1
|
Cramer J, Ikuta I, Zhou Y. How to Implement Clinical 7T MRI-Practical Considerations and Experience with Ultra-High-Field MRI. Bioengineering (Basel) 2024; 11:1228. [PMID: 39768046 PMCID: PMC11673481 DOI: 10.3390/bioengineering11121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
The implementation of clinical 7T MRI presents both opportunities and challenges for advanced medical imaging. This tutorial provides practical considerations and experiences with 7T MRI in clinical settings. We first explore the history and evolution of MRI technology, highlighting the benefits of increased signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and susceptibility at 7T. Technical challenges such as increased susceptibility artifacts and RF inhomogeneity are also discussed, along with innovative adaptations. This review also discusses hardware and software considerations, including new parallel transmission head coils and advanced image processing techniques to optimize image quality. Safety considerations, such as managing tissue heating and susceptibility to artifacts, are also discussed. Additionally, clinical applications of 7T MRI are examined, focusing on neurological conditions such as epilepsy, multiple sclerosis, and vascular imaging. Emerging trends in the use of 7T MRI for spectroscopy, perfusion imaging, and multinuclear imaging are explored, with insights into the future of ultra-high-field MRI in clinical practice. This review aims to provide clinicians, technologists, and researchers with a roadmap for successfully implementing 7T MRI in both research and clinical environments.
Collapse
Affiliation(s)
| | | | - Yuxiang Zhou
- Department of Radiology, Mayo Clinic Arizona, 5711 E Mayo Blvd, Phoenix, AZ 85054, USA
| |
Collapse
|
2
|
Jacobs P, Fagan AJ. The effect of frequency (64-498 MHz) on specific absorption rate adjacent to metallic orthopedic screws in MRI: A numerical simulation study. Med Phys 2024; 51:1074-1082. [PMID: 38116822 PMCID: PMC10922637 DOI: 10.1002/mp.16902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/04/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND The imaging of patients with implanted electrically-conductive devices via magnetic resonance imaging at ultra-high fields is hampered by uncertainties relating to the potential for inducing tissue heating adjacent to the implant due to coupling of energy from the incident electromagnetic field into the implant. Existing data in the peer-reviewed literature of comparisons across field strengths of tissue heating and its surrogate, the specific absorption rate (SAR), is scarce and contradictory, leading to further doubts pertaining to the safety of imaging patients with such devices. PURPOSE The radiofrequency-induced SAR adjacent to orthopedic screws of varying length and at frequencies of 64 to 498 MHz was investigated via full-wave electromagnetic simulations, to provide an accurate comparison of SAR across MRI field strengths. METHODS Dipole antennas were used for RF transmission to achieve a uniform electric field tangential to the screws located 120 mm above the antenna midpoints, embedded in a bone-mimicking material. The input power to the antennas was constrained to achieve the following targets without the screw present: (i) E = 100 V/m, (ii) B1 + = 2 μT, and (iii) global-average-SAR = 3.2 W/kg. Simulations were performed with a spatial resolution of 0.2 mm in the volume surrounding the screws, resulting in 76-137 MCells, noting the maximum 1 g-averaged SAR value in each case. Simulations were repeated at 128 and 297 MHz for screws embedded in muscle tissue. RESULTS The peak SAR, occurring at the resonant screw length, substantially increased as the frequency decreased when the input power to the dipole antenna was constrained to achieve constant electric field in background tissue at the screws' locations. A similar pattern was observed when constraining input power to achieve constant B1 + and global-average-SAR. The dielectric properties of the tissue in which the screws were embedded dominated the SAR comparisons between 297 and 128 MHz. CONCLUSIONS The study design allowed for a direct comparison to be performed of SAR across frequencies and implant lengths without the confounding effect of variable incident electric field. Lower frequencies produced substantially larger SAR values for implants approaching the resonant length for the worst-case uniform incident electric field along the screws' length. The data may inform risk-benefit assessments for imaging patients with orthopedic implants at the new clinical field strength of 7 Tesla.
Collapse
Affiliation(s)
- Paul Jacobs
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew J Fagan
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Choi CH, Webb A, Orzada S, Kelenjeridze M, Shah NJ, Felder J. A Review of Parallel Transmit Arrays for Ultra-High Field MR Imaging. IEEE Rev Biomed Eng 2024; 17:351-368. [PMID: 37022919 DOI: 10.1109/rbme.2023.3244132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Parallel transmission (pTX) techniques are required to tackle a number of challenges, e.g., the inhomogeneous distribution of the transmit field and elevated specific absorption rate (SAR), in ultra-high field (UHF) MR imaging. Additionally, they offer multiple degrees of freedom to create temporally- and spatially-tailored transverse magnetization. Given the increasing availability of MRI systems at 7 T and above, it is anticipated that interest in pTX applications will grow accordingly. One of the key components in MR systems capable of pTX is the design of the transmit array, as this has a major impact on performance in terms of power requirements, SAR and RF pulse design. While several reviews on pTX pulse design and the clinical applicability of UHF exist, there is currently no systematic review of pTX transmit/transceiver coils and their associated performance. In this article, we analyze transmit array concepts to determine the strengths and weaknesses of different types of design. We systematically review the different types of individual antennas employed for UHF, their combination into pTX arrays, and methods to decouple the individual elements. We also reiterate figures-of-merit (FoMs) frequently employed to describe the performance of pTX arrays and summarize published array designs in terms of these FoMs.
