1
|
Malatesta T, Scaggion A, Giglioli FR, Belmonte G, Casale M, Colleoni P, Falco MD, Giuliano A, Linsalata S, Marino C, Moretti E, Richetto V, Sardo A, Russo S, Mancosu P. Patient specific quality assurance in SBRT: a systematic review of measurement-based methods. Phys Med Biol 2023; 68:21TR01. [PMID: 37625437 DOI: 10.1088/1361-6560/acf43a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 08/27/2023]
Abstract
This topical review focuses on Patient-Specific Quality Assurance (PSQA) approaches to stereotactic body radiation therapy (SBRT). SBRT requires stricter accuracy than standard radiation therapy due to the high dose per fraction and the limited number of fractions. The review considered various PSQA methods reported in 36 articles between 01/2010 and 07/2022 for SBRT treatment. In particular comparison among devices and devices designed for SBRT, sensitivity and resolution, verification methodology, gamma analysis were specifically considered. The review identified a list of essential data needed to reproduce the results in other clinics, highlighted the partial miss of data reported in scientific papers, and formulated recommendations for successful implementation of a PSQA protocol.
Collapse
Affiliation(s)
- Tiziana Malatesta
- Medical Physics Unit, Department of Radiotherapy and Medical Oncology and Radiology, Fatebenefratelli Isola Tiberina-Gemelli Isola Hospital, Rome, Italy
| | - Alessandro Scaggion
- Medical Physics Department, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | | | - Gina Belmonte
- Medical Physics Department, San Luca Hospital, Lucca, Italy
| | - Michelina Casale
- Medical Physics Unit, Azienda Ospedaliera 'Santa Maria', Terni, Italy
| | - Paolo Colleoni
- UOC Medical Physics Unit-ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Maria Daniela Falco
- Department of Radiation Oncology, 'SS. Annunziata' Hospital, 'G. D'Annunzio' University, Chieti, Italy
| | - Alessia Giuliano
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Stefania Linsalata
- Medical Physics Unit, Pisa University Hospital 'Azienda Ospedaliero-Universitaria Pisana', Pisa, Italy
| | - Carmelo Marino
- Medical Physics and Radioprotection Unit, Humanitas Istituto Clinico Catanese, Misterbianco (CT), Italy
| | - Eugenia Moretti
- Division of Medical Physics, Department of Oncology, ASUFC Udine, Italy
| | - Veronica Richetto
- Medical Physics Unit, A.O.U. Città della Salute e della Scienza di Torino, Torino, Italy
| | - Anna Sardo
- UOSD Medical Physics, ASLCN2, Verduno, Italy
| | - Serenella Russo
- Medical Physics Unit, Azienda USL Toscana Centro, Florence, Italy
| | - Pietro Mancosu
- Medical Physics Unit of Radiotherapy Department, IRCCS Humanitas Research Hospital, Rozzano - Milano, Italy
| |
Collapse
|
2
|
Cho JD, Jin H, Jung S, Son J, Choi CH, Park JM, Kim JS, Kim JI. Development of a quasi-3D dosimeter using radiochromic plastic for patient-specific quality assurance. Med Phys 2023; 50:6624-6636. [PMID: 37408321 DOI: 10.1002/mp.16541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/01/2023] [Accepted: 05/17/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Patient-specific QA verification ensures patient safety and treatment by verifying radiation delivery and dose calculations in treatment plans for errors. However, a two-dimensional (2D) dose distribution is insufficient for detecting information on the three-dimensional (3D) dose delivered to the patient. In addition, 3D radiochromic plastic dosimeters (RPDs) such as PRESAGE® represent the volume effect in which the dosimeters have different sensitivities according to the size of the dosimeters. Therefore, to solve the volume effect, a Quasi-3D dosimetry system was proposed to perform patient-specific QA using predetermined-sized and multiple RPDs. PURPOSE For patient-specific quality assurance (QA) in radiation treatment, this study aims to assess a quasi-3D dosimetry system using an RPD. METHODS Gamma analysis was performed to verify the agreement between the measured and estimated dose distributions of intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). We fabricated