1
|
Gray T, Liu CW, Kolano AM, Donaghue J, Stephans K, Videtic G, Xia P, Farr J. Assessing proton plans with 3 different beam lines vs photon plans for early-stage lung cancer. Med Dosim 2025:S0958-3947(25)00008-1. [PMID: 39952834 DOI: 10.1016/j.meddos.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/17/2025]
Abstract
To compare proton plans (IMPT) to VMAT plans and intercompare proton plans using 3 different spot sizes with robustness: cyclotron-generated proton beams (CPB) (σ: 2.7-7.0 mm), linear accelerator proton beams (LPB) (σ: 2.9-5.5 mm), and linear accelerator proton mini beams (LPMB) (σ: 0.9-3.9 mm) for the treatment of early-stage lung cancer. Twenty-two lesions from a total of twenty patients with early-stage lung cancer, originally treated with SBRT, were replanned using CPBs, LPBs, LPMBs, and VMAT using the same treatment planning system and dose calculation algorithm. The average intensity projected CTs (AIP-CT) were used for planning and 3D robust optimization was used for all proton plans. Conformity index (CI), homogeneity index (HI), R50, lung V20 Gy, and mean lung dose were compared among all proton plan types and with VMAT plans. Set-up uncertainties of ±5 mm and ±3.5% range uncertainty were included in the IMPT robust optimization and evaluation, using V100%Rx > 98% of the ITV. The Wilcoxon signed-rank test was used to evaluate statistical differences between VMAT plans and all proton plan types. When compared to VMAT plans, all proton plans generally show improvement in CI, HI, Lung V20 Gy, Mean lung dose, and R50. The LPMB plans showed the most improvement from VMAT plans. Comparison between CPB and linear accelerator proton plans showed statistical significance (p < 0.05). R50 and mean lung dose for the CPB, LPB and LPMB plans were 3.6 ± 0.9, 3.1 ± 0.8 and 2.6 ± 0.6; 2.2 ± 1.1 Gy, 1.9 ± 1 Gy and 1.6 ± 0.9 Gy, respectively (p < 0.05). The mean R50 and mean lung dose from the VMAT plans were 4.1 ± 0.4 and 3.8 ± 2 Gy, respectively. The V20 Gy (%) of lung and mean lung dose were improved across all proton plans when compared with those of VMAT plans. When evaluated for robustness in the worst-case scenario at V100%Rx of the ITV > 98%, average ITV coverage of 98.6 ± 0.3%, 98.6 ± 0.6%, and 98.9 ± 0.6% were achieved for CPB plans, LPB plans, and LPMB plans, respectively. With decreased spot size, the LPB and LPMB plans are excellent alternatives to VMAT and cyclotron-generated proton plans with reduced dose to normal tissue and improved plan quality for early-stage lung cancer treatments.
Collapse
Affiliation(s)
- Tara Gray
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Chieh-Wen Liu
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Anna Maria Kolano
- Department of Applications of Detectors and Accelerators to Medicine (ADAM) SA, Meyrin, Switzerland; Advanced Oncotherapy (AVO) plc, London, UK
| | - Jeremy Donaghue
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Kevin Stephans
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Gregory Videtic
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Ping Xia
- Department of Radiation Oncology, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | - Jonathan Farr
- Department of Applications of Detectors and Accelerators to Medicine (ADAM) SA, Meyrin, Switzerland; Advanced Oncotherapy (AVO) plc, London, UK
| |
Collapse
|
2
|
Vignati A, Mas Milian F, Shakarami Z, Abujami M, Bersani D, Data E, Donetti M, Ferrero V, Galeone C, Giordanengo S, Hammad Ali O, Marti Villarreal OA, Medina E, Montalvan Olivares D, Paternoster G, Tommasino F, Cirio R, Monaco V, Sacchi R. Calibration method and performance of a time-of-flight detector to measure absolute beam energy in proton therapy. Med Phys 2023; 50:5817-5827. [PMID: 37493525 DOI: 10.1002/mp.16637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 07/06/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND The beam energy is one of the most significant parameters in particle therapy since it is directly correlated to the particles' penetration depth inside the patient. Nowadays, the range accuracy is guaranteed by offline routine quality control checks mainly performed with water phantoms, 2D detectors with PMMA wedges, or multi-layer ionization chambers. The latter feature low sensitivity, slow collection time, and response dependent on external parameters, which represent limiting factors for the quality controls of beams delivered with fast energy switching modalities, as foreseen in future treatments. In this context, a device based on solid-state detectors technology, able to perform a direct and absolute beam energy measurement, is proposed as a viable alternative for quality assurance measurements and beam commissioning, paving the way for online range monitoring and treatment verification. PURPOSE This work follows the proof of concept of an energy monitoring system for clinical proton beams, based on Ultra Fast Silicon Detectors (featuring tenths of ps time resolution in 50 μm active thickness, and single particle detection capability) and time-of-flight techniques. An upgrade of such a system is presented here, together with the description of a dedicated self-calibration method, proving that this second prototype is able to assess the mean particles energy of a monoenergetic beam without any constraint on the beam temporal structure, neither any a priori knowledge of the beam energy for the calibration of the system. METHODS A new detector geometry, consisting of sensors segmented in strips, has been designed and implemented in order to enhance the statistics of coincident protons, thus improving the accuracy of the measured time differences. The prototype was tested on the cyclotron proton beam of the Trento Protontherapy Center (TPC). In addition, a dedicated self-calibration method, exploiting the measurement of monoenergetic beams crossing the two telescope sensors for different flight distances, was introduced to remove the systematic uncertainties independently from any external reference. RESULTS The novel calibration strategy was applied to the experimental data collected at TPC (Trento) and CNAO (Pavia). Deviations between measured and reference beam energies in the order of a few hundreds of keV with a maximum uncertainty of 0.5 MeV were found, in compliance with the clinically required water range accuracy of 1 mm. CONCLUSIONS The presented version of the telescope system, minimally perturbative of the beam, relies on a few seconds of acquisition time to achieve the required clinical accuracy and therefore represents a feasible solution for beam commission, quality assurance checks, and online beam energy monitoring.
