1
|
Plaza D, Sroka Ł, Orzechowska K, Ślosarek K. Comparison of the dose distribution of the VMAT radiotherapy technique depending on the beam used: FFF-X10MV and FFF-X15MV. Rep Pract Oncol Radiother 2023; 28:654-660. [PMID: 38179296 PMCID: PMC10764046 DOI: 10.5603/rpor.97508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/18/2023] [Indexed: 01/06/2024] Open
Abstract
Background The aim of the study was to answer the question of whether flattening filter (FF) and flattening filter-free (FFF) beams can be used alternately in the volumetric modulated arc therapy (VMAT) treatment technique, regardless of the size of the irradiated volume [small (S) or large (L) planning target volume (PTV)]. Materials and methods Two groups of patients were examined: a group with a S-PTV-laryngeal cancer and a group with a L-PTV - gynecological volume. For each patient, two treatment plans were made for beams (energies): FFF-X10MV and FF-X15MV. Then, a statistical analysis, nonparametric test, and independent groups were performed, comparing the beams' impact on the analyzed treatment plans. Results In the case of laryngeal irradiation (S-PTV), there are no statistically significant differences between the energy used and the assessed parameters of the plan. In the case of gynecological volume (L-PTV), only statistically significant differences were noted for the number of monitor units depending on the energy used. For a large irradiated volume (gynecological case), the use of FFF beams increases the number of monitor units by 39,4% in relation to the FF beam. Conclusions In the case of gynecological neoplasms, statistically significant differences were found in the number of monitor units. Therefore, in the case of irradiation of L-PTV, it is recommended that flattening-filtering beams are used due to the smaller number of monitors. In the case of S-PTV, no statistically significant differences were found between the types of beams used (FF or FFF) and the treatment plan parameters analyzed in the study.
Collapse
Affiliation(s)
- Dominika Plaza
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Łukasz Sroka
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Klaudia Orzechowska
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| | - Krzysztof Ślosarek
- Radiotherapy Planning Department, Maria Skłodowska-Curie National Research Institute of Oncology, Gliwice Branch, Poland
| |
Collapse
|
2
|
Huang YY, Yang J, Liu YB. Planning issues on linac-based stereotactic radiotherapy. World J Clin Cases 2022; 10:12822-12836. [PMID: 36568990 PMCID: PMC9782937 DOI: 10.12998/wjcc.v10.i35.12822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 11/14/2022] [Indexed: 12/14/2022] Open
Abstract
This work aims to summarize and evaluate the current planning progress based on the linear accelerator in stereotactic radiotherapy (SRT). The specific techniques include 3-dimensional conformal radiotherapy, dynamic conformal arc therapy, intensity-modulated radiotherapy, and volumetric-modulated arc therapy (VMAT). They are all designed to deliver higher doses to the target volume while reducing damage to normal tissues; among them, VMAT shows better prospects for application. This paper reviews and summarizes several issues on the planning of SRT to provide a reference for clinical application.
Collapse
Affiliation(s)
- Yang-Yang Huang
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi Province, China
- Department of Radiotherapy, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, Henan Province, China
| | - Jun Yang
- Department of Radiotherapy, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Yi-Bao Liu
- School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, Jiangxi Province, China
| |
Collapse
|
3
|
Domgouo AIN, Fiume A, Grimaldi L, Moyo MN. Target volume size effect on comparison of dynamic arc treatment plans computed using flattened and unflattened 6MV beams. J Med Imaging Radiat Sci 2022; 53:686-692. [PMID: 36280570 DOI: 10.1016/j.jmir.2022.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/08/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION/BACKGROUND In conventional linear accelerators, to obtain flat profiles leading to uniform dose distribution in homogeneous medium, the flattening filter is usually applied on the beam path. In recent years, to obtain higher dose rates, there have been the options of flattening filter free (FFF) beams and it has been noticed that these have many advantages. The aim of this study was to clearly underline the advantages and the drawbacks of flattened filter free (FFF) beams in comparison with the flattening filter (FF) beams for different clinical contexts (planning target volumes locations). METHODS Two groups (planned with auto-planning VMAT, full and partial arcs) of eight patients each were analyzed: Group I (small planning target volume PTV, with average volume 48.9 ±44.4 cm3), Group II (large PTV, with average volume 532.4 ±368.8 cm3). Both beam modalities 6MV and 6MVFFF were compared in terms of Dmax, D95%, D1cc, D2cc, homogeneity index (HI), number of monitor units (MU), treatment delivery time. RESULTS Using the 6MVFFF, the treatment delivery time was significantly reduced (p<0.05). For larger PTVs, the number of MU increased by more than twice, and the p-value shown a significant difference (p= 0.008). The value of Dmax increased by 4%. On the contrary, for small volumes, the results were quite similar from 6MVFFF to 6MV except some differences in terms of MU. CONCLUSION It is recommended to use 6MVFFF beam with small PTV volumes. Dose distributions are almost the same as with 6MV and there is a significant reduction of the treatment delivery time up to 57%. Due to the dose profile shape in FFF mode, the dose is lowered beyond the central axis for the FFF beams, and the additional MU allows the dose to be delivered away from the beam axis.