Collapse
|
4
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. An 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. NMR IN BIOMEDICINE 2023; 36:e5002. [PMID: 37439129 PMCID: PMC10733907 DOI: 10.1002/nbm.5002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency (RF) coil solutions for ultrahigh field imaging; however, very few commercial and research 7-T RF coils currently exist for the spinal cord, and in particular, those with parallel transmission (pTx) capabilities. This work presents the design, testing, and validation of a pTx/Rx coil for the human neck and cervical/upper thoracic spinal cord. The pTx portion is composed of eight dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made up of twenty semiadaptable overlapping loops to produce high signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while also being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B1 + uniformity, power efficiency, and/or specific absorption rate efficiency. B1 + homogeneity, SNR, and g-factor were evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montréal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
5
|
Ladd ME, Quick HH, Speck O, Bock M, Doerfler A, Forsting M, Hennig J, Ittermann B, Möller HE, Nagel AM, Niendorf T, Remy S, Schaeffter T, Scheffler K, Schlemmer HP, Schmitter S, Schreiber L, Shah NJ, Stöcker T, Uder M, Villringer A, Weiskopf N, Zaiss M, Zaitsev M. Germany's journey toward 14 Tesla human magnetic resonance. MAGMA (NEW YORK, N.Y.) 2023; 36:191-210. [PMID: 37029886 PMCID: PMC10140098 DOI: 10.1007/s10334-023-01085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/09/2023]
Abstract
Multiple sites within Germany operate human MRI systems with magnetic fields either at 7 Tesla or 9.4 Tesla. In 2013, these sites formed a network to facilitate and harmonize the research being conducted at the different sites and make this technology available to a larger community of researchers and clinicians not only within Germany, but also worldwide. The German Ultrahigh Field Imaging (GUFI) network has defined a strategic goal to establish a 14 Tesla whole-body human MRI system as a national research resource in Germany as the next progression in magnetic field strength. This paper summarizes the history of this initiative, the current status, the motivation for pursuing MR imaging and spectroscopy at such a high magnetic field strength, and the technical and funding challenges involved. It focuses on the scientific and science policy process from the perspective in Germany, and is not intended to be a comprehensive systematic review of the benefits and technical challenges of higher field strengths.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto von Guericke University Magdeburg, Magdeburg, Germany
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Center for Behavioural Brain Sciences, Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Michael Bock
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael Forsting
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany
| | - Jürgen Hennig
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| | - Bernd Ittermann
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Harald E Möller
- Methods and Development Group Nuclear Magnetic Resonance, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Stefan Remy
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Leibniz Institute for Neurobiology (LIN), Magdeburg, Germany
| | - Tobias Schaeffter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Klaus Scheffler
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | | | - Sebastian Schmitter
- Medical Physics and Metrological Information Technology, Physikalisch-Technische Bundesanstalt (PTB), Berlin, Germany
| | - Laura Schreiber
- Department of Cardiovascular Imaging, Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Tony Stöcker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
| | - Moritz Zaiss
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Maxim Zaitsev
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
| |
Collapse
|
6
|
Wiesmueller M, Meixner CR, Weber M, Kesting M, Nagel AM, Wuest W, May MS, Roemer FW, Uder M, Heiss R. Time-of-Flight Angiography in Ultra-High-Field 7 T MRI for the Evaluation of Peroneal Perforator Arteries Before Osseomyocutaneous Flap Surgery. Invest Radiol 2023; 58:216-222. [PMID: 36165876 PMCID: PMC9914154 DOI: 10.1097/rli.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVES Presurgical identification and morphologic characterization of the peroneal perforator arteries (PPAs) are essential for osseomyocutaneous flap surgery. The aim of this study was to evaluate PPAs using time-of-flight (TOF) angiography in 7 T magnetic resonance imaging in comparison with dual-energy computed tomographic angiography (CTA). MATERIALS AND METHODS In this prospective study, TOF angiography and CTA of both lower legs were acquired before flap surgery from 07/2019 to 02/2020. Magnetic resonance imaging was performed using a dedicated 28-channel knee coil with an acquisition time of 9:55 minutes (voxel size: 0.4 × 0.4 × 0.8 mm). Computed tomographic angiography was acquired with a third-generation dual-source computed tomography on the same day. Virtual monoenergetic reconstructions at 40 keV photon energy served as the standard of reference for PPA identification and subtyping. Two independent readers assessed the image quality, quantity, length assessment, and classification according to surgical considerations of PPAs for TOF angiography and CTA. Both TOF angiography and CTA were used for presurgical flap design and were evaluated by an orofacial surgeon. RESULTS Ten patients (mean age, 59.9 ± 14.9 years; 7 men) were included. Time-of-flight angiography and CTA identified 53 and 51 PPAs in total, respectively. Time-of-flight angiography showed superior image quality (both readers, P < 0.05). Time-of-flight angiography enabled specific classification of PPA subtypes more often (53 vs 39; P < 0.05), and both readers reported higher diagnostic confidence for TOF angiography than CTA in all patients (interrater agreement κ = 0.8; P < 0.05). Regarding length assessment, PPAs were significantly more conspicuous with TOF angiography (TOF mean , 50 ± 11 mm; CTA mean , 40 ± 9 mm; P = 0.001). In comparison with CTA, TOF angiography prospectively changed the orofacial surgeon's final decision on the presurgical selected PPAs in 60% of cases. CONCLUSIONS Presurgical assessment of PPAs is feasible using TOF in 7 T magnetic resonance imaging. Moreover, TOF angiography was superior to CTA for classifying and identifying PPAs, which may facilitate the planning of reconstructive surgery.
Collapse
Affiliation(s)
| | | | - Manuel Weber
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Marco Kesting
- Department of Oral and Maxillofacial Surgery, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M. Nagel
- From the Institute of Radiology, University Hospital Erlangen
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Wolfgang Wuest
- From the Institute of Radiology, University Hospital Erlangen
| | - Matthias S. May
- From the Institute of Radiology, University Hospital Erlangen
| | - Frank W. Roemer
- From the Institute of Radiology, University Hospital Erlangen
- Quantitative Imaging Center (QIC), Department of Radiology, Boston University School of Medicine, Massachusetts
| | - Michael Uder
- From the Institute of Radiology, University Hospital Erlangen
| | - Rafael Heiss
- From the Institute of Radiology, University Hospital Erlangen
| |
Collapse
|
7
|
Rios NL, Gilbert KM, Papp D, Cereza G, Foias A, Rangaprakash D, May MW, Guerin B, Wald LL, Keil B, Stockmann JP, Barry RL, Cohen-Adad J. 8-channel Tx dipole and 20-channel Rx loop coil array for MRI of the cervical spinal cord at 7 Tesla. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.08.527664. [PMID: 36798276 PMCID: PMC9934596 DOI: 10.1101/2023.02.08.527664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The quality of cervical spinal cord images can be improved by the use of tailored radiofrequency coil solutions for ultra-high field imaging; however, very few commercial and research 7 Tesla radiofrequency coils currently exist for the spinal cord, and in particular those with parallel transmit capabilities. This work presents the design, testing and validation of a pTx/Rx coil for the human neck and cervical/upper-thoracic spinal cord. The pTx portion is composed of 8 dipoles to ensure high homogeneity over this large region of the spinal cord. The Rx portion is made of 20 semi-adaptable overlapping loops to produce high Signal-to-noise ratio (SNR) across the patient population. The coil housing is designed to facilitate patient positioning and comfort, while being tight fitting to ensure high sensitivity. We demonstrate RF shimming capabilities to optimize B 1 + uniformity, power efficiency and/or specific absorption rate (SAR) efficiency. B 1 + homogeneity, SNR and g-factor was evaluated in adult volunteers and demonstrated excellent performance from the occipital lobe down to the T4-T5 level. We compared the proposed coil with two state-of-the-art head and head/neck coils, confirming its superiority in the cervical and upper-thoracic regions of the spinal cord. This coil solution therefore provides a convincing platform for producing the high image quality necessary for clinical and research scanning of the upper spinal cord.