Collapse
Affiliation(s)
- Anna Vignati
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Felix Mas Milian
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
- Department of Exact and Technological Sciences, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Zahra Shakarami
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Mohammed Abujami
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Davide Bersani
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Emanuele Data
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Marco Donetti
- Centro Nazionale di Adroterapia Oncologica, CNAO, Pavia, Italy
| | | | - Cosimo Galeone
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | | | - Omar Hammad Ali
- FBK, Fondazione Bruno Kessler, Center for Sensors and Devices, Trento, Italy
| | | | - Elisabetta Medina
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Diango Montalvan Olivares
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | | | - Francesco Tommasino
- Trento Institute for Fundamental Physics and Applications, TIFPA-INFN, Povo, Trento, Italy
- Department of Physics, University of Trento, Povo, Trento, Italy
| | - Roberto Cirio
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Vincenzo Monaco
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| | - Roberto Sacchi
- Dipartimento di Fisica, Università degli Studi di Torino, Torino, Italy
- INFN, sezione di Torino, Torino, Italy
| |
Collapse
|
3
|
Zhao L, Liu G, Li X, Ding X. An evolutionary optimization algorithm for proton arc therapy. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Proton arc plan normally contains thousands of spot numbers and hundreds of energy layers. A recent study reported that the beam delivery time (BDT) is proportional to the spot numbers. Thus, it is critical to find an optimal plan with a fast delivery speed while maintaining a good plan quality. Thus, we developed a novel evolutionary algorithm to directly search for the optimal spot sparsity solution to balance plan quality and BDT. Approach. The planning platform included a plan quality objective, a generator, and a selector. The generator is based on trust-region-reflective solver. A selector was designed to filter or add the spot according to the expected spot number, based on the user’s input of BDT. The generator and selector are used alternatively to optimize a spot sparsity solution. Three clinical cases’ CT and structure datasets, e.g. brain, lung, and liver cancer, were used for testing purposes. A series of user-defined BDTs from 15 to 250 s were used as direct inputs. The relationship between the plan’s cost function value and BDT was evaluated in these three cases. Main results. The evolutionary algorithm could optimize a proton arc plan based on clinical user input BDT directly. The plan quality remains optimal in the brain, lung, and liver cases until the BDT was shorter than 25 s, 50 s and 100 s, respectively. The plan quality degraded as the input delivery time became too short, indicating that the plan lacked enough spot or degree of freedom. Significance. This is the first proton arc planning framework to directly optimize plan quality with the BDT as an input for the new generation of proton therapy systems. This work paved the roadmap for implementing such new technology in a routine clinic and provided a planning platform to explore the trade-off between the BDT and plan quality.
Collapse
|
4
|
Depauw N, Kooy H, Winey B, Clasie B. Pencil beam scanning dose calibration at reduced source‐to‐axis distance. Med Phys 2022; 49:5476-5482. [DOI: 10.1002/mp.15705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/31/2022] [Accepted: 04/30/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Nicolas Depauw
- Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| | - Hanne Kooy
- Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| | - Brian Winey
- Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| | - Benjamin Clasie
- Department of Radiation Oncology Massachusetts General Hospital and Harvard Medical School Boston MA 02114 USA
| |
Collapse
|
5
|
Zhao L, Liu G, Chen S, Shen J, Zheng W, Qin A, Yan D, Li X, Ding X. Developing an accurate model of spot-scanning treatment delivery time and sequence for a compact superconducting synchrocyclotron proton therapy system. Radiat Oncol 2022; 17:87. [PMID: 35525993 PMCID: PMC9077949 DOI: 10.1186/s13014-022-02055-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A new compact superconducting synchrocyclotron single-room proton solution delivers pulsed proton beams to each spot through several irradiation bursts calculated by an iterative layer delivery algorithm. Such a mechanism results in a new beam parameter, burst switching time (BST) in the total beam delivery time (BDT) which has never been studied before. In this study, we propose an experimental approach to build an accurate BDT and sequence prediction model for this new proton solution. METHODS Test fields and clinical treatment plans were used to investigate each beam delivery parameter that impacted BDT. The machine delivery log files were retrospectively analyzed to quantitatively model energy layer switching time (ELST), spot switching time (SSWT), spot spill time (SSPT), and BST. A total of 102 clinical IMPT treatment fields' log files were processed to validate the accuracy of the BDT prediction model in comparison with the result from the current commercial system. Interplay effect is also investigated as a clinical application by comparing this new delivery system model with a conventional cyclotron accelerator model. RESULTS The study finds that BST depends on the amount of data to be transmitted between two sequential radiation bursts, including a machine irradiation log file of the previous burst and a command file to instruct the proton system to deliver the next burst. The 102 clinical treatment fields showed that the accuracy of each component of the BDT matches well between machine log files and BDT prediction model. More specifically, the difference of ELST, SSWT, SSPT, and BST were (- 3.1 ± 5.7)%, (5.9 ± 3.9)%, (2.6 ± 8.7)%, and (- 2.3 ± 5.3)%, respectively. The average total BDT was about (2.1 ± 3.0)% difference compared to the treatment log files, which was significantly improved from the current commercial proton system prediction (58 ± 15)%. Compared to the conventional cyclotron system, the burst technique from synchrocyclotron effectively reduced the interplay effect in mobile tumor treatment. CONCLUSION An accurate BDT and sequence prediction model was established for this new clinical compact superconducting synchrocyclotron single-room proton solution. Its application could help users of similar facilities better assess the interplay effect and estimate daily patient treatment throughput.
