isocenter misalignment, OAR doses fluctuated and potentially receive higher doses than the original plan. Conclusion A single-isocenter VMAT SRS treatment (similar to HyperArc™ VMAT) to multiple brain metastases was fast with < 6 min of beam-on time. However, due to small residual set up errors, single-isocenter VMAT, in its current use, is not an accurate SRS treatment modality for multiple brain metastases. Loss of target coverage was statistically significant, especially for smaller lesions, and may not be clinically acceptable if left uncorrected. Further investigation of correction strategies is underway.
Collapse
Affiliation(s)
| | | | | | - Marcus Randall
- Radiation Medicine, University of Kentucky, Lexington, USA
| | | |
Collapse
|
30
|
Nakano H, Tanabe S, Utsunomiya S, Yamada T, Sasamoto R, Nakano T, Saito H, Takizawa T, Sakai H, Ohta A, Abe E, Kaidu M, Aoyama H. Effect of setup error in the single-isocenter technique on stereotactic radiosurgery for multiple brain metastases. J Appl Clin Med Phys 2020; 21:155-165. [PMID: 33119953 PMCID: PMC7769381 DOI: 10.1002/acm2.13081] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 08/25/2020] [Accepted: 10/06/2020] [Indexed: 01/22/2023] Open
Abstract
In conventional stereotactic radiosurgery (SRS), treatment of multiple brain metastases using multiple isocenters is time‐consuming resulting in long dose delivery times for patients. A single‐isocenter technique has been developed which enables the simultaneous irradiation of multiple targets at one isocenter. This technique requires accurate positioning of the patient to ensure optimal dose coverage. We evaluated the effect of six degrees of freedom (6DoF) setup errors in patient setups on SRS dose distributions for multiple brain metastases using a single‐isocenter technique. We used simulated spherical gross tumor volumes (GTVs) with diameters ranging from 1.0 to 3.0 cm. The distance from the isocenter to the target's center was varied from 0 to 15 cm. We created dose distributions so that each target was entirely covered by 100% of the prescribed dose. The target's position vectors were rotated from 0°–2.0° and translated from 0–1.0 mm with respect to the three axes in space. The reduction in dose coverage for the targets for each setup error was calculated and compared with zero setup error. The calculated margins for the GTV necessary to satisfy the tolerance values for loss of GTV coverage of 3% to 10% were defined as coverage‐based margins. In addition, the maximum isocenter to target distance for different 6DoF setup errors was calculated to satisfy the tolerance values. The dose coverage reduction and coverage‐based margins increased as the target diameter decreased, and the distance and 6DoF setup error increased. An increase in setup error when a single‐isocenter technique is used may increase the risk of missing the tumor; this risk increases with increasing distance from the isocenter and decreasing tumor size.
Collapse
Affiliation(s)
- Hisashi Nakano
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Chuo-ku, Niigata, Japan
| | - Satoshi Tanabe
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Chuo-ku, Niigata, Japan
| | - Satoru Utsunomiya
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Chuo-ku, Niigata, Japan
| | - Takumi Yamada
- Section of Radiology, Department of Clinical Support, Niigata University Medical and Dental Hospital, Chuo-ku, Niigata, Japan
| | - Ryuta Sasamoto
- Department of Radiological Technology, Niigata University Graduate School of Health Sciences, Chuo-ku, Niigata, Japan
| | - Toshimichi Nakano
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Hirotake Saito
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Chuo-ku, Niigata, Japan
| | - Takeshi Takizawa
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan.,Department of Radiation Oncology, Niigata Neurosurgical Hospital, Nishi-ku, Niigata, Japan
| | - Hironori Sakai
- Section of Radiology, Department of Clinical Support, Niigata University Medical and Dental Hospital, Chuo-ku, Niigata, Japan
| | - Atsushi Ohta
- Department of Radiation Oncology, Niigata University Medical and Dental Hospital, Chuo-ku, Niigata, Japan
| | - Eisuke Abe
- Department of Radiology, Nagaoka Chuo General Hospital, Nagaoka, Japan
| | - Motoki Kaidu
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan
| | - Hidefumi Aoyama
- Department of Radiology and Radiation Oncology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Japan.,Department of Radiation Oncology, Faculty of Medicine, Hokkaido University, Kita-ku, Sapporo, Japan
| |
Collapse
|
31
|