Collapse
Affiliation(s)
| | - Alfredo Fiume
- Medical physics department, Civil hospital of Brescia, Brescia, Italy
| | - Luca Grimaldi
- Medical physics department, Esine hospital of Brescia, Brescia, Italy
| | - Maurice Ndontchueng Moyo
- Centre for Atomic, Molecular Physics and Quantum Optics, Faculty of Science, University of Douala, Douala, Cameroon
| |
Collapse
|
4
|
A comprehensive analysis of the relationship between dose-rate and biological effects in pre-clinical and clinical studies, from brachytherapy to flattening filter-free radiation therapy and FLASH irradiation. Int J Radiat Oncol Biol Phys 2022; 113:985-995. [DOI: 10.1016/j.ijrobp.2022.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 01/16/2023]
|
5
|
Ghemiş DM, Marcu LG. Progress and prospects of flattening filter free beam technology in radiosurgery and stereotactic body radiotherapy. Crit Rev Oncol Hematol 2021; 163:103396. [PMID: 34146680 DOI: 10.1016/j.critrevonc.2021.103396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/25/2022] Open
Abstract
The aim of this work is to summarize and evaluate the current status of knowledge on flattening filter free (FFF) beams and their applications in stereotactic radiosurgery (SRS) and stereotactic body radiotherapy (SBRT). A PubMed search was undertaken in order to identify relevant publications using FFF and stereotactic radiotherapy as keywords. On a clinical aspect, lung tumors treated with FFF SBRT show promising results in terms of local control and overall survival with acute toxicities consistent with those that occur with standard radiotherapy. Beside lung, SBRT is suitable for different anatomical sites such as liver, prostate, cervix, etc. offering similar results: reduced treatment time, good tumor control and mild acute toxicities. Regarding brain tumors, the employment of SRS with FFF beams significantly reduces treatment time and provides notable normal tissue sparing due to the sharp dose fall-off outside the tumor.
Collapse
Affiliation(s)
- Diana M Ghemiş
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; MedEuropa, Oradea, Romania
| | - Loredana G Marcu
- West University of Timisoara, Faculty of Physics, Timisoara, Romania; Faculty of Informatics & Science, University of Oradea, Oradea, 410087, Romania; Cancer Research Institute, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
6
|
Effects of flattening filter (FF) and flattening filter-free (FFF) beams on small-field and large-field dose distribution using the VMAT treatment plan. POLISH JOURNAL OF MEDICAL PHYSICS AND ENGINEERING 2021. [DOI: 10.2478/pjmpe-2021-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Introduction: The aim of the study was to evaluate the influence of flattening filter (FF) and flattening filter-free (FFF) beams on small-field and large-field dose distribution using the VMAT treatment plan.
Material and methods: Dose distribution calculations were performed for the VMAT technique in two locations: the larynx (small irradiation field; average 30.1 cm2) and gynecology (large irradiation field; average 173.1 cm2) using X-6MV flattening filter (FF) and flattening filter-free (FFF) beams. The following values were compared: the number of monitor units, minimum doses, average doses in PTV and maximum average doses in OaR (spinal cord – in larynx radiotherapy, bladder and rectum - in gynecological radiotherapy) and RPI (Radiation Planning Index) coefficient.
Results and Discussion: The performed statistical tests indicate that there is a significant difference (p <0.05) between the number of monitor units in the irradiation of large (gynecological) fields between the FF and FFF beams. The dose distributions show no statistically significant differences between the flattening filter and flattening-free filter beams (regardless of the field size).
Conclusions: Due to the smaller number of monitor units, it is recommended to use flattening filter beams (FF) for large-field radiotherapy.
