1
|
Harris TC, Seco J, Ferguson D, Jacobson M, Myronakis M, Lozano IV, Lehmann M, Huber P, Fueglistaller R, Morf D, Mamon HJ, Mancias JD, Martin NE, Berbeco RI. Improvements in beam's eye view fiducial tracking using a novel multilayer imager. Phys Med Biol 2021; 66:10.1088/1361-6560/ac1246. [PMID: 34233309 PMCID: PMC11102774 DOI: 10.1088/1361-6560/ac1246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/07/2021] [Indexed: 11/12/2022]
Abstract
Purpose.Electronic portal image devices (EPIDs) have been investigated previously for beams-eye view (BEV) applications such as tumor tracking but are limited by low contrast-to-noise ratio and detective quantum efficiency. A novel multilayer imager (MLI), consisting of four stacked flat-panels was used to measure improvements in fiducial tracking during liver stereotactic body radiation therapy (SBRT) procedures compared to a single layer EPID.Methods.The prototype MLI was installed on a clinical TrueBeam linac in place of the conventional DMI single-layer EPID. The panel was extended during volumetric modulated arc therapy SBRT treatments in order to passively acquire data during therapy. Images were acquired for six patients receiving SBRT to liver metastases over two fractions each, one with the MLI using all 4 layers and one with the MLI using the top layer only, representing a standard EPID. The acquired frames were processed by a previously published tracking algorithm modified to identify implanted radiopaque fiducials. Truth data was determined using respiratory traces combined with partial manual tracking. Results for 4- and 1-layer mode were compared against truth data for tracking accuracy and efficiency. Tracking and noise improvements as a function of gantry angle were determined.Results. Tracking efficiency with 4-layers improved to 82.8% versus 58.4% for the 1-layer mode, a relative improvement of 41.7%. Fiducial tracking with 1-layer returned a root mean square error (RMSE) of 2.1 mm compared to 4-layer RMSE of 1.5 mm, a statistically significant (p < 0.001) improvement of 0.6 mm. The reduction in noise correlated with an increase in successfully tracked frames (r = 0.913) and with increased tracking accuracy (0.927).Conclusion. Increases in MV photon detection efficiency by utilization of a MLI results in improved fiducial tracking for liver SBRT treatments. Future clinical applications utilizing BEV imaging may be enhanced by including similar noise reduction strategies.
Collapse
Affiliation(s)
- T C Harris
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
- BioMedical Physics in Radiation Oncology, DKFZ, Heidelberg, Germany
- Department of Physics, University of Heidelberg, Heidelberg, Germany
| | - J Seco
- BioMedical Physics in Radiation Oncology, DKFZ, Heidelberg, Germany
- Department of Physics, University of Heidelberg, Heidelberg, Germany
| | - D Ferguson
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, United States of America
| | - M Jacobson
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - M Myronakis
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - I Valencia Lozano
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - M Lehmann
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - P Huber
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | | | - D Morf
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - H J Mamon
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - J D Mancias
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - N E Martin
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - R I Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
2
|
O'Connell J, Bazalova-Carter M. fastCAT: Fast cone beam CT (CBCT) simulation. Med Phys 2021; 48:4448-4458. [PMID: 34053094 DOI: 10.1002/mp.15007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
PURPOSE To develop fastCAT, a fast cone-beam computed tomography (CBCT) simulator. fastCAT uses pre-calculated Monte Carlo (MC) CBCT phantom-specific scatter and detector response functions to reduce simulation time for megavoltage (MV) and kilovoltage (kV) CBCT imaging. METHODS Pre-calculated x-ray beam energy spectra, detector optical spread functions and energy deposition, and phantom scatter kernels are combined with GPU raytracing to produce CBCT volumes. MV x-ray beam spectra are simulated with EGSnrc for 2.5- and 6 MeV electron beams incident on a variety of target materials and kV x-ray beam spectra are calculated analytically for an x-ray tube with a tungsten anode. Detectors were modeled in Geant4 extended by Topas and included optical transport in the scintillators. Two MV detectors were modeled-a standard Varian AS1200 GOS detector and a novel CWO high detective quantum efficiency detector. A kV CsI detector was also modeled. Energy-dependent scatter kernels were created in Topas for two 16 cm diameter phantoms: A Catphan 515 contrast phantom and an anthropomorphic head phantom. The Catphan phantom contained inserts of 1-5 mm in diameter of six different tissue types: brain, deflated lung, compact and cortical bone, adipose, and B-100. RESULTS fastCAT simulations retain high fidelity to measurements and MC simulations: MTF curves were within 3.5% and 1.2% of measured values for the CWO and GOS detectors, respectively. HU values and CNR in a fastCAT Catphan 515 simulation were seen to be within 95% confidence intervals of an equivalent MC simulation for all of the tissues with root mean squared errors less than 16 HU and 1.6 in HU values and CNR comparisons, respectively. The anthropomorphic head phantom CWO detector CBCT image resulted in much higher tissue contrast and lower noise compared to the GOS detector CBCT image. A fastCAT simulation of the Catphan 515 module with an image size of 1024 × 1024 × 10 voxels took 61 s on a GPU while the equivalent Topas MC was estimated to take more than 0.3 CPU years. CONCLUSIONS We present an open source fast CBCT simulation with high fidelity to MC simulations. The fastCAT python package can be found at https://github.com/jerichooconnell/fastCAT.git.