Collapse
Affiliation(s)
- Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA
| | - Gang Liu
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA.,Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shupeng Chen
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA
| | - Jiajian Shen
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, AZ, 85054, USA
| | - Weili Zheng
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, 48073, USA.
| |
Collapse
|
6
|
Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS NANO 2022; 16:5036-5061. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3, Campus de Luminy - Case 917, 13288 Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Nuclear Physics and Astrophysics Department, LPI of RAS, 119991 Moscow, Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Department of Chemistry and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
7
|
Koka K, Verma A, Dwarakanath BS, Papineni RVL. Technological Advancements in External Beam Radiation Therapy (EBRT): An Indispensable Tool for Cancer Treatment. Cancer Manag Res 2022; 14:1421-1429. [PMID: 35431581 PMCID: PMC9012312 DOI: 10.2147/cmar.s351744] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/26/2022] [Indexed: 12/14/2022] Open
Abstract
Recent technological advancements have increased the efficacy of radiotherapy, leading to effective management of cancer patients with enhanced patient survival and improved quality of life. Several important developments like multileaf collimator, integration of imaging techniques like positron emission tomography (PET) and computed tomography (CT), involvement of advanced dose calculation algorithms, and delivery techniques have increased tumor dose distribution and decreased normal tissue toxicity. Three-dimensional conformal radiotherapy (3DCRT), intensity-modulated radiotherapy (IMRT), stereotactic radiotherapy, image-guided radiotherapy (IGT), and particle therapy have facilitated the planning procedures, accurate tumor delineation, and dose estimation for effective personalized treatment. In this review, we present the technological advancements in various types of EBRT methods and discuss their clinical utility and associated limitations. We also reveal novel approaches of using biocompatible yttrium oxide scintillator-photosensitizer complex (YSM) that can generate X-ray induced cytotoxic reactive oxygen species, facilitating X-ray activated photodynamic therapy (XPDT (external beam) and/or iXPDT (internal X-ray source)) and azido-derivatives of 2-deoxy-D-glucose (2-DG) as agents for site-specific radiation-induced DNA damage.
Collapse
Affiliation(s)
| | | | - Bilikere S Dwarakanath
- Central Research Facility, Sri Ramachandra Institute of Higher Education and Research Porur, Chennai, India
| | - Rao V L Papineni
- PACT & Health LLC, Branford, CT, USA
- Department of Surgery, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
8
|
Farr J, Grilj V, Malka V, Sudharsan S, Schippers M. Ultra‐High dose rate radiation production and delivery systems intended for FLASH. Med Phys 2022; 49:4875-4911. [PMID: 35403262 PMCID: PMC9544515 DOI: 10.1002/mp.15659] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/21/2022] [Accepted: 03/15/2022] [Indexed: 11/05/2022] Open
Abstract
Higher dose rates, a trend for radiotherapy machines, can be beneficial in shortening treatment times for radiosurgery and mitigating the effects of motion. Recently, even higher doses (e.g., 100 times greater) have become targeted because of their potential to generate the FLASH effect (FE). We refer to these physical dose rates as ultra‐high (UHDR). The complete relationship between UHDR and the FE is unknown. But UHDR systems are needed to explore the relationship further and to deliver clinical UHDR treatments, where indicated. Despite the challenging set of unknowns, the authors seek to make reasonable assumptions to probe how existing and developing technology can address the UHDR conditions needed to provide beam generation capable of producing the FE in preclinical and clinical applications. As a preface, this paper discusses the known and unknown relationships between UHDR and the FE. Based on these, different accelerator and ionizing radiation types are then discussed regarding the relevant UHDR needs. The details of UHDR beam production are discussed for existing and potential future systems such as linacs, cyclotrons, synchrotrons, synchrocyclotrons, and laser accelerators. In addition, various UHDR delivery mechanisms are discussed, along with required developments in beam diagnostics and dose control systems.
Collapse
Affiliation(s)
- Jonathan Farr
- Applications of Detectors and Accelerators to Medicine Meyrin 1217 Switzerland
| | - Veljko Grilj
- Lausanne University Hospital Lausanne 1011 Switzerland
| | - Victor Malka
- Weizmann Institute of Science Rehovot 7610001 Israel
| | | | | |
Collapse
|
9
|
Gao H, Liu J, Lin Y, Gan GN, Pratx G, Wang F, Langen K, Bradley JD, Rotondo RL, Li HH, Chen RC. Simultaneous dose and dose rate optimization (SDDRO) of the FLASH effect for pencil-beam-scanning proton therapy. Med Phys 2022; 49:2014-2025. [PMID: 34800301 PMCID: PMC8917068 DOI: 10.1002/mp.15356] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/29/2021] [Accepted: 10/25/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Compared to CONV-RT (with conventional dose rate), FLASH-RT (with ultra-high dose rate) can provide biological dose sparing for organs-at-risk (OARs) via the so-called FLASH effect, in addition to physical dose sparing. However, the FLASH effect only occurs, when both dose and dose rate meet certain minimum thresholds. This work will develop a simultaneous dose and dose rate optimization (SDDRO) method accounting for both FLASH dose and dose rate constraints during treatment planning for pencil-beam-scanning proton therapy. METHODS SDDRO optimizes the FLASH effect (specific to FLASH-RT) as well as the dose distribution (similar to CONV-RT). The nonlinear dose rate constraint is linearized, and the reformulated optimization problem is efficiently solved via iterative convex relaxation powered by alternating direction method of multipliers. To resolve and quantify the generic tradeoff of FLASH-RT between FLASH and dose optimization, we propose the use of FLASH effective dose based on dose modifying factor (DMF) owing to the FLASH effect. RESULTS FLASH-RT via transmission beams (TB) (IMPT-TB or SDDRO) and CONV-RT via Bragg peaks (BP) (IMPT-BP) were evaluated for clinical prostate, lung, head-and-neck (HN), and brain cases. Despite the use of TB, which is generally suboptimal to BP for normal tissue sparing, FLASH-RT via SDDRO considerably reduced FLASH effective dose for high-dose OAR adjacent to the target. For example, in the lung SBRT case, the max esophageal dose constraint 27 Gy was only met by SDDRO (24.8 Gy), compared to IMPT-BP (35.3 Gy) or IMPT-TB (36.6 Gy); in the brain SRS case, the brain constraint V12Gy≤15cc was also only met by SDDRO (13.7cc), compared to IMPT-BP (43.9cc) or IMPT-TB (18.4cc). In addition, SDDRO substantially improved the FLASH coverage from IMPT-TB, e.g., an increase from 37.2% to 67.1% for lung, from 39.1% to 58.3% for prostate, from 65.4% to 82.1% for HN, from 50.8% to 73.3% for the brain. CONCLUSIONS Both FLASH dose and dose rate constraints are incorporated into SDDRO for FLASH-RT that jointly optimizes the FLASH effect and physical dose distribution. FLASH effective dose via FLASH DMF is introduced to reconcile the tradeoff between physical dose sparing and FLASH sparing, and quantify the net effective gain from CONV-RT to FLASH-RT.