Collapse
Affiliation(s)
- Nibardo Lopez Rios
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, ON, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - Alexandru Foias
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
| | - D. Rangaprakash
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Markus W. May
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Bastien Guerin
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Boris Keil
- Institute of Medical Physics and Radiation Protection, University of Applied Sciences Mittelhessen, Giessen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Marburg, Philipps University of Marburg, Marburg, Germany
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Robert L. Barry
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard-Massachusetts Institute of Technology Health Sciences & Technology, Cambridge, MA, USA
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montréal, Montreal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de Montréal, Montreal, QC, Canada
- Mila – Quebec AI Institute, Montreal, QC, Canada
- Centre de recherche du CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
9
|
Stelter JK, Ladd ME, Fiedler TM. Numerical comparison of local transceiver arrays of fractionated dipoles and microstrip antennas for body imaging at 7 T. NMR IN BIOMEDICINE 2022; 35:e4722. [PMID: 35226966 DOI: 10.1002/nbm.4722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/28/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Longitudinally orientated dipoles and microstrip antennas have both demonstrated superior results as RF transmit elements for body imaging at 7 T MRI, and are as of today the most commonly used transmit elements. In this study, the performances of the two antenna concepts were compared for use in local RF antenna arrays by numerical simulations. Antenna elements investigated are the fractionated dipole and the microstrip line with meander structures. Phantom simulations with a single antenna element were performed and evaluated with regard to specific absorption rate (SAR) efficiency in the center of the subject. Simulations of array configurations with 8 and 16 elements were performed with anatomical body models. Both antenna elements were combined with a loop coil to compare hybrid configurations. Singular value decomposition of the B1+ fields, RF shimming, and calculation of the voxel-wise power and SAR efficiencies were performed in regions of interest with varying sizes to evaluate the transmit performance. The signal-to-noise ratio (SNR) was evaluated to estimate the receive performance. Simulated data show similar transmit profiles for the two antenna types in the center of the phantom (penetration depth > 20 mm). For body imaging, no considerable differences were determined for the different antenna configurations with regard to the transmit performance. Results show the advantage of 16 transmit channels compared with today's commonly used 8-channel systems (minimum RF shimming excitation error of 4.7% (4.3%) versus 2.7% (2.8%) for the 8-channel and 16-channel configurations with the microstrip antennas in a (5 cm)3 cube in the center of a male (female) body model). Highest SNR is achieved for the 16-channel configuration with fractionated dipoles. The combination of either fractionated dipoles or microstrip antennas with loop coils is more favorable with regard to the transmit performance compared with only increasing the number of elements.
Collapse
Affiliation(s)
- Jonathan K Stelter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
10
|
Schoen N, Seifert F, Petzold J, Metzger GJ, Speck O, Ittermann B, Schmitter S. The Impact of Respiratory Motion on Electromagnetic Fields and Specific Absorption Rate in Cardiac Imaging at 7T. Magn Reson Med 2022; 88:2645-2661. [PMID: 35906923 DOI: 10.1002/mrm.29402] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To present electromagnetic simulation setups for detailed analyses of respiration's impact on B 1 + $$ {B}_1^{+} $$ and E-fields, local specific absorption rate (SAR) and associated safety-limits for 7T cardiac imaging. METHODS Finite-difference time-domain electromagnetic field simulations were performed at five respiratory states using a breathing body model and a 16-element 7T body transceiver RF-coil array. B 1 + $$ {B}_1^{+} $$ and SAR are analyzed for fixed and moving coil configurations. SAR variations are investigated using phase/amplitude shimming considering (i) a local SAR-controlled mode (here SAR calculations consider RF amplitudes and phases) and (ii) a channel-wise power-controlled mode (SAR boundary calculation is independent of the channels' phases, only dependent on the channels' maximum amplitude). RESULTS Respiration-induced variations of both B 1 + $$ {B}_1^{+} $$ amplitude and phase are observed. The flip angle homogeneity depends on the respiratory state used for B 1 + $$ {B}_1^{+} $$ shimming; best results were achieved for shimming on inhale and exhale simultaneously ( | Δ C V | < 35 % $$ \mid \Delta CV\mid <35\% $$ ). The results reflect that respiration impacts position and amplitude of the local SAR maximum. With the local-SAR-control mode, a safety factor of up to 1.4 is needed to accommodate for respiratory variations while the power control mode appears respiration-robust when the coil moves with respiration (SAR peak decrease: 9% exhale→inhale). Instead, a spatially fixed coil setup yields higher SAR variations with respiration. CONCLUSION Respiratory motion does not only affect the B 1 + $$ {B}_1^{+} $$ distribution and hence the image contrast, but also location and magnitude of the peak spatial SAR. Therefore, respiration effects may need to be included in safety analyses of RF coils applied to the human thorax.
Collapse
Affiliation(s)
- Natalie Schoen
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Frank Seifert
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Johannes Petzold
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Oliver Speck
- Otto von Guericke University, Magdeburg, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.,Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
He X, Schmidt S, Zbýň Š, Haluptzok T, Moeller S, Metzger GJ. Improved TSE imaging at ultrahigh field using nonlocalized efficiency RF shimming and acquisition modes optimized for refocused echoes (AMORE). Magn Reson Med 2022; 88:1702-1719. [PMID: 35692053 PMCID: PMC9339473 DOI: 10.1002/mrm.29318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/06/2022]
Abstract
Purpose To develop and evaluate a novel RF shimming optimization strategy tailored to improve the transmit efficiency in turbo spin echo imaging when performing time‐interleaved acquisition of modes (TIAMO) at ultrahigh fields. Theory and Methods A nonlocalized efficiency shimming cost function is proposed and extended to perform TIAMO using acquisition modes optimized for refocused echoes (AMORE). The nonlocalized efficiency shimming was demonstrated in brain and knee imaging at 7 Tesla. Phantom and in vivo torso imaging studies were performed to compare the performance between AMORE and previously proposed TIAMO mode optimizations with and without localized constraints in turbo spin echo and gradient echo acquisitions. Results The proposed nonlocalized efficiency RF shimming produced a circularly polarized‐like field with fewer signal dropouts in the brain and knee. For larger targets, AMORE was used and required a significantly lower transmitter voltage to produce a similar contrast to existing TIAMO mode design approaches for turbo spin echo as well as gradient echo acquisitions. In vivo, AMORE effectively reduced signal dropout in the interior torso while providing more uniform contrast with reduced transmit power. A local constraint further improved performance for a target region while maintaining performance in the larger FOV. Conclusion AMORE based on the presented nonlocalized efficiency shimming cost function demonstrated improved contrast and SNR uniformity as well as increased transmit efficiency for both gradient echo and turbo spin echo acquisitions. Click here for author‐reader discussions
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Simon Schmidt
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Štefan Zbýň
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Tobey Haluptzok
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Steen Moeller
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| |
Collapse
|
12
|
Tenbergen CJA, Metzger GJ, Scheenen TWJ. Ultra-high-field MR in Prostate cancer: Feasibility and Potential. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:631-644. [PMID: 35579785 PMCID: PMC9113077 DOI: 10.1007/s10334-022-01013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Multiparametric MRI of the prostate at clinical magnetic field strengths (1.5/3 Tesla) has emerged as a reliable noninvasive imaging modality for identifying clinically significant cancer, enabling selective sampling of high-risk regions with MRI-targeted biopsies, and enabling minimally invasive focal treatment options. With increased sensitivity and spectral resolution, ultra-high-field (UHF) MRI (≥ 7 Tesla) holds the promise of imaging and spectroscopy of the prostate with unprecedented detail. However, exploiting the advantages of ultra-high magnetic field is challenging due to inhomogeneity of the radiofrequency field and high local specific absorption rates, raising local heating in the body as a safety concern. In this work, we review various coil designs and acquisition strategies to overcome these challenges and demonstrate the potential of UHF MRI in anatomical, functional and metabolic imaging of the prostate and pelvic lymph nodes. When difficulties with power deposition of many refocusing pulses are overcome and the full potential of metabolic spectroscopic imaging is used, UHF MR(S)I may aid in a better understanding of the development and progression of local prostate cancer. Together with large field-of-view and low-flip-angle anatomical 3D imaging, 7 T MRI can be used in its full strength to characterize different tumor stages and help explain the onset and spatial distribution of metastatic spread.