Collapse
Affiliation(s)
- Jericho O'Connell
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | | |
Collapse
|
3
|
Valencia Lozano I, Shi M, Myronakis M, Baturin P, Fueglistaller R, Huber P, Lehmann M, Morf D, Ferguson D, Jacobson MW, Harris T, Berbeco RI, Williams CL. Frequency-dependent optimal weighting approach for megavoltage multilayer imagers. Phys Med Biol 2021; 66. [PMID: 33503603 DOI: 10.1088/1361-6560/abe051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/27/2021] [Indexed: 11/12/2022]
Abstract
Multi-layer imaging (MLI) devices improve the detective quantum efficiency (DQE) while maintaining the spatial resolution of conventional mega-voltage (MV) x-ray detectors for applications in radiotherapy. To date, only MLIs with identical detector layers have been explored. However, it may be possible to instead use different scintillation materials in each layer to improve the final image quality. To this end, we developed and validated a method for optimally combining the individual images from each layer of MLI devices that are built with heterogeneous layers. Two configurations were modeled within the GATE Monte Carlo package by stacking different layers of a terbium doped gadolinium oxysulfide Gd2O2S:Tb (GOS) phosphor and a LKH-5 glass scintillator. Detector response was characterized in terms of the modulation transfer function (MTF), normalized noise power spectrum (NNPS) and DQE. Spatial frequency-dependent weighting factors were then analytically derived for each layer such that the total DQE of the summed combination image would be maximized across all spatial modes. The final image is obtained as the weighted sum of the sub-images from each layer. Optimal weighting factors that maximize the DQE were found to be the quotient of MTF and NNPS of each layer in the heterogeneous MLI detector. Results validated the improvement of the DQE across the entire frequency domain. For the LKH-5 slab configuration, DQE(0) increases between 2%-3% (absolute), while the corresponding improvement for the LKH-5 pixelated configuration was 7%. The performance of the weighting method was quantitatively evaluated with respect to spatial resolution, contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) of simulated planar images of phantoms at 2.5 and 6 MV. The line pair phantom acquisition exhibited a twofold increase in CNR and SNR, however MTF was degraded at spatial frequencies greater than 0.2 lp mm-1. For the Las Vegas phantom, the weighting improved the CNR by around 30% depending on the contrast region while the SNR values are higher by a factor of 2.5. These results indicate that the imaging performance of MLI systems can be enhanced using the proposed frequency-dependent weighting scheme. The CNR and SNR of the weighted combined image are improved across all spatial scales independent of the detector combination or photon beam energy.