Collapse
Affiliation(s)
- Hao Gao
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Jiulong Liu
- LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
| | - Yuting Lin
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Gregory N Gan
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Guillem Pratx
- Department of Radiation Oncology, Stanford University, Stanford, California, USA
| | - Fen Wang
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Katja Langen
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Jeffrey D Bradley
- Department of Radiation Oncology, Emory University, Atlanta, Georgia, USA
| | - Ronny L Rotondo
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Harold H Li
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Ronald C Chen
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
10
|
Schreuder N, Ding X, Li Z. Fixed beamlines can replace gantries for particle therapy. Med Phys 2022; 49:2097-2100. [PMID: 35147222 DOI: 10.1002/mp.15531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/06/2022] [Accepted: 01/27/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Niek Schreuder
- Leo Cancer Care, 12611 Lovelace Rd, Knoxville, TN, 37832
| | - Xuanfeng Ding
- Radiation Oncology Department, William Beaumont Hospital, 3601 W 13 Mile Rd, Royal Oak, MI, 48073
| | - Zuofeng Li
- Radiation Oncology Department, Guangzhou Concord Cancer Center, #9 CIJI Road, Sino-Singapore Knowledge City, Huangpu District, Guangzhou, Guangdong, China
| |
Collapse
|
11
|
Giovannelli AC, Maradia V, Meer D, Safai S, Psoroulas S, Togno M, Bula C, Weber DC, Lomax AJ, Fattori G. Beam properties within the momentum acceptance of a clinical gantry beamline for proton therapy. Med Phys 2022; 49:1417-1431. [PMID: 35041207 DOI: 10.1002/mp.15449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/08/2021] [Accepted: 12/29/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE Energy changes in Pencil Beam Scanning (PBS) proton therapy can be a limiting factor in delivery time, hence limiting patient throughput and the effectiveness of motion mitigation techniques requiring fast irradiation. In this study, we investigate the feasibility of performing fast and continuous energy modulation within the momentum acceptance of a clinical beamline for proton therapy. METHODS The alternative use of a local beam degrader at the gantry coupling point has been compared with a more common upstream regulation. Focusing on clinically relevant parameters, a complete beam properties characterization has been carried out. In particular, the acquired empirical data allowed to model and parametrize the errors in range and beam current to deliver clinical treatment plans. RESULTS For both options, the local and the upstream degrader, depth-dose curves measured in water for off-momentum beams were only marginally distorted (γ(1%,1mm) > 90%) and the errors in the spot position were within the clinical tolerance, even though increasing at the boundaries of the investigated scan range. The impact on the beam size was limited for the upstream degrader while dedicated strategies could be required to tackle the beam broadening through the local degrader. Range correction models were investigated for the upstream regulation. The impaired beam transport required a dedicated strategy for fine range control and compensation of beam intensity losses. Our current parametrization based on empirical data allowed energy modulation within acceptance with range errors (median 0.05 mm) and transmission (median -14%) compatible with clinical operation and remarkably low average 27 ms dead time for small energy changes. The technique, tested for the delivery of a skull glioma treatment, resulted in high gamma pass rates at 1%,1mm compared to conventional deliveries in experimental measurements with about 45% reduction of the energy switching time when regulation could be performed within acceptance. CONCLUSIONS Fast energy modulation within beamline acceptance has potential for clinical applications and, when realized with an upstream degrader, does not require modification in the beamline hardware, therefore being potentially applicable in any running facility. Centers with slow energy switching time can particularly profit from such a technique for reducing dead time during treatment delivery. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Anna Chiara Giovannelli
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| | - Vivek Maradia
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| | - David Meer
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | - Sairos Safai
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | | | - Michele Togno
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | - Christian Bula
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland
| | - Damien Charles Weber
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,University Hospital Zürich, Switzerland.,University Hospital Bern, University of Bern, Switzerland
| | - Antony John Lomax
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| | - Giovanni Fattori
- Center for Proton Therapy, Paul Scherrer Institut, Switzerland.,Department of Physics, ETH Zürich, Switzerland
| |
Collapse
|
12
|
Yap J, De Franco A, Sheehy S. Future Developments in Charged Particle Therapy: Improving Beam Delivery for Efficiency and Efficacy. Front Oncol 2021; 11:780025. [PMID: 34956897 PMCID: PMC8697351 DOI: 10.3389/fonc.2021.780025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/16/2021] [Indexed: 01/09/2023] Open
Abstract
The physical and clinical benefits of charged particle therapy (CPT) are well recognized. However, the availability of CPT and complete exploitation of dosimetric advantages are still limited by high facility costs and technological challenges. There are extensive ongoing efforts to improve upon these, which will lead to greater accessibility, superior delivery, and therefore better treatment outcomes. Yet, the issue of cost remains a primary hurdle as utility of CPT is largely driven by the affordability, complexity and performance of current technology. Modern delivery techniques are necessary but limited by extended treatment times. Several of these aspects can be addressed by developments in the beam delivery system (BDS) which determines the overall shaping and timing capabilities enabling high quality treatments. The energy layer switching time (ELST) is a limiting constraint of the BDS and a determinant of the beam delivery time (BDT), along with the accelerator and other factors. This review evaluates the delivery process in detail, presenting the limitations and developments for the BDS and related accelerator technology, toward decreasing the BDT. As extended BDT impacts motion and has dosimetric implications for treatment, we discuss avenues to minimize the ELST and overview the clinical benefits and feasibility of a large energy acceptance BDS. These developments support the possibility of advanced modalities and faster delivery for a greater range of treatment indications which could also further reduce costs. Further work to realize methodologies such as volumetric rescanning, FLASH, arc, multi-ion and online image guided therapies are discussed. In this review we examine how increased treatment efficiency and efficacy could be achieved with improvements in beam delivery and how this could lead to faster and higher quality treatments for the future of CPT.