cylindrical RPDs and a quasi-3D dosimetry phantom. A practicability test for a pancreatic patient utilized a quasi-3D dosimetry device, an in-house RPD, and a quasi-3D phantom. The dose distribution of the VMAT design dictated the placement of nine RPDs. Moreover, a 2D diode array detector was used for 2D gamma analysis (MapCHECK2). The patient-specific QA was performed for IMRT, VMAT, and stereotactic ablative radiotherapy (SABR) in 20 prostate and head-and-neck patients. For each patient, six RPDs were positioned according to the dose distribution. VMAT SABR and IMRT/VMAT plans employed a 2%/2 mm gamma criterion, whereas IMRT/VMAT plans used a 3%/2 mm gamma criterion, a 10% threshold value, and a 90% passing rate tolerance. 3D gamma analysis was conducted using the 3D Slicer software. RESULTS The average gamma passing rates with 2%/2 mm and 3%/3 mm criteria for relative dose distribution were 91.6% ± 1.4% and 99.4% ± 0.7% for the 3D gamma analysis using the quasi-3D dosimetry system, respectively, and 97.5% and 99.3% for 2D gamma analysis using MapCHECK2, respectively. The 3D gamma analysis for patient-specific QA of 20 patients showed passing rates of over 90% with 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria. CONCLUSIONS The quasi-3D dosimetry system was evaluated by performing patient-specific QAs with RPDs and quasi-3D phantom. The gamma indices for all RPDs showed more than 90% for 2%/2 mm, 3%/2 mm, and 3%/3 mm criteria. We verified the feasibility of a quasi-3D dosimetry system by performing the conventional patient-specific QA with the quasi-3D dosimeters.
Collapse
Affiliation(s)
- Jin Dong Cho
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyeongmin Jin
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Seongmoon Jung
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Jaeman Son
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Chang Heon Choi
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jong Min Park
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung-In Kim
- Department of Radiation Oncology, Seoul National University Hospital, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
- Department of Radiation Oncology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
3
|
Dosimetrical assessment of jaw tracking technique in volumetric modulated arc therapy for a sample of patients with lateralised targets. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Abstract
Introduction:
In modulated radiotherapy treatments with the jaw tracking technique (JTT), the collimator jaws can dynamically follow the multileaf collimator apertures and reduce radiation leakage. This reduction protects normal tissue from unwanted doses. Previous research has highlighted the importance of defining which patients will benefit most from JTT. Besides, some authors have expressed their concerns about possible increases in monitor units (MUs). Treatments of patients with peripheral targets and isocentre located in the patient’s midline are of particular interest. The current work assessed the effect of JTT on these cases.
Methods:
JTT plans for thirty-two patients were compared to plans with the static jaws technique. The volumes of normal tissue receiving 5 Gy (V5), 10 Gy (V10) and 20 Gy (V20), mean dose (Dmean), target coverage parameters D95, D2% and Paddick’s conformity index (PCI) were compared. MUs were also registered for comparisons. The decrease in the jaws opening with JTT was correlated to the decrease in dose values in normal tissue.
Results:
Small decreases were observed in D95 and in D2% values, without statistical significance. A 5% average decrease in PCI values was noticed as well as significant decreases in V5, V10 and Dmean values, 9% on average. A 3% decrease in V20 was also observed. The number of MUs decreased by 2%. A significant correlation was found between the reduction of the secondary collimation opening areas and the dose delivered to normal tissue.
Conclusions:
JTT technique improved normal tissue protection in volumetric modulated arc therapy treatments for the patients included in the present study.