Slagowski JM, Wen Z. Selection of single-isocenter for multiple-target stereotactic brain radiosurgery to minimize total margin volume. Phys Med Biol 2020; 65:185012. [PMID: 32460254 DOI: 10.1088/1361-6560/ab9703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Treating multiple brain metastases with a single isocenter improves efficiency but requires margins to account for rotation induced shifts that increase with target-to-isocenter distance. A method to select the single isocenter position that minimizes the total volume of normal tissue treated during multi-target stereotactic radiosurgery (SRS) is presented. A statistical framework was developed to quantify the impact of uncertainties on planning target volumes (PTV). Translational and rotational shifts were modeled with independent, zero mean, Gaussian distributions in three dimensions added in quadrature. The standard deviations of errors were varied from 0.5-2.0 mm and 0.5°-2.0°. The volume of normal tissue treated due to margin expansions required to maintain a 95% probability of target coverage was computed. Tumors were modeled as 4-40 mm diameter spheres. Target separation distance was varied from 40-100 mm for two- and three-lesion scenarios. The percent increase in PTV was determined relative to an isocenter at the geometric centroid of the targets for the optimal isocenter that minimized the total normal tissue treated, and isocenters at the center-of-mass (COM) and center-of-surface-area (CSA). For two targets, isocenter placement at the optimal location, COM, and CSA, reduced the total margin versus an isocenter at midline up to 17.8%, 17.7%, and 17.8%, respectively, for 0.5 mm and 0.5° errors. For three targets, optimal isocenter placement reduced the margin volume up to 21%, 19%, and 14%, for uncertainties of (0.5 mm, 0.5°), (1.0 mm, 1.0°), and (2.0 mm, 2.0°), respectively. COM and CSA provide useful approximations to select the optimal isocenter for multi-target single-isocenter SRS for two or three targets with maximum dimensions ⩽ 40 mm and separation distances ⩽ 100 mm when uncertainties are ⩽ 1.0 mm and ⩽ 1.0°. CSA provides a more accurate approximation than COM. Optimal treatment isocenter selection for multiple targets of large size differences can significantly reduce total margin volume.
Collapse
Affiliation(s)
- Jordan M Slagowski
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, United States of America. Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States of America
| | | |
Collapse
|
32
|
Taylor M, Williams J, Gleason JF. Effects of Multileaf Collimator Design and Function When Using an Optimized Dynamic Conformal Arc Approach for Stereotactic Radiosurgery Treatment of Multiple Brain Metastases With a Single Isocenter: A Planning Study. Cureus 2020; 12:e9833. [PMID: 32832305 PMCID: PMC7437117 DOI: 10.7759/cureus.9833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Stereotactic radiosurgery (SRS) or fractionated SRS (fSRS) are effective options for the treatment of brain metastases. When treating multiple metastases with a linear accelerator-based approach, a single isocenter allows for efficient treatment delivery. In this study, we present our findings comparing dosimetric parameters of Brainlab (Munich, Germany) Elements™ Multiple Brain Mets SRS (MME) software (version 1.5 versus version 2.0) for a variety of scenarios and patients. The impact of multileaf collimator design and function on plan quality within the software was also evaluated. Materials and methods Twenty previously treated patients with a total of 58 lesions (from one to seven lesions each) were replanned with an updated version of the multiple brain Mets software solution. For each plan, the mean conformity index (CI), mean gradient index (GI), the volume of normal brain receiving 12 Gy (V12), and mean brain dose were evaluated. Additionally, all v2.0 plans were further evaluated with jaw tracking for by Elekta (Stockholm, Sweden) and HD120™ multileaf collimator by Varian Medical Systems (Palo Alto, USA). Results The new software version demonstrated improvements for CI, GI and V12 (p <0.01). For the Elekta Agility™ multileaf collimator, jaw tracking improved all dosimetric parameters except for CI (p =0.178) and mean brain dose (p =0.93). For the Varian with HD120 multileaf collimator, all parameters improved. Conclusions The software enhancements in v2.0 of the software provided improvements in planning efficiency and dosimetric parameters. Differences in multileaf collimator design may provide an additional incremental benefit in a subset of clinical scenarios.