Collapse
Affiliation(s)
- Jacinta Yap
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| | - Andrea De Franco
- IFMIF Accelerator Development Group, Rokkasho Fusion Institute, National Institutes for Quantum Science and Technology, Aomori, Japan
| | - Suzie Sheehy
- School of Physics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Lin L, Taylor PA, Shen J, Saini J, Kang M, Simone CB, Bradley JD, Li Z, Xiao Y. NRG Oncology Survey of Monte Carlo Dose Calculation Use in US Proton Therapy Centers. Int J Part Ther 2021; 8:73-81. [PMID: 34722813 PMCID: PMC8489489 DOI: 10.14338/ijpt-d-21-00004] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/08/2021] [Indexed: 11/21/2022] Open
Abstract
Purpose/Objective(s) Monte Carlo (MC) dose calculation has appeared in primary commercial treatment-planning systems and various in-house platforms. Dual-energy computed tomography (DECT) and metal artifact reduction (MAR) techniques complement MC capabilities. However, no publications have yet reported how proton therapy centers implement these new technologies, and a national survey is required to determine the feasibility of including MC and companion techniques in cooperative group clinical trials. Materials/Methods A 9-question survey was designed to query key clinical parameters: scope of MC utilization, validation methods for heterogeneities, clinical site-specific imaging guidance, proton range uncertainties, and how implants are handled. A national survey was distributed to all 29 operational US proton therapy centers on 13 May 2019. Results We received responses from 25 centers (86% participation). Commercial MC was most commonly used for primary plan optimization (16 centers) or primary dose evaluation (18 centers), while in-house MC was used more frequently for secondary dose evaluation (7 centers). Based on the survey, MC was used infrequently for gastrointestinal, genitourinary, gynecology and extremity compared with other more heterogeneous disease sites (P < .007). Although many centers had published DECT research, only 3/25 centers had implemented DECT clinically, either in the treatment-planning system or to override implant materials. Most centers (64%) treated patients with metal implants on a case-by-case basis, with a variety of methods reported. Twenty-four centers (96%) used MAR images and overrode the surrounding tissue artifacts; however, there was no consensus on how to determine metal dimension, materials density, or stopping powers. Conclusion The use of MC for primary dose calculation and optimization was prevalent and, therefore, likely feasible for clinical trials. There was consensus to use MAR and override tissues surrounding metals but no consensus about how to use DECT and MAR for human tissues and implants. Development and standardization of these advanced technologies are strongly encouraged for vendors and clinical physicists.
Collapse
Affiliation(s)
| | | | | | - Jatinder Saini
- Seattle Cancer Care Alliance Proton Therapy Center, Seattle, WA, USA
| | | | | | | | - Zuofeng Li
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL, USA
| | - Ying Xiao
- University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
14
|
Jacquet M, Marcatili S, Gallin-Martel ML, Bouly JL, Boursier Y, Dauvergne D, Dupont M, Gallin-Martel L, Hérault J, Létang JM, Manéval D, Morel C, Muraz JF, Testa É. A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy. Phys Med Biol 2021; 66. [PMID: 34020438 DOI: 10.1088/1361-6560/ac03ca] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/21/2021] [Indexed: 11/12/2022]
Abstract
We propose a novel prompt-gamma (PG) imaging modality for real-time monitoring in proton therapy: PG time imaging (PGTI). By measuring the time-of-flight (TOF) between a beam monitor and a PG detector, our goal is to reconstruct the PG vertex distribution in 3D. In this paper, a dedicated, non-iterative reconstruction strategy is proposed (PGTI reconstruction). Here, it was resolved under a 1D approximation to measure a proton range shift along the beam direction. In order to show the potential of PGTI in the transverse plane, a second method, based on the calculation of the centre of gravity (COG) of the TIARA pixel detectors' counts was also explored. The feasibility of PGTI was evaluated in two different scenarios. Under the assumption of a 100 ps (rms) time resolution (achievable in single proton regime), MC simulations showed that a millimetric proton range shift is detectable at 2σwith 108incident protons in simplified simulation settings. With the same proton statistics, a potential 2 mm sensitivity (at 2σwith 108incident protons) to beam displacements in the transverse plane was found using the COG method. This level of precision would allow to act in real-time if the treatment does not conform to the treatment plan. A worst case scenario of a 1 ns (rms) TOF resolution was also considered to demonstrate that a degraded timing information can be compensated by increasing the acquisition statistics: in this case, a 2 mm range shift would be detectable at 2σwith 109incident protons. By showing the feasibility of a time-based algorithm for the reconstruction of the PG vertex distribution for a simplified anatomy, this work poses a theoretical basis for the future development of a PG imaging detector based on the measurement of particle TOF.
Collapse
Affiliation(s)
- Maxime Jacquet
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
| | - Sara Marcatili
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
| | | | - Jean-Luc Bouly
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
| | | | - Denis Dauvergne
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
| | | | - Laurent Gallin-Martel
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
| | | | - Jean-Michel Létang
- University of Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, F-69373 Lyon, France
| | | | | | - Jean-François Muraz
- Université Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3 UMR 5821, F-38000 Grenoble, France
| | - Étienne Testa
- Univ. Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbanne, France
| |
Collapse
|
15
|
Moskvin VP, Faught A, Pirlepesov F, Zhao L, Hua CH, Merchant TE. Monte Carlo framework for commissioning a synchrotron-based discrete spot scanning proton beam system and treatment plan verification. Biomed Phys Eng Express 2021; 7. [PMID: 34077921 DOI: 10.1088/2057-1976/ac077a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/02/2021] [Indexed: 11/12/2022]
Abstract
This study aimed to develop a Monte Carlo (MC) framework for commissioning the narrow proton beams (spot size sigma, 5.2 mm 2 mm at isocenter for 69.4 MeV-221.3 MeV for the main beam option and 4.1 mm 1.3 mm for the minibeam option respectively) of a synchrotron-based proton therapy system and design an independent absolute dose calculation engine for intensity-modulated proton treatments. A proton therapy system (Hitachi PROBEAT-V) was simulated using divergent and convergent beam models at the nozzle entrance. The innovative source weighting scheme for the MC simulation with TOPAS (TOol for PArticle Simulations) was implemented using dose output data for the absolute dose calculations. The results of the MC simulation were compared to the experimental data, analyzed and used to commission the treatment planning system. Two MC models, divergent and convergent beams were implemented. The convergent beam model produced a high level of agreement when MC and measurements were analyzed. The beam ellipticity did not result in significant differences between MC simulated and treatment planning system calculated doses. A model of a synchrotron-based spot scanning proton therapy system has been developed and implemented in the TOPAS MC transport code framework. The dose computation engine is useful for treatment plan verification with primary and minibeam beam option.
