1
|
Krishnamoorthy S, Surti S. Advances in Breast PET Instrumentation. PET Clin 2024; 19:37-47. [PMID: 37949606 DOI: 10.1016/j.cpet.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Dedicated breast PET scanners currently have a spatial resolution in the 1.5 to 2 mm range, and the ability to provide tomographic images and quantitative data. They are also commercially available from a few vendors. A review of past and recent advances in the development and performance of dedicated breast PET scanners is summarized.
Collapse
Affiliation(s)
- Srilalan Krishnamoorthy
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Suleman Surti
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
2
|
Sanaat A, Amini M, Arabi H, Zaidi H. The quest for multifunctional and dedicated PET instrumentation with irregular geometries. Ann Nucl Med 2024; 38:31-70. [PMID: 37952197 PMCID: PMC10766666 DOI: 10.1007/s12149-023-01881-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/09/2023] [Indexed: 11/14/2023]
Abstract
We focus on reviewing state-of-the-art developments of dedicated PET scanners with irregular geometries and the potential of different aspects of multifunctional PET imaging. First, we discuss advances in non-conventional PET detector geometries. Then, we present innovative designs of organ-specific dedicated PET scanners for breast, brain, prostate, and cardiac imaging. We will also review challenges and possible artifacts by image reconstruction algorithms for PET scanners with irregular geometries, such as non-cylindrical and partial angular coverage geometries and how they can be addressed. Then, we attempt to address some open issues about cost/benefits analysis of dedicated PET scanners, how far are the theoretical conceptual designs from the market/clinic, and strategies to reduce fabrication cost without compromising performance.
Collapse
Affiliation(s)
- Amirhossein Sanaat
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Mehdi Amini
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB, Groningen, The Netherlands.
- Department of Nuclear Medicine, University of Southern Denmark, 500, Odense, Denmark.
- University Research and Innovation Center, Óbuda University, Budapest, Hungary.
| |
Collapse
|
3
|
Abstract
Breast-specific positron imaging systems provide higher sensitivity than whole-body PET for breast cancer detection. The clinical applications for breast-specific positron imaging are similar to breast MRI including preoperative local staging and neoadjuvant therapy response assessment. Breast-specific positron imaging may be an alternative for patients who cannot undergo breast MRI. Further research is needed in expanding the field-of-view for posterior breast lesions, increasing biopsy capability, and reducing radiation dose. Efforts are also necessary for developing appropriate use criteria, increasing availability, and advancing insurance coverage.
Collapse
Affiliation(s)
- Amy M Fowler
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792-3252, USA; Department of Medical Physics, University of Wisconsin-Madison; University of Wisconsin Carbone Cancer Center, Madison, WI, USA.
| | - Kanae K Miyake
- Department of Advanced Medical Imaging Research, Graduate School of Medicine Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Raylman RR, Stolin A, Hays S, Johnson E, Lankas S, Mekonnen M, Roemer K. A dedicated breast-PET/CT scanner: Numerical observer study of lesion detection. Med Phys 2022; 49:7489-7496. [PMID: 36219487 PMCID: PMC9792429 DOI: 10.1002/mp.16033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/27/2022] [Accepted: 10/02/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dedicated, breast-specific positron emission tomography (BPET)-cone-beam computed tomography (BPET/CT) systems have been developed to improve detection and diagnosis of cancer in women with indeterminate mammograms caused by radiodense breasts. The absorption of X-rays that often vexes mammography in this subset of women does not affect the detection of the high energy annihilation photons used in PET. PET imaging of the breast, however, is subject to limitations caused by their comparatively low spatial resolution (∼2 mm) and often moderate radiotracer uptake in lesions. PURPOSE The purpose of this investigation is to explore the PET-based lesion detection capabilities of a BPET/CT scanner developed by the Department of Radiology Instrumentation group at West Virginia University. METHODS The PET component of the system consists of a rotating pair of 96 × 72 arrays of 2 × 2 × 15 mm3 LYSO scintillator elements. The cone-beam-CT component utilized a pulsed X-ray source and flat panel detector operated in portrait orientation. The density maps created by the CT scanner were used to correct the BPET data for photon attenuation and Compton scattering. The nonuniform uptake of 18 F-fluorodeoxyglucose (FDG) in normal breast tissue was emulated in a specially designed phantom consisting of an acrylic cylinder filled with a mixture of acrylic beads and liquid containing FDG. FDG-avid lesions were simulated with agar spheres (3, 4, 6, 8, and 10 mm diameters) containing vary amounts of FDG to produce target-to-background ratios (TBR) of 