Collapse
Affiliation(s)
- Carlijn J A Tenbergen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
13
|
Kwok WE. Basic Principles of and Practical Guide to Clinical MRI Radiofrequency Coils. Radiographics 2022; 42:898-918. [PMID: 35394887 DOI: 10.1148/rg.210110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Radiofrequency (RF) coils are an essential MRI component used for transmission of the RF field to excite nuclear spins and for reception of the MRI signal. They play an important role in image quality in terms of signal-to-noise ratio, signal uniformity, and image resolution. However, they are also associated with potential image artifacts and RF heating that may lead to patient burns. Knowledge of the basic principles of RF coils-including coil designs commonly used in clinical MRI and the anatomy of RF receive coils-facilitates understanding of the use and safety issues of RF coils. Selection of suitable RF coils for individual applications and proper use of RF coils in particular MRI techniques such as parallel imaging are needed to achieve optimal image quality, prevent image artifacts, and reduce the risk of RF burns. The ability to correctly identify RF coil problems and distinguish them from other problems with image artifacts resembling those of RF coil problems allows effective handling of the problems and efficient clinical MRI operation. Quality control of RF coils is required to ensure consistent image quality for clinical MRI and avoid coil problems that may affect image diagnostic evaluation or interrupt patient imaging. There are different phantom test methods for RF coil quality control; the appropriate one to use depends on the coil design and MRI system. An invited commentary by Ohliger is available online. Online supplemental material is available for this article. ©RSNA, 2022.
Collapse
Affiliation(s)
- Wingchi E Kwok
- From the Department of Imaging Sciences, University of Rochester, 601 Elmwood Ave, Rochester, NY 14642; and University of Rochester Center for Advanced Brain Imaging and Neurophysiology, Rochester, NY
| |
Collapse
|
14
|
Seo JH, Chung JY. A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T. SENSORS 2022; 22:s22041512. [PMID: 35214409 PMCID: PMC8875900 DOI: 10.3390/s22041512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) systems must undergo quantitative evaluation through daily and periodic performance assessments. In general, the reference or standard radiofrequency (RF) coils for these performance assessments of 1.5 to 7.0 T MRI systems have been low-pass-type birdcage (LP-BC) RF coils. However, LP-BC RF coils are inappropriate for use as reference RF coils because of their relatively lower magnetic field (B1-field) sensitivity than other types of BC RF coils, especially in ultrahigh-field (UHF) MRI systems above 3.0 T. Herein, we propose a hybrid-type BC (Hybrid-BC) RF coil as a reference RF coil with improved B1-field sensitivity in UHF MRI system and applied it to an 11.7 T MRI system. An electromagnetic field (EM-field) analysis on the Hybrid-BC RF coil was performed to provide the proper dimensions for its use as a reference RF coil. Commercial finite difference time-domain program was used in EM-field simulation, and home-made analysis programs were used in analysis. The optimal specifications of the proposed Hybrid-BC RF coils for them to qualify as reference RF coils are proposed based on their B1+-field sensitivity under unnormalized conditions, as well as by considering their B1+-field uniformity and RF safety under normalized conditions.
Collapse
Affiliation(s)
- Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea;
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-822-5361; Fax: +82-32-822-8251
| |
Collapse
|
15
|
Destruel A, Jin J, Weber E, Li M, Engstrom C, Liu F, Crozier S. Integrated Multi-Modal Antenna With Coupled Radiating Structures (I-MARS) for 7T pTx Body MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:39-51. [PMID: 34370662 DOI: 10.1109/tmi.2021.3103654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
One of the main challenges in ultra-high field whole body MRI relates to the uniformity and efficiency of the radiofrequency field. Although recent advances in the design of RF coils have demonstrated that dipole antennas have a current distribution ideally suited to 7T MRI, they are limited by low isolation and poor robustness to loading changes. Multi-layered and self-decoupled loop coils have demonstrated improved RF performance in these areas at lower field MRI but have not been adapted to dipole designs. In this work, we introduce a novel type of RF antenna consisting of integrated multi-modal antenna with coupled radiating structures (I-MARS), which use layered conductors and dielectric substrates to allow dipole and transmission line modes to co-exist on the same compact dipole-shaped structure. The proposed antenna was optimally designed for 7T MRI and compared with existing dipole antennas using numerical simulations, which showed that I-MARS had similar B1 over specific absorption rate efficiency and superior isolation and stability. Subsequently, a prototype pTx coil array was built and tested in vivo on healthy volunteers at 7T. The articulated, modular construction of the I-MARS coil array allowed it to be readily conformed across multiple body regions (hip, knee, shoulder, lumbar spine and prostate), without requiring modification of the tuning and matching of the antennas. Using RF shimming, uniform and efficient excitation was successfully achieved in the acquisition of high-resolution MR images.
Collapse
|
16
|
Abstract
Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.
Collapse
|
17
|
van Leeuwen CC, Steensma BR, Klomp DWJ, van den Berg CAT, Raaijmakers AJE. The Coax Dipole: A fully flexible coaxial cable dipole antenna with flattened current distribution for body imaging at 7 Tesla. Magn Reson Med 2021; 87:528-540. [PMID: 34411327 PMCID: PMC9292881 DOI: 10.1002/mrm.28983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/14/2021] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Purpose The coax dipole antenna, a flexible antenna for body imaging at 7T is presented. Similar to the high impedance coil, this coaxial cable antenna is fed on the central conductor and through gaps in the shield, the current passes to the outside of the antenna to generate B1 field. This could achieve more favorable current distributions and better adaptation to the body curvature. Methods Finite difference time domain (FDTD) simulations are performed to optimize the positions of the gaps in the shield for a flat current profile. Lumped inductors are added to each end to reduce losses. The performance of a single antenna is compared to a fractionated dipole using B1 maps and MR thermometry. Finally, an array of eight coax dipoles is evaluated in simulations and used for in‐vivo scanning. Results An optimal configuration is found with gaps located at 10 cm from the center and inductor values of 28 nH. In comparison to the fractionated dipole antenna, in single antenna phantom measurements the coax dipole achieves similar B1 amplitude with 18% lower peak temperature. In simulations, the eight‐channel array of coax dipoles improved B1 homogeneity by 18%, along with small improvements in transmit efficiency and specific absorption rate (SAR). MRI measurements on three volunteers show more consistent performance for the coax dipoles. Conclusion The coax dipole is a novel antenna design with a flattened current distribution resulting in beneficial properties. Also, the flexible design of the coax dipoles allows better adaptation to the body curvature and can potentially be used for a wide range of imaging targets.