Collapse
Affiliation(s)
- Ingrid Valencia Lozano
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - Mengying Shi
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America.,Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA, United States of America
| | - Marios Myronakis
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - Paul Baturin
- Varian Medical Systems, Palo Alto, CA, United States of America
| | | | | | | | | | - Dianne Ferguson
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - Matthew W Jacobson
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute and Harvard Medical School, Boston, MA, United States of America
| | - Thomas Harris
- Varian Medical Systems, Palo Alto, CA, United States of America
| | - Ross I Berbeco
- Varian Medical Systems, Palo Alto, CA, United States of America
| | | |
Collapse
|
4
|
Harris TC, Seco J, Ferguson D, Lehmann M, Huber P, Shi M, Jacobson M, Valencia Lozano I, Myronakis M, Baturin P, Fueglistaller R, Morf D, Berbeco R. Clinical translation of a new flat-panel detector for beam's-eye-view imaging. Phys Med Biol 2020; 65:225004. [PMID: 33284786 PMCID: PMC9142212 DOI: 10.1088/1361-6560/abb571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Electronic portal imaging devices (EPIDs) lend themselves to beams-eye view clinical applications, such as tumor tracking, but are limited by low contrast and detective quantum efficiency (DQE). We characterize a novel EPID prototype consisting of multiple layers and investigate its suitability for use under clinical conditions. A prototype multi-layer imager (MLI) was constructed utilizing four conventional EPID layers, each consisting of a copper plate, a Gd2O2S:Tb phosphor scintillator, and an amorphous silicon flat panel array detector. We measured the detector's response to a 6 MV photon beam with regards to modulation transfer function, noise power spectrum, DQE, contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), and the linearity of the detector's response to dose. Additionally, we compared MLI performance to the single top layer of the MLI and the standard Varian AS-1200 detector. Pre-clinical imaging was done on an anthropomorphic phantom, and the detector's CNR, SNR and spatial resolution were assessed in a clinical environment. Images obtained from spine and liver patient treatment deliveries were analyzed to verify CNR and SNR improvements. The MLI has a DQE(0) of 9.7%, about 5.7 times the reference AS-1200 detector. Improved noise performance largely drives the increase. CNR and SNR of clinical images improved three-fold compared to reference. A novel MLI was characterized and prepared for clinical translation. The MLI substantially improved DQE and CNR performance while maintaining the same resolution. Pre-clinical tests on an anthropomorphic phantom demonstrated improved performance as predicted theoretically. Preliminary patient data were analyzed, confirming improved CNR and SNR. Clinical applications are anticipated to include more accurate soft tissue tracking.
Collapse
Affiliation(s)
- T C Harris
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical school, Boston, MA, United States of America
- BioMedical Physics in Radiation Oncology, DKFZ, Heidelberg, Germany
- Department of Physics, University of Heidelberg, Heidelberg, Germany
| | - J Seco
- BioMedical Physics in Radiation Oncology, DKFZ, Heidelberg, Germany
- Department of Physics, University of Heidelberg, Heidelberg, Germany
| | - D Ferguson
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical school, Boston, MA, United States of America
| | - M Lehmann
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - P Huber
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - M Shi
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical school, Boston, MA, United States of America
- University of Massachusetts Lowell, Lowell, MA, United States of America
| | - M Jacobson
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical school, Boston, MA, United States of America
| | - I Valencia Lozano
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical school, Boston, MA, United States of America
| | - M Myronakis
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical school, Boston, MA, United States of America
| | - P Baturin
- Varian Medical System, Palo Alto, CA, United States of America
| | | | - D Morf
- Varian Medical Systems, Baden-Dattwil, Switzerland
| | - R Berbeco
- Department of Radiation Oncology, Dana Farber/Brigham and Women's Cancer Center, Harvard Medical school, Boston, MA, United States of America
| |
Collapse
|
5
|
A new registration algorithm of electronic portal imaging devices images based on the automatic detection of bone edges during radiotherapy. Sci Rep 2020; 10:10253. [PMID: 32581340 PMCID: PMC7314748 DOI: 10.1038/s41598-020-67331-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 06/03/2020] [Indexed: 11/12/2022] Open
Abstract
The precision and efficiency of the registration of megavolt-level electronic portal imaging devices (EPID) images with the naked eye in the orthogonal window are reduced. This study aims to develop a new registration algorithm with enhanced accuracy and efficiency. Ten setup errors with different translation and rotation were simulated with the phantom. For each error, one set of simulated computer tomography images and EPID images were acquired and registered with the traditional and the new method. The traditional method was performed by two senior physicists with the Varian Offline Review software. The new method is basing on the comparison of the precise contours of the same bone structure in the digital reconstruction radiography images and the EPID images, and the contours were fitted with an automatic edge detection algorithm based on gradient images. The average error of the new method was decreased by 44.44%, 28.33%, 49.09% in the translation of X, Y, and Z axes (The traditional vs. the new: X axes, 0.45 mm vs. 0.25 mm; Y axes, 0.75 mm vs. 0.35 mm; Z axes, 0.55 mm vs. 0.28 mm), 42.86% and 40.48% in the rotation of X and Z axes (The traditional vs. the new: X axes, 0.49° vs. 0.28°; Z axes, 0.42° vs. 0.25°), respectively. The average elapsed time in the new method was reduced by 11.14% (The traditional vs. the new: 44 s vs. 39.1 s). The new registration method has significant advantages of accuracy and efficiency compared with the traditional method.