6:1, 8:1, and 10:1. The spheres also contained X-ray contrast agent to make even the smallest ones readily visible in CT images. Positions of all the lesions were identified in the CT images. These positions were used to extract signal present and signal absent sub-images from the PET images. The sub-images were then input to software that calculated areas-under-the-curve for two numerical model observers (Laguerre-Gauss channelized Hotelling observer and non-prewhitening matched filter). RESULTS The results showed that the smallest detectable lesion with this system is no smaller than ∼3 mm in diameter with a TBR of 6:1. Simulated lesions with diameters of 4 mm and greater were calculated to have good to excellent likelihood of detection for all TBRs tested. CONCLUSION The results from this investigation identified the detectability capabilities and limitations for a dedicated breast-PET/CT scanner. Its ability to detect relatively small simulated FDG-avid breast lesions for a range of TBRs indicates its potential for clinical application. Finally, the study used methodologies that could be applied to a detectability assessment of other PET/CT scanners.
Collapse
Affiliation(s)
- Raymond R Raylman
- Department of Radiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Alexander Stolin
- Department of Radiology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Savannah Hays
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Evan Johnson
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Sarah Lankas
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Mahder Mekonnen
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| | - Kathryn Roemer
- Department of Chemical and Biomedical Engineering, Benjamin M. Statler College of Engineering and Mineral Resources, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
5
|
PET imaging in breast cancer. Nucl Med Mol Imaging 2022. [DOI: 10.1016/b978-0-12-822960-6.00124-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
6
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
7
|
Dedicated breast CT: state of the art-Part I. Historical evolution and technical aspects. Eur Radiol 2021; 32:1579-1589. [PMID: 34342694 DOI: 10.1007/s00330-021-08179-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
Dedicated breast CT is an emerging 3D isotropic imaging technology for breast, which overcomes the limitations of 2D compression mammography and limited angle tomosynthesis while providing some of the advantages of magnetic resonance imaging. This first installment in a 2-part review describes the evolution of dedicated breast CT beginning with a historical perspective and progressing to the present day. Moreover, it provides an overview of state-of-the-art technology. Particular emphasis is placed on technical limitations in scan protocol, radiation dose, breast coverage, patient comfort, and image artifact. Proposed methods of how to address these technical challenges are also discussed. KEY POINTS: • Advantages of breast CT include no tissue overlap, improved patient comfort, rapid acquisition, and concurrent assessment of microcalcifications and contrast enhancement. • Current clinical and prototype dedicated breast CT systems differ in acquisition modes, imaging techniques, and detector types. • There are still details to be decided regarding breast CT techniques, such as scan protocol, radiation dose, breast coverage, patient comfort, and image artifact.
Collapse
|
8
|
Chaudhari AJ, Badawi RD. Application-specific nuclear medical in vivoimaging devices. Phys Med Biol 2021; 66. [PMID: 33770765 DOI: 10.1088/1361-6560/abf275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/26/2021] [Indexed: 11/11/2022]
Abstract
Nuclear medical imaging devices, such as those enabling photon emission imaging (gamma camera, single photon emission computed tomography, or positron emission imaging), that are typically used in today's clinics are optimized for assessing large portions of the human body, and are classified as whole-body imaging systems. These systems have known limitations for organ imaging, therefore application-specific devices have been designed, constructed and evaluated. These devices, given their compact nature and superior technical characteristics, such as their higher detection sensitivity and spatial resolution for organ imaging compared to whole-body imaging systems, have shown promise for niche applications. Several of these devices have further been integrated with complementary anatomical imaging devices. The objectives of this review article are to (1) provide an overview of such application-specific nuclear imaging devices that were developed over the past two decades (in the twenty-first century), with emphasis on brain, cardiac, breast, and prostate imaging; and (2) discuss the rationale, advantages and challenges associated with the translation of these devices for routine clinical imaging. Finally, a perspective on the future prospects for application-specific devices is provided, which is that sustained effort is required both to overcome design limitations which impact their utility (where these exist) and to collect the data required to define their clinical value.