Collapse
Affiliation(s)
- Carel C van Leeuwen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart R Steensma
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Alexander J E Raaijmakers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Biomedical Engineering Department, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
18
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Quick HH, Ladd ME, Bitz AK. Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4515. [PMID: 33942938 DOI: 10.1002/nbm.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| |
Collapse
|
19
|
Kořínek R, Pfleger L, Eckstein K, Beiglböck H, Robinson SD, Krebs M, Trattnig S, Starčuk Z, Krššák M. Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T. FRONTIERS IN PHYSICS 2021; 9:665562. [PMID: 34849373 PMCID: PMC7612048 DOI: 10.3389/fphy.2021.665562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fat fraction quantification and assessment of its distribution in the hepatic tissue become more important with the growing epidemic of obesity, and the increasing prevalence of diabetes mellitus type 2 and non-alcoholic fatty liver disease. At 3Tesla, the multi-echo, chemical-shift-encoded magnetic resonance imaging (CSE-MRI)-based acquisition allows the measurement of proton density fat-fraction (PDFF) even in clinical protocols. Further improvements in SNR can be achieved by the use of phased array coils and increased static magnetic field. The purpose of the study is to evaluate the feasibility of PDFF imaging using a multi-echo CSE-MRI technique at ultra-high magnetic field (7Tesla). Thirteen volunteers (M/F) with a broad range of age, body mass index, and hepatic PDFF were measured at 3 and 7T by multi-gradient-echo MRI and single-voxel spectroscopy MRS. All measurements were performed in breath-hold (exhalation); the MRI protocols were optimized for a short measurement time, thus minimizing motion-related problems. 7T data were processed off-line using Matlab® (MRI:multi-gradient-echo) and jMRUI (MRS), respectively. For quantitative validation of the PDFF results, a similar protocol was performed at 3T, including on-line data processing provided by the system manufacturer, and correlation analyses between 7 and 3T data were performed off-line. The multi-echo CSE-MRI measurements at 7T with a phased-array coil configuration and an optimal post-processing yielded liver volume coverage ranging from 30 to 90% for high- and low-BMI subjects, respectively. PDFFs ranged between 1 and 20%. We found significant correlations between 7T MRI and -MRS measurements (R2 ≅ 0.97; p < 0.005), and between MRI-PDFF at 7T and 3T fields (R2 ≅ 0.94; p < 0.005) in the evaluated volumes. Based on the measurements and analyses performed, the multi-echo CSE-MRI method using a 32-channel coil at 7T showed its aptitude for MRI-based quantitation of PDFF in the investigated volumes. The results are the first step toward qMRI of the whole liver at 7T with further improvements in hardware.
Collapse
Affiliation(s)
- Radim Kořínek
- Magnetic Resonance group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Korbinian Eckstein
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
| | - Hannes Beiglböck
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Simon Daniel Robinson
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Siegfried Trattnig
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular Imaging, CD Laboratory for Clinical Molecular MR Imaging (MOLIMA), Medical University of Vienna, Vienna, Austria
| | - Zenon Starčuk
- Magnetic Resonance group, Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, Czechia
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- Department of Biomedical Imaging and Image-Guided Therapy, High-Field Magnetic Resonance Centre, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular Imaging, CD Laboratory for Clinical Molecular MR Imaging (MOLIMA), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Gilbert KM, Klassen LM, Mashkovtsev A, Zeman P, Menon RS, Gati JS. Radiofrequency coil for routine ultra-high-field imaging with an unobstructed visual field. NMR IN BIOMEDICINE 2021; 34:e4457. [PMID: 33305466 DOI: 10.1002/nbm.4457] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Many neuroscience applications have adopted functional MRI as a tool to investigate the healthy and diseased brain during the completion of a task. While ultra-high-field MRI has allowed for improved contrast and signal-to-noise ratios during functional MRI studies, it remains a challenge to create local radiofrequency coils that can accommodate an unobstructed visual field and be suitable for routine use, while at the same time not compromise performance. Performance (both during transmission and reception) can be improved by using close-fitting coils; however, maintaining sensitivity over the whole brain often requires the introduction of coil elements proximal to the eyes, thereby partially occluding the subject's visual field. This study presents a 7 T head coil, with eight transmit dipoles and 32 receive loops, that is designed to remove visual obstructions from the subject's line of sight, allowing for an unencumbered view of visual stimuli, the reduction of anxiety induced from small enclosures, and the potential for eye-tracking measurements. The coil provides a practical solution for routine imaging, including a split design (anterior and posterior halves) that facilitates subject positioning, including those with impaired mobility, and the placement of devices required for patient comfort and motion reduction. The transmit and receive coils displayed no degradation of performance due to adaptions to the design topology (both mechanical and electrical) required to create an unobstructed visual field. All computer-aided design files, electromagnetic simulation models, transmit field maps and local specific absorption rate matrices are provided to promote reproduction.
Collapse
Affiliation(s)
- Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - L Martyn Klassen
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Alexander Mashkovtsev
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Peter Zeman
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, The University of Western Ontario, London, Ontario, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
21
|
Zhang B, Adriany G, Delabarre L, Radder J, Lagore R, Rutt B, Yang QX, Ugurbil K, Lattanzi R. Effect of radiofrequency shield diameter on signal-to-noise ratio at ultra-high field MRI. Magn Reson Med 2021; 85:3522-3530. [PMID: 33464649 DOI: 10.1002/mrm.28670] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 11/23/2020] [Accepted: 12/14/2020] [Indexed: 02/01/2023]
Abstract
PURPOSE In this work, we investigated how the position of the radiofrequency (RF) shield can affect the signal-to-noise ratio (SNR) of a receive RF coil. Our aim was to obtain physical insight for the design of a 10.5T 32-channel head coil, subject to the constraints on the diameter of the RF shield imposed by the head gradient coil geometry. METHOD We used full-wave numerical simulations to investigate how the SNR of an RF receive coil depends on the diameter of the RF shield at ultra-high magnetic field (UHF) strengths (≥7T). RESULTS Our simulations showed that there is an SNR-optimal RF shield size at UHF strength, whereas at low field the SNR monotonically increases with the shield diameter. For a 32-channel head coil at 10.5T, an optimally sized RF shield could act as a cylindrical waveguide and increase the SNR in the brain by 27% compared to moving the shield as far as possible from the coil. Our results also showed that a separate transmit array between the RF shield and the receive array could considerably reduce SNR even if they are decoupled. CONCLUSION At sufficiently high magnetic field strength, the design of local RF coils should be optimized together with the design of the RF shield to benefit from both near field and resonant modes.