Collapse
|
4
|
Varasteh M, Ali A, Esteve S, Jeevanandam P, Göpfert F, Irvine DM, Hounsell AR, McGarry CK. Patient specific evaluation of breathing motion induced interplay effects. Phys Med 2023; 105:102501. [PMID: 36529007 DOI: 10.1016/j.ejmp.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 09/18/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE In lung SABR, interplay between target motion and dynamically changing beam parameters can affect the target coverage. To identify the potential need for motion-management techniques, a comprehensive methodology for pre-treatment estimation of interplay effects has been implemented. METHODS In conjunction with an alpha-version of VeriSoft and OCTAVIUS 4D (PTW-Freiburg, Germany), a method is presented to calculate a virtual, motion-simulated 3D dose distribution based on measurement data acquired in a stationary phantom and a subsequent correction with time-dependent target-motion patterns. In-house software has been developed to create user-defined motion patterns based on either simplistic or real patient-breathing patterns including the definition of the exact beam starting phase. The approach was validated by programmed couch and phantom motion during beam delivery. Five different breathing traces with extremely altered beam-on phases (0 % and 50 % respiratory phase) and a superior-inferior motion altitude of 25 mm were used to probe the influence of interplay effects for 14 lung SABR plans. Gamma analysis (2 %/2mm) was used for quantification. RESULTS Validation measurements resulted in >98 % pass rates. Regarding the interplay effect evaluation, gamma pass rates of <92 % were observed for sinusoidal breathing patterns with <25 number of breaths per delivery time (NBs) and realistic patterns with <18 NBs. CONCLUSION The potential influence of interplay effects on the target coverage is highly dependent on the patient's breathing behaviour. The presented moving-platform-free approach can be used for verification of ITV-based treatment plans to identify whether the clinical goals are achievable without explicit use of a respiratory management technique.
Collapse
Affiliation(s)
- Mohammad Varasteh
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Asmaa Ali
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK
| | - Sergio Esteve
- Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, UK
| | | | | | - Denise M Irvine
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK; Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, UK
| | - Alan R Hounsell
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK; Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, UK
| | - Conor K McGarry
- Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK; Northern Ireland Cancer Centre, Belfast City Hospital, Belfast, UK
| |
Collapse
|
5
|
Decabooter E, Swinnen AC, Öllers MC, Göpfert F, Verhaegen F. Operation and calibration of the novel PTW 1600SRS detector for the verification of single isocenter stereotactic radiosurgery treatments of multiple small brain metastases. Br J Radiol 2021; 94:20210473. [PMID: 34111967 PMCID: PMC8248213 DOI: 10.1259/bjr.20210473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Objectives: The aim of this work was to evaluate the operation of the 1600SRS detector and to develop a calibration procedure for verifying the dose delivered by a single isocenter stereotactic radiosurgery (SRS) treatment of small multiple brain metastases (BM). Methods: 14 clinical treatment cases were selected with the number of BM ranging from 2 to 11. The dosimetric agreement was investigated between the calculated and the measured dose by an OCTAVIUS 1600SRS array detector in an OCTAVIUS 4D phantom equipped with dedicated SRS top. The cross-calibration procedure deviated from the manufacturer’s as it applied field sizes and dose rates corresponding to the volumetric modulated arc therapy segments in each plan. Results: Measurements with a plan specific cross-calibration showed mean ± standard deviation (SD) agreement scores for cut-off values 50%, 80%, 95%, of 98.6 ± 1.7%, 96.5 ± 4.6%, 97.3 ± 4.4% for the 6 MV plans respectively, and 98.6 ± 1.5%, 96.6 ± 4.0% 96.4 ± 6.3%, for the 6 MV flattening filter free (FFF) plans respectively. Using the default calibration procedure instead of the plan specific calibration could lead to a combined systematic dose offset of 4.1% for our treatment plans. Conclusion: The 1600SRS detector array with the 4D phantom offers an accurate solution to perform routine quality assurance measurements of single isocenter SRS treatments of multiple BM. This work points out the necessity of an adapted cross-calibration procedure. Advances in knowledge: A dedicated calibration procedure enables accurate dosimetry with the 1600SRS detector for small field single isocenter SRS treatment of multiple brain metastases for a large amount of BM.
Collapse
Affiliation(s)
- Esther Decabooter
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ans Cc Swinnen
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Michel C Öllers
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | | | - Frank Verhaegen
- Department of Radiation Oncology (Maastro clinic), GROW School for Oncology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|