Collapse
Affiliation(s)
| | | | - John F Gleason
- Radiation Oncology, Alliance Cancer Care, Huntsville, USA
| |
Collapse
|
33
|
Target coverage and dose criteria based evaluation of the first clinical 1.5T MR-linac SBRT treatments of lymph node oligometastases compared with conventional CBCT-linac treatment. Radiother Oncol 2020; 146:118-125. [PMID: 32146257 DOI: 10.1016/j.radonc.2020.02.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Patients were treated at our institute for single and multiple lymph node oligometastases on the 1.5T MR-linac since August 2018. The superior soft-tissue contrast and additional software features of the MR-linac compared to CBCT-linacs allow for online adaptive treatment planning. The purpose of this study was to perform a target coverage and dose criteria based evaluation of the clinically delivered online adaptive radiotherapy treatment compared with conventional CBCT-linac treatment. MATERIALS AND METHODS Patient data was used from 14 patients with single lymph node oligometastases and 6 patients with multiple (2-3) metastases. All patients were treated on the 1.5T MR-linac with a prescribed dose of 5 × 7 Gy to 95% of the PTV and a CBCT-linac plan was created for each patient. The difference in target coverage between these plans was compared and plans were evaluated based on dose criteria for each fraction after calculating the CBCT-plan on the daily anatomy. The GTV coverage was evaluated based on the online planning and the post-delivery MRI. RESULTS For both single and multiple lymph node oligometastases the GTV V35Gy had a median value of 100% for both the MR-linac plans and CBCT-plans pre- and post-delivery and did not significantly differ. The percentage of plans that met all dose constraints was improved from 19% to 84% and 20% to 67% for single and multiple lymph node cases, respectively. CONCLUSION Target coverage and dose criteria based evaluation of the first clinical 1.5T MR-linac SBRT treatments of lymph node oligometastases compared with conventional CBCT-linac treatment shows a smaller amount of unplanned violations of high dose criteria. The GTV coverage was comparable. Benefit is primarily gained in patients treated for multiple lymph node oligometastases: geometrical deformations are accounted for, dose can be delivered in one plan and margins can be reduced.
Collapse
|
34
|
Miao J, Xu Y, Tian Y, Liu Z, Dai J. A study of nonuniform CTV to PTV margin expansion incorporating both rotational and translational uncertainties. J Appl Clin Med Phys 2019; 20:78-86. [PMID: 31793203 PMCID: PMC6909174 DOI: 10.1002/acm2.12763] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/11/2019] [Accepted: 10/13/2019] [Indexed: 12/25/2022] Open
Abstract
PURPOSE In this work, we implemented a method to obtain a nonuniform clinical target volume (CTV) to planning target volume (PTV) margin caused by both rotational and translational uncertainties and evaluated it in the treatment planning system (TPS). MATERIALS AND METHOD Based on a previously published statistical model, the relationship between a target margin and the distance d (from isocenter to target point), setup uncertainties, and significance level was established. For a single CTV, it can be thought as a combination of many small volume elements or target points. The margin of each point could be obtained using the suggested statistical model. The whole nonuniform CTV-PTV margin was determined by the union of all possible margins of the CTV boundary points. This method was implemented in the Pinnacle3 treatment planning system and compared with uniform margin algorithm. Ten vertebral metastases targets and multiple brain metastases targets were chosen for evaluation. RESULTS The combined CTV-PTV margin as a function of d for various initial translational margin and rotational uncertainties was calculated. The combined margin increases as d, rotational uncertainties and translational margin increase. For the same rotational uncertainty, a smaller initial translational margin requires a larger rotational margin to compensate for the rotational error. Compared with the uniform margin algorithm, the advantage of this method is that it could minimize the PTVs volume for given CTVs to obtain same significance level. Using vertebral metastases targets and multiple brain metastases targets, a series of volume difference was obtained for various translational margins and rotational uncertainties. The volume difference of PTV could be more than 17% when translational margin is 2 mm and rotational uncertainty is 1.4°. CONCLUSION Nonuniform margin algorithm could avoid excessive compensation for the CTV boundary points near isocenter. This method could be used for clinical margin determination and might be useful for the protection of risk organs.