Collapse
Affiliation(s)
- Bei Zhang
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance Delabarre
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Jerahmie Radder
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell Lagore
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Brian Rutt
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Qing X Yang
- Department of Radiology, Pennsylvania State College of Medicine, Hershey, Pennsylvania, USA
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, Minnesota, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA.,Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
22
|
Scheenen TW, Zamecnik P. The Role of Magnetic Resonance Imaging in (Future) Cancer Staging: Note the Nodes. Invest Radiol 2021; 56:42-49. [PMID: 33156126 PMCID: PMC7722468 DOI: 10.1097/rli.0000000000000741] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/01/2020] [Indexed: 11/28/2022]
Abstract
The presence or absence of lymph node metastases is a very important prognostic factor in patients with solid tumors. Current invasive and noninvasive diagnostic methods for N-staging like lymph node dissection, morphologic computed tomography/magnetic resonance imaging (MRI), or positron emission tomography-computed tomography have significant limitations because of technical, biological, or anatomical reasons. Therefore, there is a great clinical need for more precise, reliable, and noninvasive N-staging in patients with solid tumors. Using ultrasmall superparamagnetic particles of ironoxide (USPIO)-enhanced MRI offers noninvasive diagnostic possibilities for N-staging of different types of cancer, including the 4 examples given in this work (head and neck cancer, esophageal cancer, rectal cancer, and prostate cancer). The excellent soft tissue contrast of MRI and an USPIO-based differentiation of metastatic versus nonmetastatic lymph nodes can enable more precise therapy and, therefore, fewer side effects, essentially in cancer patients in oligometastatic disease stage. By discussing 3 important questions in this article, we explain why lymph node staging is so important, why the timing for more accurate N-staging is right, and how it can be done with MRI. We illustrate this with the newest developments in magnetic resonance methodology enabling the use of USPIO-enhanced MRI at ultrahigh magnetic field strength and in moving parts of the body like upper abdomen or mediastinum. For prostate cancer, a comparison with radionuclide tracers connected to prostate specific membrane antigen is made. Under consideration also is the use of MRI for improvement of ex vivo cancer diagnostics. Further scientific and clinical development is needed to assess the accuracy of USPIO-enhanced MRI of detecting small metastatic deposits for different cancer types in different anatomical locations and to broaden the indications for the use of (USPIO-enhanced) MRI in lymph node imaging in clinical practice.
Collapse
Affiliation(s)
| | - Patrik Zamecnik
- From the Department of Medical Imaging, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
23
|
Gajdošík M, Chmelík M, Halilbasic E, Pfleger L, Klepochová R, Trauner M, Trattnig S, Krššák M. In Vivo 1 H MR Spectroscopy of Biliary Components of Human Gallbladder at 7T. J Magn Reson Imaging 2020; 53:98-107. [PMID: 32501627 PMCID: PMC7754442 DOI: 10.1002/jmri.27207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Previous in vivo proton MR spectroscopy (MRS) studies have demonstrated the possibility of quantifying amide groups of conjugated bile acids (NHCBA), olefinic lipids and cholesterol (OLC), choline-containing phospholipids (CCPLs), taurine and glycine conjugated bile acids (TCBA, GCBA), methylene group of lipids (ML), and methyl groups of bile acids, lipids, and cholesterol (BALC1.0, BALC0.9, and TBAC) in the gallbladder, which may be useful for the study of cholestatic diseases and cholangiopathies. However, these studies were performed at 1.5T and 3T, and higher magnetic fields may offer improved spectral resolution and signal intensity. PURPOSE To develop a method for gallbladder MRS at 7T. STUDY TYPE Retrospective, technical development. POPULATION Ten healthy subjects (five males and five females), two patients with primary biliary cholangitis (PBC) (one male and one female), and one patient with primary sclerosing cholangitis (PSC) (female). FIELD STRENGTH/SEQUENCE Free-breathing single-voxel MRS with a modified stimulated echo acquisition mode (STEAM) sequence at 7T. ASSESSMENT Postprocessing was based on the T2 relaxation of water in the gallbladder and in the liver. Concentrations of biliary components were calculated using water signal. All data were corrected for T2 relaxation times measured in healthy subjects. STATISTICAL TESTS The range of T2 relaxation time and concentration per bile component, and the resulting mean and standard deviation, were calculated. RESULTS The concentrations of gallbladder components in healthy subjects were: NHCBA: 93 ± 66 mM, OLC: 154 ± 124 mM, CCPL: 42 ± 17 mM, TCBA: 48 ± 35 mM, GCBA: 67 ± 32 mM, ML: 740 ± 391 mM, BALC1.0: 175 ± 92 mM, BALC0.9: 260 ± 138 mM, and TBAC: 153 ± 90 mM. Mean concentrations of all bile components were found to be lower in patients. DATA CONCLUSION This work provides a protocol for designing future MRS investigations of the bile system in vivo. EVIDENCE LEVEL 2 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Martin Gajdošík
- High‐field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
- Department of Biomedical EngineeringColumbia University Fu Foundation School of Engineering and Applied ScienceNew YorkNew YorkUSA
| | - Marek Chmelík
- High‐field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Faculty of HealthcareUniversity of PrešovPrešovSlovakia
- Department of RadiologyGeneral Hospital of LevočaLevočaSlovakia
| | - Emina Halilbasic
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Lorenz Pfleger
- High‐field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Radka Klepochová
- High‐field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Medical University of Vienna, Christian Doppler Laboratory for Clinical Molecular ImagingMOLIMAViennaAustria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
| | - Siegfried Trattnig
- High‐field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Medical University of Vienna, Christian Doppler Laboratory for Clinical Molecular ImagingMOLIMAViennaAustria
| | - Martin Krššák
- High‐field MR Centre, Department of Biomedical Imaging and Image‐guided TherapyMedical University of ViennaViennaAustria
- Division of Endocrinology and Metabolism, Department of Internal Medicine IIIMedical University of ViennaViennaAustria
- Medical University of Vienna, Christian Doppler Laboratory for Clinical Molecular ImagingMOLIMAViennaAustria
| |
Collapse
|
24
|
Abstract
Imaging of the biliary system has improved and has allowed MR to become a key noninvasive tool for evaluation of the biliary system. A variety of magnetic resonance cholangiopancreatography techniques have been developed, with improved visualization of the biliary system and biliary pathology. Key avenues of advancement include increasing the speed of acquisition, improving spatial resolution, and reducing artifacts. T1-weighted imaging using gadolinium-based hepatobiliary contrast agents allows for evaluation in additional indications, such as liver donor evaluation, biliary leak identification, and choledochal cyst confirmation. There is potential for further increased utility of MR in the evaluation of the biliary system.
Collapse
Affiliation(s)
| | - Frank H Miller
- Body Imaging Section and Fellowship, Department of Radiology, Northwestern Memorial Hospital, Northwestern University Feinberg School of Medicine, 676 North Saint Clair, Suite 800, Chicago, IL 60611, USA
| | - Benjamin M Yeh
- University of California - San Francisco, 505 Parnassus Avenue, M391 Box 0628, San Francisco, CA 94143-0628, USA
| |
Collapse
|
25
|
Steensma B, van de Moortele PF, Ertürk A, Grant A, Adriany G, Luijten P, Klomp D, van den Berg N, Metzger G, Raaijmakers A. Introduction of the snake antenna array: Geometry optimization of a sinusoidal dipole antenna for 10.5T body imaging with lower peak SAR. Magn Reson Med 2020; 84:2885-2896. [PMID: 32367560 PMCID: PMC7496175 DOI: 10.1002/mrm.28297] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 12/16/2022]
Abstract
Purpose To improve imaging performance for body MRI with a local transmit array at 10.5T, the geometry of a dipole antenna was optimized to achieve lower peak specific absorption rate (SAR) levels and a more uniform transmit profile. Methods Electromagnetic simulations on a phantom were used to evaluate the SAR and
B1+‐performance of different dipole antenna geometries. The best performing antenna (the snake antenna) was simulated on human models in a 12‐channel array configuration for safety assessment and for comparison to a previous antenna design. This 12‐channel array was constructed after which electromagnetic simulations were validated by
B1+‐maps and temperature measurements. After obtaining approval by the Food and Drug Administration to scan with the snake antenna array, in vivo imaging was performed on 2 volunteers. Results Simulation results on a phantom indicate a lower SAR and a higher transmit efficiency for the snake antenna compared to the fractionated dipole array. Similar results are found on a human body model: when comparing the trade‐off between uniformity and peak SAR, the snake antenna performs better for all imaging targets. Simulations and measurements are in good agreement. Preliminary imaging result were acquired in 2 volunteers with the 12‐channel snake antenna array. Conclusion By optimizing the geometry of a dipole antenna, peak SAR levels were lowered while achieving a more uniform transmit field as demonstrated in simulations on a phantom and a human body model. The array was constructed, validated, and successfully used to image 2 individuals at 10.5T.