Collapse
Affiliation(s)
- Vadim P Moskvin
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Austin Faught
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Fakhriddin Pirlepesov
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Li Zhao
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Chia-Ho Hua
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| | - Thomas E Merchant
- Department of Radiation Oncology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-2794, United States of America
| |
Collapse
|
16
|
Felcini E, Bottura L, Gerbershagen A, van Nugteren J, Dutoit B. Particle tracking and beam optics analysis on a toroidal gantry for proton therapy. Phys Med Biol 2021; 66. [PMID: 33849002 DOI: 10.1088/1361-6560/abf760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/13/2021] [Indexed: 11/12/2022]
Abstract
GaToroid is a concept of toroidal gantry for hadron therapy under investigation at CERN It makes use of the toroidal magnetic field between each pair of coils to steer and focus the particle beams down to the patient. This peculiar concept requires detailed studies on particle tracking and beam optics to optimise the winding geometry and explore the properties of the system. The work presented in this manuscript is focused on the features of a GaToroid system for protons, specifically designed to minimise the footprint and weight of the gantry. Firstly, a two-dimensional single particle tracking was developed to optimise the coil geometry and the toroidal magnetic field, aiming to the maximisation of the energy acceptance of the magnet. Particles over the whole spectrum of treatment energy are directed at isocenter within 1 mm of precision. This procedure, restricted to the symmetry plane between each pair of coils, defines different beam orbits, function of the beam energy. Subsequently, a three-dimensional particle tracking was implemented to evaluate the interaction of a beam of finite dimensions with the complete magnetic field map in vacuum. The parameters of the simulated beam at the isocenter are coherent with the clinical requirements. The results of the three-dimensional tracking were then used to calculate the linear transfer matrix associated to each beam orbit. Finally, the option of performing the beam spot scanning at the isocenter by acting on the upstream steering magnet has been investigated, highlighting the potential of the concept, as well as the limitations related to the scanning field dimension and source-to-axis distance. In conclusion, the results described in this paper represent a crucial step toward the understanding of the beam optics properties of a GaToroid gantry.
Collapse
Affiliation(s)
- E Felcini
- TE Department-CERN, 1211 Geneva 23, Switzerland.,Groupe SCI IC BD-EPFL, 1015, Lausanne, Switzerland
| | - L Bottura
- TE Department-CERN, 1211 Geneva 23, Switzerland
| | | | | | - B Dutoit
- Groupe SCI IC BD-EPFL, 1015, Lausanne, Switzerland
| |
Collapse
|
17
|
Durante M. Failla Memorial Lecture: The Many Facets of Heavy-Ion Science. Radiat Res 2021; 195:403-411. [PMID: 33979440 DOI: 10.1667/rade-21-00029.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/22/2021] [Indexed: 11/03/2022]
Abstract
Heavy ions are riveting in radiation biophysics, particularly in the areas of radiotherapy and space radiation protection. Accelerated charged particles can indeed penetrate deeply in the human body to sterilize tumors, exploiting the favorable depth-dose distribution of ions compared to conventional X rays. Conversely, the high biological effectiveness in inducing late effects presents a hazard for manned space exploration. Even after half a century of accelerator-based experiments, clinical applications and flight research, these two topics remain both fascinating and baffling. Heavy-ion therapy is very expensive, and despite the clinical success it remains controversial. Research on late radiation morbidity in spaceflight led to a reduction in uncertainty, but also pointed to new risks previously underestimated, such as possible damage to the central nervous system. Recently, heavy ions have also been used in other, unanticipated biomedical fields, such as treatment of heart arrhythmia or inactivation of viruses for vaccine development. Heavy-ion science nicely merges physics and biology and remains an extraordinary research field for the 21st century.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany; and Technische Universität Darmstadt, Institute of Condensed Matter Physics, 64289 Darmstadt, Germany
| |
Collapse
|
18
|
Horst F, Schardt D, Iwase H, Schuy C, Durante M, Weber U. Physical characterization of 3He ion beams for radiotherapy and comparison with 4He. Phys Med Biol 2021; 66. [PMID: 33730702 DOI: 10.1088/1361-6560/abef88] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
There is increasing interest in using helium ions for radiotherapy, complementary to protons and carbon ions. A large number of patients were treated with4He ions in the US heavy ion therapy project and novel4He ion treatment programs are under preparation, for instance in Germany and Japan.3He ions have been proposed as an alternative to4He ions because the acceleration of3He is technically less difficult than4He. In particular, beam contaminations have been pointed out as a potential safety issue for4He ion beams. This motivated a series of experiments with3He ion beams at Gesellschaft für Schwerionenforschung (GSI), Darmstadt. Measured3He Bragg curves and fragmentation data in water are presented in this work. Those experimental data are compared with FLUKA Monte Carlo simulations. The physical characteristics of3He ion beams are compared to those of4He, for which a large set of data became available in recent years from the preparation work at the Heidelberger Ionenstrahl-Therapiezentrum (HIT). The dose distributions (spread out Bragg peaks, lateral profiles) that can be achieved with3He ions are found to be competitive to4He dose distributions. The effect of beam contaminations on4He depth dose distribution is also addressed. It is concluded that3He ions can be a viable alternative to4He, especially for future compact therapy accelerator designs and upgrades of existing ion therapy facilities.