Collapse
Affiliation(s)
- Junjie Miao
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Xu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Tian
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhiqiang Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
35
|
Sagawa T, Ohira S, Ueda Y, Akino Y, Mizuno H, Matsumoto M, Miyazaki M, Koizumi M, Teshima T. Dosimetric effect of rotational setup errors in stereotactic radiosurgery with HyperArc for single and multiple brain metastases. J Appl Clin Med Phys 2019; 20:84-91. [PMID: 31507075 PMCID: PMC6806481 DOI: 10.1002/acm2.12716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/31/2019] [Accepted: 08/19/2019] [Indexed: 12/25/2022] Open
Abstract
Purpose In stereotactic radiosurgery (SRS) with single‐isocentric treatments for brain metastases, rotational setup errors may cause considerable dosimetric effects. We assessed the dosimetric effects on HyperArc plans for single and multiple metastases. Methods For 29 patients (1–8 brain metastases), HyperArc plans with a prescription dose of 20–24 Gy for a dose that covers 95% (D95%) of the planning target volume (PTV) were retrospectively generated (Ref‐plan). Subsequently, the computed tomography (CT) used for the Ref‐plan and cone‐beam CT acquired during treatments (Rot‐CT) were registered. The HyperArc plans involving rotational setup errors (Rot‐plan) were generated by re‐calculating doses based on the Rot‐CT. The dosimetric parameters between the two plans were compared. Results The dosimetric parameters [D99%, D95%, D1%, homogeneity index, and conformity index (CI)] for the single‐metastasis cases were comparable (P > 0.05), whereas the D95% for each PTV of the Rot‐plan decreased 10.8% on average, and the CI of the Rot‐plan was also significantly lower than that of the Ref‐plan (Ref‐plan vs Rot‐plan, 0.93 ± 0.02 vs 0.75 ± 0.14, P < 0.01) for the multiple‐metastases cases. In addition, for the multiple‐metastases cases, the Rot‐plan resulted in significantly higher V10Gy (P = 0.01), V12Gy (P = 0.02), V14Gy (P = 0.02), and V16Gy (P < 0.01) than those in the Ref‐plan. Conclusion The rotational setup errors for multiple brain metastases cases caused non‐negligible underdosage for PTV and significant increases of V10Gy to V16Gy in SRS with HyperArc.
Collapse
Affiliation(s)
- Tomohiro Sagawa
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Shingo Ohira
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan.,Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yoshihiro Ueda
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Yuichi Akino
- Division of Medical Physics, Oncology Center, Osaka University Hospital, Suita, Japan
| | - Hirokazu Mizuno
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masao Matsumoto
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Masayoshi Miyazaki
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| | - Masahiko Koizumi
- Department of Medical Physics and Engineering, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Teruki Teshima
- Department of Radiation Oncology, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
36
|
Chang J. Incorporating the rotational setup uncertainty into the planning target volume margin expansion for the single isocenter for multiple targets technique. Pract Radiat Oncol 2018; 8:475-483. [PMID: 30033144 DOI: 10.1016/j.prro.2018.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/18/2018] [Accepted: 04/21/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE The single isocenter for multiple targets (SIMT) technique has become a popular treatment approach for multiple brain metastases. However, the rotational error that is introduced is usually not considered in planning target volume (PTV) expansion. We have developed a statistical model that takes into account both translational and rotational uncertainties. In this study, we incorporated the rotational error into PTV margin expansion for the clinical use of the SIMT technique. METHODS AND MATERIALS In the statistical model, both translational and rotational errors are assumed to follow the 3-dimensional, independent, normal distribution with a zero mean and standard deviations of σS and σR, where σR = 0.01424σD (rotational uncertainty in degree)×dI ⇔ T (distance in mm from isocenter to target). Based on this model, we derived in this study the additional PTV margin, ∆M, that is required to maintain the same coverage probability when the rotational uncertainty is present as a function of MS (initial PTV margin), σD, and dI ⇔ T. The maximum allowable dI ⇔ T, C and σD, C were also calculated as a function of user-specified ∆Mc/MS, the fraction of MS below which the extra PTV margins can be ignored. RESULTS Combined PTV margin, ME, and additional PTV margin, ∆M, were plotted for commonly encountered clinical parameters including dI ⇔ T, MS, or σD. Unlike other reported margin recipes, ∆M is not a linear function of any of these 3 parameters. In addition, the rate of increase for ∆M is quite slow for small dI ⇔ T and becomes more significant for larger dI ⇔ T. Cutoff values dI ⇔ T, C and σD, C were also plotted for various ∆Mc/MS, which can be used to determine if an additional PTV margin is needed for the SIMT technique. CONCLUSIONS The presented data provide a convenient way for clinics to determine the appropriate PTV margin for the SIMT technique.