Collapse
|
6
|
Myronakis M, Huber P, Lehmann M, Fueglistaller R, Jacobson M, Hu Y, Baturin P, Wang A, Shi M, Harris T, Morf D, Berbeco R. Low‐dose megavoltage cone‐beam computed tomography using a novel multi‐layer imager (MLI). Med Phys 2020; 47:1827-1835. [DOI: 10.1002/mp.14017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/27/2022] Open
Affiliation(s)
- Marios Myronakis
- Department of Radiation Oncology Dana Farber/Brigham and Women's Cancer Center Harvard Medical School Boston MA 02115USA
| | | | | | | | - Matthew Jacobson
- Department of Radiation Oncology Dana Farber/Brigham and Women's Cancer Center Harvard Medical School Boston MA 02115USA
| | - Yue‐Houng Hu
- Department of Radiation Oncology Dana Farber/Brigham and Women's Cancer Center Harvard Medical School Boston MA 02115USA
| | - Paul Baturin
- Varian Medical Systems Palo Alto CA 94304‐1030USA
| | - Adam Wang
- Varian Medical Systems Palo Alto CA 94304‐1030USA
- Radiological Sciences Laboratory Stanford University Stanford CA 94305USA
| | - Mengying Shi
- Department of Radiation Oncology Dana Farber/Brigham and Women's Cancer Center Harvard Medical School Boston MA 02115USA
- Department of Radiation Oncology University of Massachusetts Lowell MA USA
| | - Thomas Harris
- Department of Radiation Oncology Dana Farber/Brigham and Women's Cancer Center Harvard Medical School Boston MA 02115USA
| | - Daniel Morf
- Varian Medical Systems Baden CH‐5405Switzerland
| | - Ross Berbeco
- Department of Radiation Oncology Dana Farber/Brigham and Women's Cancer Center Harvard Medical School Boston MA 02115USA
| |
Collapse
|
7
|
Hu YH, Shedlock D, Wang A, Rottmann J, Baturin P, Myronakis M, Huber P, Fueglistaller R, Shi M, Morf D, Star-Lack J, Berbeco RI. Characterizing a novel scintillating glass for application to megavoltage cone-beam computed tomography. Med Phys 2019; 46:1323-1330. [PMID: 30586163 DOI: 10.1002/mp.13355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/10/2018] [Accepted: 12/16/2018] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The purpose of this study was to evaluate the performance of a prototype electric portal imaging device (EPID) with a high detective quantum efficiency (DQE) scintillator, LKH-5. Specifically, image quality in context of both planar and megavoltage (MV) cone-beam computed tomography (CBCT) is analyzed. METHODS Planar image quality in terms of modulation transfer function (MTF), noise power spectrum (NPS), and DQE are measured and compared to an existing EPID (AS-1200) using the 6 MV beamline for a Varian TrueBeam linac. Imager performance is contextualized for three-dimensional (3D), MV-CBCT performance by measuring imager lag and analyzing the expected degradation of the DQE as a function of dose. Finally, comparisons between reconstructed images of the Catphan phantom in terms of qualitative quality and signal-difference-to-noise ratio (SDNR) are made for 6 MV images using both conventional and LKH-5 EPIDs as well as for the kilovoltage (kV) on-board imager (OBI). RESULTS Analysis of the NPS reveals linearity at all measured doses using the prototype LKH-5 detector. While the first zero of the MTF is much lower for the LKH-5 detector than the conventional EPID (0.6 cycles/mm vs 1.6 cycles/mm), the normalized NPS (NNPS) multiplied by total quanta (qNNPS) of the LKH-5 detector is roughly a factor of seven to eight times lower, yielding a DQE(0) of approximately 8%. First, second, and third frame lag were measured at approximately 23%, 5%, and 1%, respectively, although no noticeable image artifacts were apparent in reconstructed volumes. Analysis of low-dose performance reveals that DQE(0) remains at 80% of its maximum value at a dose as low as 7.5 × 10-6 MU. For a 400 projection technique, this represents a total scan dose of 0.0030 MU, suggesting that if imaging doses are increased to a value typical of kV-CBCT scans (~2.7 cGy), the LKH-5 detector will retain quantum noise limited performance. Finally, comparing Catphan scans, the prototype detector exhibits much lower image noise than the conventional EPID, resulting in improved small object representation. Furthermore, SDNR of H2 O and polystyrene cylinders improved from -1.95 and 2.94 to -15 and 18.7, respectively. CONCLUSIONS Imaging performance of the prototype LKH-5 detector was measured and analyzed for both planar and 3D contexts. Improving noise transfer of the detector results in concurrent improvement of DQE(0). For 3D imaging, temporal characteristics were adequate for artifact-free performance and at relevant doses, the detector retained quantum noise limited performance. Although quantitative MTF measurements suggest poorer resolution, small object representation of the prototype imager is qualitatively improved over the conventional detector due to the measured reduction in noise.