Collapse
Affiliation(s)
- Abhijit J Chaudhari
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America.,Center for Molecular and Genomic Imaging, University of California Davis, Davis, CA 95616, United States of America
| | - Ramsey D Badawi
- Department of Radiology, University of California Davis, Sacramento, CA 95817, United States of America.,Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, United States of America
| |
Collapse
|
9
|
Domínguez-Jiménez DY, Alva-Sánchez H. Energy spectra due to the intrinsic radiation of LYSO/LSO scintillators for a wide range of crystal sizes. Med Phys 2021; 48:1596-1607. [PMID: 33475160 DOI: 10.1002/mp.14729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/22/2020] [Accepted: 12/21/2020] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Most detectors in current positron emission tomography (PET) scanners and prototypes use lutetium oxyorthosilicate (LSO) or lutetium yttrium oxyorthosilicate (LYSO) scintillators. The aim of this work is to provide a complete set of background energy spectra, due to the scintillator intrinsic radioactivity, for a wide range of crystal sizes. METHODS An analytical model, developed and validated in a previous work, was used to obtain the background energy spectra of square base cuboids of different dimensions. The model uses the photon absorption probabilities of the three gamma rays (88, 202, and 307 keV) emitted following the beta decay of 176 Lu to 176 Hf excited states. These probabilities were obtained for each crystal size considered in this work from Monte Carlo simulations using the PENELOPE code. The probabilities are then used to normalize and shift the beta spectrum to the corresponding energy value of the simultaneous detection of one, two, or three gamma rays in the scintillator. The simulated cuboids had side lengths of 5, 10, 20, 30, 40, 50, and 60 mm and crystal thickness T = 2.5, 5, 10, 15, and 20 mm. From these results a complete set of energy spectra, including intermediate dimensions, were obtained. In addition, LYSO and LSO were compared in terms of their analytical background energy spectra for two crystal sizes. The analytical spectra were convolved using a variable Gaussian kernel to account for the energy resolution of a typical detector. A parameterization of the photon absorption probabilities for each gamma ray energy as a function of the cuboid volume to surface area ratio was obtained. RESULTS A data set of L(Y)SO background energy spectra was obtained and is available for the reader as 2D histograms. The model accurately predicts the structure of the energy spectra including the relative peak and valley intensities. The data allow visualizing how the structure evolves with increasing crystal length and thickness. Lutetium yttrium oxyorthosilicate and LSO present very similar background energy spectra for the range of sizes studied in this work and therefore the data generated can be confidently used for both scintillator materials. The filtered spectra showed a variable shift in the main peaks, depending on crystal size, alerting that to achieve a correct detector calibration using the background spectrum is not straight forward and requires precise data analysis and measurements. In addition, we found that square base L(Y)SO cuboids with same volume to surface area ratio have background spectra with the same structure. CONCLUSIONS We present the energy spectra of L(Y)SO crystal of different sizes which will be very useful for industry and research groups developing and simulating detectors for positron imaging applications in terms of calibration, quality assurance, crystal maps, detector fine gain tuning, background reduction and other applications using the long-lived 176 Lu source. We analyzed the data produced in this work and found that crystal cuboids with equal volume to surface area ratio produce the same background energy spectra, a conclusion that simplifies its calculation and clarifies why the same energy spectrum is observed under different experimental setups.