Collapse
Affiliation(s)
- Bart Steensma
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Restorative Therapies Group, Medtronic, Minneapolis, USA
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Peter Luijten
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Nico van den Berg
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gregory Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA
| | - Alexander Raaijmakers
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, USA.,Biomedical Image Analysis, Eindhoven University of Technology, Eindhoven, the Netherlands
| |
Collapse
|
26
|
Maunder A, Rao M, Robb F, Wild JM. An 8-element Tx/Rx array utilizing MEMS detuning combined with 6 Rx loops for 19 F and 1 H lung imaging at 1.5T. Magn Reson Med 2020; 84:2262-2277. [PMID: 32281139 DOI: 10.1002/mrm.28260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE To firstly improve the attainable image SNR of 19 F and 1 H C3 F8 lung imaging at 1.5 tesla using an 8-element transmit/receive (Tx/Rx) flexible vest array combined with a 6-element Rx-only array, and to secondly evaluate microelectromechanical systems for switching the array elements between the 2 resonant frequencies. METHODS The Tx efficiency and homogeneity of the 8-element array were measured and simulated for 1 H imaging in a cylindrical phantom and then evaluated for in vivo 19 F/1 H imaging. The added improvement provided by the 6-element Rx-only array was quantified through simulation and measurement and compared to the ultimate SNR. It was verified through the measurement of isolation that microelectromechanical systems switches provided broadband isolation of Tx/Rx circuitry such that the 19 F tuned Tx/Rx array could be effectively used for both 19 F and 1 H nuclei. RESULTS For 1 H imaging, the measured Tx efficiency/homogeneity (mean ± percent SD; 6.79 μ T / kW ± 26 % ) was comparable to that simulated ( 7.57 μ T / kW ± 20 % ). The 6 additional Rx-only loops increased the mean Rx sensitivity when compared to the 8-element array by a factor of 1.41× and 1.45× in simulation and measurement, respectively. In regions central to the thorax, the simulated SNR of the 14-element array achieves ≥70% of the ultimate SNR when including noise from the matching circuits and preamplifiers. A measured microelectromechanical systems switching speed of 12 µs and added minimum 22 dB of isolation between Tx and Rx were sufficient for Tx/Rx switching in this application. CONCLUSION The described single-tuned array driven at 19 F and 1 H, utilizing microelectromechanical systems technology, provides excellent results for 19 F and 1 H dual-nuclear lung ventilation imaging.
Collapse
Affiliation(s)
- Adam Maunder
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Madhwesha Rao
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| | - Fraser Robb
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom.,GE Healthcare, Aurora, OH, USA
| | - Jim M Wild
- POLARIS, Imaging Group, Department of IICD, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
He X, Ertürk MA, Grant A, Wu X, Lagore RL, DelaBarre L, Eryaman Y, Adriany G, Auerbach EJ, Van de Moortele PF, Uğurbil K, Metzger GJ. First in-vivo human imaging at 10.5T: Imaging the body at 447 MHz. Magn Reson Med 2019; 84:289-303. [PMID: 31846121 DOI: 10.1002/mrm.28131] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/31/2023]
Abstract
PURPOSE To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B 1 + inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.
Collapse
Affiliation(s)
- Xiaoxuan He
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Andrea Grant
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Eddie J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | | | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
28
|
Moser P, Bogner W, Hingerl L, Heckova E, Hangel G, Motyka S, Trattnig S, Strasser B. Non-Cartesian GRAPPA and coil combination using interleaved calibration data - application to concentric-ring MRSI of the human brain at 7T. Magn Reson Med 2019; 82:1587-1603. [PMID: 31183893 PMCID: PMC6772100 DOI: 10.1002/mrm.27822] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Proton MR spectroscopic imaging (MRSI) benefits from B0 ≥ 7T and multichannel receive coils, promising substantial resolution improvements. However, MRSI acquisition with high spatial resolution requires efficient acceleration and coil combination. To speed up the already-fast sampling via concentric rings, we implemented additional, non-Cartesian, hybrid through-time/through-k-space (tt/tk)-generalized autocalibrating partially parallel acquisition (GRAPPA). A new multipurpose interleaved calibration scan (interleaved MUSICAL) acquires reference data for both coil combination and PI. This renders the reconstruction process (especially PI) less sensitive to instabilities. METHODS Six healthy volunteers were scanned at 7T. Three calibration datasets for coil combination and PI were recorded: a) iMUSICAL, b) static MUSICAL as prescan, c) moved MUSICAL as prescan with misaligned head position. The coil combination performance, including motion sensitivity, of iMUSICAL was compared to MUSICAL for single-slice free induction decay (FID)-MRSI. Through-time/through-k-space-GRAPPA with constant/variable-density undersampling was evaluated on the same data, comparing the three calibration datasets. Additionally, the proposed method was successfully applied to 3D whole-brain FID-MRSI. RESULTS Using iMUSICAL for coil combination yielded the highest signal-to-noise ratio (SNR) (+9%) and lowest Cramer-Rao lower bounds (CRLBs) (-6%) compared to both MUSICAL approaches, with similar metabolic map quality. Also, excellent mean g-factors of 1.07 and low residual lipid aliasing were obtained when using iMUSICAL as calibration data for two-fold, variable-density undersampling, while significantly degraded metabolic maps were obtained using the misaligned MUSICAL calibration data. CONCLUSION Through-time/through-k-space-GRAPPA can accelerate already time-efficient non-Cartesian spatial-spectral 2D/3D-MRSI encoding even further. Particularly promising results have been achieved using iMUSICAL as a robust, interleaved multipurpose calibration for MRSI reconstruction, without extra calibration prescan.
Collapse
Affiliation(s)
- Philipp Moser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Lukas Hingerl
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Eva Heckova
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Gilbert Hangel
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Stanislav Motyka
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria
| | - Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Bernhard Strasser
- High Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University Vienna, Vienna, Austria.,Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
29
|
Orzada S, Solbach K, Gratz M, Brunheim S, Fiedler TM, Johst S, Bitz AK, Shooshtary S, Abuelhaija A, Voelker MN, Rietsch SHG, Kraff O, Maderwald S, Flöser M, Oehmigen M, Quick HH, Ladd ME. A 32-channel parallel transmit system add-on for 7T MRI. PLoS One 2019; 14:e0222452. [PMID: 31513637 PMCID: PMC6742215 DOI: 10.1371/journal.pone.0222452] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE A 32-channel parallel transmit (pTx) add-on for 7 Tesla whole-body imaging is presented. First results are shown for phantom and in-vivo imaging. METHODS The add-on system consists of a large number of hardware components, including modulators, amplifiers, SAR supervision, peripheral devices, a control computer, and an integrated 32-channel transmit/receive body array. B1+ maps in a phantom as well as B1+ maps and structural images in large volunteers are acquired to demonstrate the functionality of the system. EM simulations are used to ensure safe operation. RESULTS Good agreement between simulation and experiment is shown. Phantom and in-vivo acquisitions show a field of view of up to 50 cm in z-direction. Selective excitation with 100 kHz sampling rate is possible. The add-on system does not affect the quality of the original single-channel system. CONCLUSION The presented 32-channel parallel transmit system shows promising performance for ultra-high field whole-body imaging.