Collapse
Affiliation(s)
- Yue-Houng Hu
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Adam Wang
- Varian Medical Systems, Palo Alto, CA, 94304-1030, USA
| | - Joerg Rottmann
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Paul Baturin
- Varian Medical Systems, Palo Alto, CA, 94304-1030, USA
| | - Marios Myronakis
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal Huber
- Varian Medical Systems, CH-5405, Baden-Dattwil, Switzerland
| | | | - Mengying Shi
- University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Daniel Morf
- Varian Medical Systems, CH-5405, Baden-Dattwil, Switzerland
| | | | - Ross I Berbeco
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
8
|
Hu YH, Jacobson MW, Shi M, Myronakis M, Wang A, Baturin P, Huber P, Fueglistaller R, Morf D, Star-Lack J, Berbeco RI. Feasibility of closed-MLC tracking using high sensitivity and multi-layer electronic portal imagers. Phys Med Biol 2018; 63:235030. [DOI: 10.1088/1361-6560/aaef60] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Hu YH, Fueglistaller R, Myronakis M, Rottmann J, Wang A, Shedlock D, Morf D, Baturin P, Huber P, Star-Lack J, Berbeco R. Physics considerations in MV-CBCT multi-layer imager design. Phys Med Biol 2018; 63:125016. [PMID: 29846180 DOI: 10.1088/1361-6560/aac8c6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Megavoltage (MV) cone-beam computed tomography (CBCT) using an electronic portal imaging (EPID) offers advantageous features, including 3D mapping, treatment beam registration, high-z artifact suppression, and direct radiation dose calculation. Adoption has been slowed by image quality limitations and concerns about imaging dose. Developments in imager design, including pixelated scintillators, structured phosphors, inexpensive scintillation materials, and multi-layer imager (MLI) architecture have been explored to improve EPID image quality and reduce imaging dose. The present study employs a hybrid Monte Carlo and linear systems model to determine the effect of detector design elements, such as multi-layer architecture and scintillation materials. We follow metrics of image quality including modulation transfer function (MTF) and noise power spectrum (NPS) from projection images to 3D reconstructions to in-plane slices and apply a task based figure-of-merit, the ideal observer signal-to-noise ratio (d') to determine the effect of detector design on object detectability. Generally, detectability was limited by detector noise performance. Deploying an MLI imager with a single scintillation material for all layers yields improvement in noise performance and d' linear with the number of layers. In general, improving x-ray absorption using thicker scintillators results in improved DQE(0). However, if light yield is low, performance will be affected by electronic noise at relatively high doses, resulting in rapid image quality degradation. Maximizing image quality in a heterogenous MLI detector (i.e. multiple different scintillation materials) is most affected by limiting total noise. However, while a second-order effect, maximizing total spatial resolution of the MLI detector is a balance between the intensity contribution of each layer against its individual MTF. So, while a thinner scintillator may yield a maximal individual-layer MTF, its quantum efficiency will be relatively low in comparison to a thicker scintillator and thus, intensity contribution may be insufficient to noticeably improve the total detector MTF.
Collapse
Affiliation(s)
- Yue-Houng Hu
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hu YH, Rottmann J, Fueglistaller R, Myronakis M, Wang A, Huber P, Shedlock D, Morf D, Baturin P, Star-Lack J, Berbeco R. Leveraging multi-layer imager detector design to improve low-dose performance for megavoltage cone-beam computed tomography. Phys Med Biol 2018; 63:035022. [PMID: 29235440 DOI: 10.1088/1361-6560/aaa160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
While megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)-the detectability index (d')-are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2 × 2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d'.
Collapse
Affiliation(s)
- Yue-Houng Hu
- Department of Radiation Oncology, Division of Medical Physics and Biophysics, Brigham and Women's Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02115, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|