Collapse
Affiliation(s)
- Jenghwa Chang
- Radiation Medicine, Northwell Health and Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lake Success, New York; Department of Physics and Astronomy, Hofstra University, Hempstead, New York.
| |
Collapse
|
37
|
Chang J, Wernicke AG, Pannullo SC. Restricted single isocenter for multiple targets dynamic conformal arc (RSIMT DCA) technique for brain stereotactic radiosurgery (SRS) planning. JOURNAL OF RADIOSURGERY AND SBRT 2018; 5:145-156. [PMID: 29657895 PMCID: PMC5893455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/03/2017] [Indexed: 06/08/2023]
Abstract
PURPOSE/OBJECTIVES In stereotactic radiosurgery (SRS), the multiple isocenters for multiple targets dynamic conformal arc (MIMT DCA) technique is traditionally used to treat multiple brain metastases, with one isocenter for each target. The single isocenter for multiple targets (SIMT) technique has recently been adopted to reduce the treatment time at the cost of plan quality. The objective of this study was to develop a restricted single isocenter for multiple targets DCA (RSIMT DCA) technique that can significantly reduce the treatment time but still maintain similar plan quality as the MIMT DCA technique. MATERIALS AND METHODS Treating multiple brain metastases with a single isocenter poses a challenge to SRS planning using DCA beams that are intrinsically 3D and do not modulate the beam intensity to spare the normal tissue between targets. To address this obstacle, we have developed a RSIMT DCA technique and used it to treat SRS patients with multiple brain metastases since February 2015. This planning approach is similar to the SIMT technique except that the number of targets for each isocenter is restricted and the distance between the isocenter and target is limited. In this technique, the targets are first split into batches so that all targets in a batch are within a chosen distance (e.g., 7 cm) of each other. All targets in a batch are combined into one target and the geometric center of the combined target is the isocenter for the group of DCA beams associated with that batch. Each DCA group typically consists of 3-4 DCA beams to irradiate 1-3 targets. For each DCA beam, the collimator angle is adjusted to minimize the exposure of normal tissue between targets. The dose of each treatment group is normalized so that the maximal point dose to the combined target is 125% of the prescription dose, which is equivalent to normalize the prescription dose to 80% isodose line. If the maximal point dose of a target is <123%, an additional beam is used to boost the maximal point dose of that target to 125%. To evaluate the plan quality, we randomly selected 10 cases planned with the RSIMT DCA technique, and re-planned them using the MIMT DCA technique. There were in total 38 PTVs, and 22 isocenters were used to treat all of these targets. The prescription for each target was 20 Gy with a maximal point dose of 25 Gy. Plan quality indexes were calculated and compared. Paired sample t-test was performed to determine if the mean normalized difference, (RSIMT-MIMT)/MIMT of each plan index was statistically significantly (p-value < 5%) larger than 0. RESULTS Satisfactory PTV coverage (V20Gy>95% and V19Gy=100%) was achieved for all plans using either technique. Most PTVs have a maximal point dose between 24.9 and 25.1 Gy, with 2 PTVs between 24.5 and 24.9 Gy. Overall, the plan quality was slightly better for the MIMT DCA technique and the normalized difference was statistically significantly larger than 0 for all investigated dose quality indexes. The normalized difference of body mean dose and conformity index (CI) between the RSIMT and MIMT techniques was respectively 4.2% (p=0.002) and 9.4% (p=0.001), indicating similar plan quality globally and in the high dose area. The difference was more pronounced for the mid-to-low dose spillage with the ratios of V12Gy and V10Gy/VPTV being 13.9% (p=3.8×10-6) and 14.9% (p=1.3×10-5), respectively. The treatment time was reduced by 30%-50% with the RSIMT DCA technique. CONCLUSION The RSIMT DCA technique can produce satisfactory SRS plans for treating multiple targets and can significantly reduce the treatment time.
Collapse
Affiliation(s)
- Jenghwa Chang
- Department of Radiation Medicine, Northwell Health and Hofstra Northwell School of Medicine at Hofstra University, 450 Lakeville Road, Lake Success, NY 11042, USA
- Department of Physics and Astronomy, Hofstra University, 151 Hofstra University, Hempstead, NY 11549, USA
| | - A Gabriella Wernicke
- Department of Radiation Oncology, Weill Cornell Medical College of Cornell University, 525 East 68th Street, New York, NY 10065, USA
| | - Susan C. Pannullo
- Department of Neurological Surgery, Weill Cornell Medical College of Cornell University, 1305 York Avenue, New York, NY 10065, USA
- Department of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|