Collapse
Affiliation(s)
- Stephan Orzada
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Klaus Solbach
- RF & Microwave Technology, University of Duisburg-Essen, Duisburg, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Sascha Brunheim
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Thomas M. Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Johst
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Andreas K. Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen – University of Applied Sciences, Aachen, Germany
| | - Samaneh Shooshtary
- RF & Microwave Technology, University of Duisburg-Essen, Duisburg, Germany
| | - Ashraf Abuelhaija
- RF & Microwave Technology, University of Duisburg-Essen, Duisburg, Germany
| | - Maximilian N. Voelker
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stefan H. G. Rietsch
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Oehmigen
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
30
|
Philips BWJ, Stijns RCH, Rietsch SHG, Brunheim S, Barentsz JO, Fortuin AS, Quick HH, Orzada S, Maas MC, Scheenen TWJ. USPIO-enhanced MRI of pelvic lymph nodes at 7-T: preliminary experience. Eur Radiol 2019; 29:6529-6538. [PMID: 31201525 PMCID: PMC6828641 DOI: 10.1007/s00330-019-06277-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 04/16/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
Abstract
Purpose To evaluate the technical feasibility of high-resolution USPIO-enhanced magnetic resonance imaging of pelvic lymph nodes (LNs) at ultrahigh magnetic field strength. Materials and methods The ethics review board approved this study and written informed consent was obtained from all patients. Three patients with rectal cancer and three selected patients with (recurrent) prostate cancer were examined at 7-T 24–36 h after intravenous ferumoxtran-10 administration; rectal cancer patients also received a 3-T MRI. Pelvic LN imaging was performed using the TIAMO technique in combination with water-selective multi-GRE imaging and lipid-selective GRE imaging with a spatial resolution of 0.66 × 0.66 × 0.66mm3. T2*-weighted images of the water-selective imaging were computed from the multi-GRE images at TE = 0, 8, and 14 ms and used for the assessment of USPIO uptake. Results High-resolution 7-T MR gradient-echo imaging was obtained robustly in all patients without suffering from RF-related signal voids. USPIO signal decay in LNs was visualized using computed TE imaging at TE = 8 ms and an R2* map derived from water-selective imaging. Anatomically, LNs were identified on a combined reading of computed TE = 0 ms images from water-selective scans and images from lipid-selective scans. A range of 3–48 LNs without USPIO signal decay was found per patient. These LNs showed high signal intensity on computed TE = 8 and 14 ms imaging and low R2* (corresponding to high T2*) values on the R2* map. Conclusion USPIO-enhanced MRI of the pelvis at 7-T is technically feasible and offers opportunities for detecting USPIO uptake in normal-sized LNs, due to its high intrinsic signal-to-noise ratio and spatial resolution. Key Points • USPIO-enhanced MRI at 7-T can indicate USPIO uptake in lymph nodes based on computed TE images. • Our method promises a high spatial resolution for pelvic lymph node imaging.
Collapse
Affiliation(s)
- Bart W J Philips
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands.
| | - Rutger C H Stijns
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Stefan H G Rietsch
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Sascha Brunheim
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Jelle O Barentsz
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Ansje S Fortuin
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands.,Department of Radiology, Ziekenhuis Gelderse Vallei, Ede, The Netherlands
| | - Harald H Quick
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Stephan Orzada
- Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, 45147, Essen, Germany
| | - Marnix C Maas
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Department of Radiology and Nuclear Medicine (766), Radboud University Medical Center, P.O. Box 9101, Nijmegen, The Netherlands.,Erwin L Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, 45141, Essen, Germany
| |
Collapse
|
31
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
32
|
Abstract
Radiofrequency (RF) coils are an essential part of the magnetic resonance (MR) system. To exploit the inherently higher signal-to-noise ratio at ultrahigh magnetic fields (UHF), research sites were forced to build up expertise in RF coil development, as the number of commercially available RF coils were limited. In addition, an integrated transmit body RF coil, which is well-established at MR systems of lower field strength, is still missing at UHF due to technical and physical constraints. This review article provides a brief recapitulation of RF characteristics and RF coils in general to introduce terminology and RF-related parameters, and will then provide an extensive overview of current state-of-the-art RF coils used for MRI from head to toe at 7 Tesla. Finally, a section on RF safety will briefly discuss challenges in performing a safety assessment for custom-designed RF coils, and issues arising from the interaction of the RF field and potentially implanted medical devices.
Collapse
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|
33
|
Rietsch SHG, Brunheim S, Orzada S, Voelker MN, Maderwald S, Bitz AK, Gratz M, Ladd ME, Quick HH. Development and evaluation of a 16-channel receive-only RF coil to improve 7T ultra-high field body MRI with focus on the spine. Magn Reson Med 2019; 82:796-810. [PMID: 30924181 DOI: 10.1002/mrm.27731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/02/2019] [Accepted: 01/27/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE A 16-channel receive (16Rx) radiofrequency (RF) array for 7T ultra-high field body MR imaging is presented. The coil is evaluated in conjunction with a 16-channel transmit/receive (16TxRx) coil and additionally with a 32-channel transmit/receive (32TxRx) remote body coil for RF transmit and serving as receive references. METHODS The 16Rx array consists of 16 octagonal overlapping loops connected to custom-built detuning boards with preamplifiers. Performance metrics like noise correlation, g-factors, and signal-to-noise ratio gain were compared between 4 different RF coil configurations. In vivo body imaging was performed in volunteers using radiofrequency shimming, time interleaved acquisition of modes (TIAMO), and 2D spatially selective excitation using parallel transmit (pTx) in the spine. RESULTS Lower g-factors were obtained when using the 16Rx coil in addition to the 16TxRx array coil configuration versus the 16TxRx array alone. Distinct signal-to-noise ratio gain using the 16Rx coil could be demonstrated in the spine region both for a comparison with the 16TxRx coil (>50% gain) in vivo and the 32TxRx coil (>240% gain) in a phantom. The 16Rx coil was successfully applied to improve anatomical imaging in the abdomen and 2D spatially selective excitation in the spine of volunteers. CONCLUSION The novel 16-channel Rx-array as an add-on to multichannel TxRx RF coil configurations provides increased signal-to-noise ratio, lower g-factors, and thus improves 7T ultra-high field body MR imaging.
Collapse
Affiliation(s)
- Stefan H G Rietsch
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Sascha Brunheim
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Maximilian N Voelker
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, University of Applied Sciences Aachen, Aachen, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MR Imaging, University of Duisburg-Essen, Essen, Germany.,High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| |
Collapse
|