Collapse
Affiliation(s)
| | - Héctor Alva-Sánchez
- Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico City, 01000, Mexico
| |
Collapse
|
10
|
Krishnamoorthy S, Vent T, Barufaldi B, Maidment ADA, Karp JS, Surti S. Evaluating attenuation correction strategies in a dedicated, single-gantry breast PET-tomosynthesis scanner. Phys Med Biol 2020; 65:235028. [PMID: 33113520 PMCID: PMC7870546 DOI: 10.1088/1361-6560/abc5a8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We are developing a dedicated, combined breast positron emission tomography (PET)-tomosynthesis scanner. Both the PET and digital breast tomosynthesis (DBT) scanners are integrated in a single gantry to provide spatially co-registered 3D PET-tomosynthesis images. The DBT image will be used to identify the breast boundary and breast density to improve the quantitative accuracy of the PET image. This paper explores PET attenuation correction (AC) strategies that can be performed with the combined breast PET-DBT scanner to obtain more accurate, quantitative high-resolution 3D PET images. The PET detector is comprised of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals. The PET scanner utilizes two detector heads separated by either 9 or 11 cm, with each detector head having a 4 × 2 arrangement of PET detectors. GEANT4 Application for Tomographic Emission simulations were performed using an anthropomorphic breast phantom with heterogeneous attenuation under clinical DBT-compression. FDG-avid lesions, each 5 mm in diameter with 8:1 uptake, were simulated at four locations within the breast. Simulations were performed with a scan time of 2 min. PET AC was performed using the actual breast simulation model as well as DBT reconstructed volumetric images to derive the breast outline. In addition to using the known breast density as defined by the breast model, we also modeled it as uniform patient-independent soft-tissue, and as a uniform patient-specific material derived from breast tissue composition. Measured absolute lesion uptake was used to evaluate the quantitative accuracy of performing AC using the various strategies. This study demonstrates that AC is necessary to obtain a closer estimate of the true lesion uptake and background activity in the breast. The DBT image dataset assists in measuring lesion uptake with low bias by facilitating accurate breast delineation as well as providing accurate information related to the breast tissue composition. While both the uniform soft-tissue and patient-specific material approaches provides a close estimate to the ground truth, <5% bias can be achieved by using a uniform patient-specific material to define the attenuation map.
Collapse
Affiliation(s)
- Srilalan Krishnamoorthy
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Trevor Vent
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Bruno Barufaldi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Andrew D A Maidment
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States of America
| |
Collapse
|
11
|
MacDonald LR, Lo JY, Sturgeon GM, Zeng C, Harrison RL, Kinahan PE, Segars WP. Impact of Using Uniform Attenuation Coefficients for Heterogeneously Dense Breasts in a Dedicated Breast PET/X-ray Scanner. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:585-593. [PMID: 33163753 DOI: 10.1109/trpms.2020.2991120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We investigated PET image quantification when using a uniform attenuation coefficient (μ) for attenuation correction (AC) of anthropomorphic density phantoms derived from high-resolution breast CT scans. A breast PET system was modeled with perfect data corrections except for AC. Using uniform μ for AC resulted in quantitative errors roughly proportional to the difference between μ used in AC (μ AC) and local μ, yielding approximately ± 5% bias, corresponding to the variation of μ for 511 keV photons in breast tissue. Global bias was lowest when uniform μ AC was equal to the phantom mean μ (μ mean). Local bias in 10-mm spheres increased as the sphere μ deviated from μ mean, but remained only 2-3% when the μ sphere was 6.5% higher than μ mean. Bias varied linearly with and was roughly proportional to local μ mismatch. Minimizing local bias, e.g., in a small sphere, required the use of a uniform μ value between the local μ and the μ mean. Thus, biases from using uniform-μ AC are low when local μ sphere is close to μ mean. As the μ sphere increasingly differs from the phantom μ mean, bias increases, and the optimal uniform μ is less predictable, having a value between μ sphere and the phantom μ mean.
Collapse
Affiliation(s)
| | - Joseph Y Lo
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC 27705
| | - Gregory M Sturgeon
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC 27705
| | - Chengeng Zeng
- University of Washington Radiology Department, Seattle, WA 98195
| | | | - Paul E Kinahan
- University of Washington Radiology Department, Seattle, WA 98195
| | - William Paul Segars
- Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, NC 27705
| |
Collapse
|