Collapse
Affiliation(s)
- Felix Horst
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Dieter Schardt
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Hiroshi Iwase
- KEK, Radiation Science, 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Christoph Schuy
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany.,Technische Universität Darmstadt, Institut für Festkörperphysik, D-64289 Darmstadt, Germany
| | - Uli Weber
- GSI Helmholtzzentrum für Schwerionenforschung, Biophysics Department, D-64291 Darmstadt, Germany
| |
Collapse
|
19
|
FLASH Irradiation with Proton Beams: Beam Characteristics and Their Implications for Beam Diagnostics. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
FLASH irradiations use dose-rates orders of magnitude higher than commonly used in patient treatments. Such irradiations have shown interesting normal tissue sparing in cell and animal experiments, and, as such, their potential application to clinical practice is being investigated. Clinical accelerators used in proton therapy facilities can potentially provide FLASH beams; therefore, the topic is of high interest in this field. However, a clear FLASH effect has so far been observed in presence of high dose rates (>40 Gy/s), high delivered dose (tens of Gy), and very short irradiation times (<300 ms). Fulfilling these requirements poses a serious challenge to the beam diagnostics system of clinical facilities. We will review the status and proposed solutions, from the point of view of the beam definitions for FLASH and their implications for beam diagnostics. We will devote particular attention to the topics of beam monitoring and control, as well as absolute dose measurements, since finding viable solutions in these two aspects will be of utmost importance to guarantee that the technique can be adopted quickly and safely in clinical practice.
Collapse
|
20
|
Farr JB, Moyers MF, Allgower CE, Bues M, Hsi WC, Jin H, Mihailidis DN, Lu HM, Newhauser WD, Sahoo N, Slopsema R, Yeung D, Zhu XR. Clinical commissioning of intensity-modulated proton therapy systems: Report of AAPM Task Group 185. Med Phys 2020; 48:e1-e30. [PMID: 33078858 DOI: 10.1002/mp.14546] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 02/06/2023] Open
Abstract
Proton therapy is an expanding radiotherapy modality in the United States and worldwide. With the number of proton therapy centers treating patients increasing, so does the need for consistent, high-quality clinical commissioning practices. Clinical commissioning encompasses the entire proton therapy system's multiple components, including the treatment delivery system, the patient positioning system, and the image-guided radiotherapy components. Also included in the commissioning process are the x-ray computed tomography scanner calibration for proton stopping power, the radiotherapy treatment planning system, and corresponding portions of the treatment management system. This commissioning report focuses exclusively on intensity-modulated scanning systems, presenting details of how to perform the commissioning of the proton therapy and ancillary systems, including the required proton beam measurements, treatment planning system dose modeling, and the equipment needed.
Collapse
Affiliation(s)
- Jonathan B Farr
- Department of Medical Physics, Applications of Detectors and Accelerators to Medicine, Meyrin, 1217, Switzerland
| | | | - Chris E Allgower
- Richard L. Roudebush VA Medical Center, Indianapolis, IN, 46202, USA
| | - Martin Bues
- Department of Radiation Oncology, Mayo Clinic, Scottsdale, AZ, 85259, USA
| | - Wen-Chien Hsi
- University of Florida Proton Therapy Institute, University of Florida, Jacksonville, FL, 32206, USA
| | - Hosang Jin
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dimitris N Mihailidis
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hsiao-Ming Lu
- Department of Radiation Oncology, Hefei Ion Medical Center, 1700 Changning Avenue, Gaoxin District, Hefei, Anhui, 230088, China
| | - Wayne D Newhauser
- Department of Physics & Astronomy, Louisiana State University, Baton Rouge, LA, 70803, USA.,Mary Bird Perkins Cancer Center, Baton Rouge, LA, 70809, USA
| | - Narayan Sahoo
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Roelf Slopsema
- Department of Radiation Oncology, Emory Proton Therapy Center, Emory University, Atlanta, GA, 30322, USA
| | - Daniel Yeung
- Saudi Proton Therapy Center, King Fahad Medical City, Riyadh, Riyadh Province, 11525, Saudi Arabia
| | - X Ronald Zhu
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
21
|
Liu G, Li X, Zhao L, Zheng W, Qin A, Zhang S, Stevens C, Yan D, Kabolizadeh P, Ding X. A novel energy sequence optimization algorithm for efficient spot-scanning proton arc (SPArc) treatment delivery. Acta Oncol 2020; 59:1178-1185. [PMID: 32421375 DOI: 10.1080/0284186x.2020.1765415] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
BACKGROUND Spot-scanning proton arc therapy (SPArc) has been proposed to improve dosimetric outcome and to simplify treatment workflow. To efficiently deliver a SPArc plan, it's crucial to minimize the number of energy layer switches (ELS) a sending because of the magnetic hysteresis effect. In this study, we introduced a new SPArc energy sequence optimization algorithm (SPArc_seq) to reduce ascended ELS and to investigate its impact on the beam delivery time (BDT). METHOD AND MATERIALS An iterative energy layer sorting and re-distribution mechanism following the direction of the gantry rotation was implemented in the original SPArc algorithm (SPArc_orig). Five disease sites, including prostate, lung, brain, head neck cancer (HNC) and breast cancer were selected to evaluate this new algorithm. Dose-volume histogram (DVH) and plan robustness were used to assess the plan quality for both SPArc_seq and SPArc_orig plans. The BDT evaluations were analyzed through two methods: 1. fixed gantry angle delivery (BDTfixed) and 2. An in-house dynamic arc scanning controller simulation which considered of gantry rotation speed, acceleration and deceleration (BDTarc). RESULTS With a similar total number of energy layers, SPArc_seq plans provided a similar nominal plan quality and plan robustness compared to SPArc_orig plans. SPArc_seq significantly reduced the number of ascended ELS by 83% (19 vs.115), 70% (16 vs. 64), 82% (19 vs. 104), 80% (19 vs. 94) and 70% (9 vs. 30), which effectively shortened the BDTfixed by 65% (386 vs. 1091 s), 61% (235 vs. 609 s), 64% (336 vs. 928 s), 48% (787 vs.1521 s) and 25% (384 vs. 511 s) and shortened BDTarc by 54% (522 vs.1128 s), 52% (310 vs.645 s), 53% (443 vs. 951 s), 49% (803 vs.1583 s) and 26% (398 vs. 534 s) in prostate, lung, brain, HNC and breast cancer, respectively. CONCLUSIONS The SPArc_seq optimization algorithm could effectively reduce the BDT compared to the original SPArc algorithm. The improved efficiency of the SPArc_seq algorithm has the potential to increase patient throughput, thereby reducing the operation cost of proton therapy.
Collapse
Affiliation(s)
- Gang Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Xiaoqiang Li
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Lewei Zhao
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Weili Zheng
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - An Qin
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | - Craig Stevens
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Di Yan
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Peyman Kabolizadeh
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| | - Xuanfeng Ding
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, MI, USA
| |
Collapse
|
22
|
Durante M, Parodi K. Radioactive Beams in Particle Therapy: Past, Present, and Future. FRONTIERS IN PHYSICS 2020; 8:00326. [PMID: 33224941 PMCID: PMC7116396 DOI: 10.3389/fphy.2020.00326] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Heavy ion therapy can deliver high doses with high precision. However, image guidance is needed to reduce range uncertainty. Radioactive ions are potentially ideal projectiles for radiotherapy because their decay can be used to visualize the beam. Positron-emitting ions that can be visualized with PET imaging were already studied for therapy application during the pilot therapy project at the Lawrence Berkeley Laboratory, and later within the EULIMA EU project, the GSI therapy trial in Germany, MEDICIS at CERN, and at HIMAC in Japan. The results show that radioactive ion beams provide a large improvement in image quality and signal-to-noise ratio compared to stable ions. The main hindrance toward a clinical use of radioactive ions is their challenging production and the low intensities of the beams. New research projects are ongoing in Europe and Japan to assess the advantages of radioactive ion beams for therapy, to develop new detectors, and to build sources of radioactive ions for medical synchrotrons.
Collapse
Affiliation(s)
- Marco Durante
- Biophysics Department, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
- Institute of Condensed Matter Physics, Technische Universität Darmstadt, Darmstadt, Germany
- Correspondence: Marco Durante,
| | - Katia Parodi
- Department of Experimental Physics—Medical Physics, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
23
|
Schaub L, Harrabi SB, Debus J. Particle therapy in the future of precision therapy. Br J Radiol 2020; 93:20200183. [PMID: 32795176 DOI: 10.1259/bjr.20200183] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first hospital-based treatment facilities for particle therapy started operation about thirty years ago. Since then, the clinical experience with protons and carbon ions has grown continuously and more than 200,000 patients have been treated to date. The promising clinical results led to a rapidly increasing number of treatment facilities and many new facilities are planned or under construction all over the world. An inverted depth-dose profile combined with potential radiobiological advantages make charged particles a precious tool for the treatment of tumours that are particularly radioresistant or located nearby sensitive structures. A rising number of trials have already confirmed the benefits of particle therapy in selected clinical situations and further improvements in beam delivery, image guidance and treatment planning are expected. This review summarises some physical and biological characteristics of accelerated charged particles and gives some examples of their clinical application. Furthermore, challenges and future perspectives of particle therapy will be discussed.
Collapse
Affiliation(s)
- Lukas Schaub
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Semi Ben Harrabi
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany
| | - Juergen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), partner site Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Hueso-González F, Bortfeld T. Compact Method for Proton Range Verification Based on Coaxial Prompt Gamma-Ray Monitoring: a Theoretical Study. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2020; 4:170-183. [PMID: 32258856 PMCID: PMC7111431 DOI: 10.1109/trpms.2019.2930362] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Range uncertainties in proton therapy hamper treatment precision. Prompt gamma-rays were suggested 16 years ago for real-time range verification, and have already shown promising results in clinical studies with collimated cameras. Simultaneously, alternative imaging concepts without collimation are investigated to reduce the footprint and price of current prototypes. In this manuscript, a compact range verification method is presented. It monitors prompt gamma-rays with a single scintillation detector positioned coaxially to the beam and behind the patient. Thanks to the solid angle effect, proton range deviations can be derived from changes in the number of gamma-rays detected per proton, provided that the number of incident protons is well known. A theoretical background is formulated and the requirements for a future proof-of-principle experiment are identified. The potential benefits and disadvantages of the method are discussed, and the prospects and potential obstacles for its use during patient treatments are assessed. The final milestone is to monitor proton range differences in clinical cases with a statistical precision of 1 mm, a material cost of 25000 USD and a weight below 10 kg. This technique could facilitate the widespread application of in vivo range verification in proton therapy and eventually the improvement of treatment quality.
Collapse
Affiliation(s)
- F Hueso-González
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| | - T Bortfeld
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States of America
| |
Collapse
|
25
|
Schreuder AN, Shamblin J. Proton therapy delivery: what is needed in the next ten years? Br J Radiol 2020; 93:20190359. [PMID: 31692372 PMCID: PMC7066946 DOI: 10.1259/bjr.20190359] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/10/2019] [Accepted: 11/01/2019] [Indexed: 12/25/2022] Open
Abstract
Proton radiation therapy has been used clinically since 1952, and major advancements in the last 10 years have helped establish protons as a major clinical modality in the cancer-fighting arsenal. Technologies will always evolve, but enough major breakthroughs have been accomplished over the past 10 years to allow for a major revolution in proton therapy. This paper summarizes the major technology advancements with respect to beam delivery that are now ready for mass implementation in the proton therapy space and encourages vendors to bring these to market to benefit the cancer population worldwide. We state why these technologies are essential and ready for implementation, and we discuss how future systems should be designed to accommodate their required features.
Collapse
Affiliation(s)
- Andries N. Schreuder
- Provision Center for Proton therapy – Knoxville, 6450 Provision Cares way, Knoxville, TN 37909, USA
| | - Jacob Shamblin
- ProNova Solutions, LLC, 330 Pellissippi Place, Maryville, TN 37804, USA
| |
Collapse
|