Collapse
|
7
|
Ding Z, Xiang X, Kang K, Zeng Q, Yuan Q, Xu M. Comparison of dosimetric characteristics between flattening filter‐free and flattening filter mode volumetric‐modulated arc therapy plans in rectal cancer. PRECISION RADIATION ONCOLOGY 2021. [DOI: 10.1002/pro6.1117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Zhen Ding
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Xiaoyong Xiang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Kailian Kang
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Qi Zeng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Qingqing Yuan
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| | - Meiling Xu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital Chinese Academy of Medical Sciences and Peking Union Medical College Shenzhen Guangdong Province China
| |
Collapse
|
8
|
Mueller R, Yasmin-Karim S, DeCosmo K, Vazquez-Pagan A, Sridhar S, Kozono D, Hesser J, Ngwa W. Increased carcinoembryonic antigen expression on the surface of lung cancer cells using gold nanoparticles during radiotherapy. Phys Med 2020; 76:236-242. [PMID: 32731132 PMCID: PMC7500560 DOI: 10.1016/j.ejmp.2020.06.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 06/09/2020] [Accepted: 06/27/2020] [Indexed: 01/01/2023] Open
Abstract
PURPOSE Tumor-associated antigens are a promising target of immunotherapy approaches for cancer treatments but rely on sufficient expression of the target antigen. This study investigates the expression of the carcinoembryonic antigen (CEA) on the surface of irradiated lung cancer cells in vitro using gold nanoparticles as radio-enhancer. METHODS Human lung carcinoma cells A549 were irradiated and expression of CEA on the cell surface measured by flow cytometry 3 h, 24 h, and 72 h after irradiation to doses of 2 Gy, 6 Gy, 10 Gy, and 20 Gy in the presence or absence of 0.1 mg/ml or 0.5 mg/ml gold nanoparticles. CEA expression was measured as median fluorescent intensity and percentage of CEA-positive cells. RESULTS An increase in CEA expression was observed with both increasing radiation dose and time. There was doubling in median fluorescent intensity 24 h after 20 Gy irradiation and 72 h after 6 Gy irradiation. Use of gold nanoparticles resulted in additional significant increase in CEA expression. Change in cell morphology included swelling of cells and increased internal complexity in accordance with change in CEA expression. CONCLUSIONS This study showed an increase in CEA expression on human lung carcinoma cells following irradiation. Increase in expression was observed with increasing radiation dose and in a time dependent manner up to 72 h post irradiation. The results further showed that gold nanoparticles can significantly increase CEA expression following radiotherapy.
Collapse
Affiliation(s)
- Romy Mueller
- Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany; Heidelberg University, 69117 Heidelberg, Germany; Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| | - Sayeda Yasmin-Karim
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Kaylie DeCosmo
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Department of Health Science, Northeastern University, Boston, MA 02115, USA
| | - Ana Vazquez-Pagan
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Harvard Medical School, Boston, MA 02115, USA; Northeastern University, Boston, MA 02115, USA
| | - David Kozono
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Juergen Hesser
- Data Analysis and Modeling in Medicine, Mannheim Institute for Intelligent Systems in Medicine (MIISM), Heidelberg University, 69117 Heidelberg, Germany; Heidelberg University, 69117 Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany; Central Institute for Computer Engineering (ZITI), Heidelberg University, 68159 Mannheim, Germany
| | - Wilfred Ngwa
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA; Department of Physics and Applied Physics, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
9
|
Fogliata A, Cayez R, Garcia R, Khamphan C, Reggiori G, Scorsetti M, Cozzi L. Technical Note: Flattening filter free beam from Halcyon linac: Evaluation of the profile parameters for quality assurance. Med Phys 2020; 47:3669-3674. [PMID: 32367534 DOI: 10.1002/mp.14217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION The use of flattening filter free (FFF) beams generated by standard linear accelerators is increasing in the clinical practice. The radiation intensity peaked toward the beam central axis is properly managed in the optimization process of treatment planning through intensity modulation. Specific FFF parameters for profile analysis, as unflatness and slope for FFF beams, based on the renormalization factor concept has been introduced for quality assurance purposes. Recently, Halcyon, an O-ring based linear accelerator equipped with a 6 MV FFF beam only has been introduced by Varian. METHODS Renormalization factors and related fit parameters according to Fogliata et al. ["Definition of parameters for quality assurance of FFF photon beams in radiation therapy," Med. Phys. 39, 6455-6464 (2012)] have been evaluated for the 6 MV FFF beam generated by Halcyon units. The Halcyon representative beam data provided by Varian were used. Dose fall-off at the field edges was matched with an unflattened beam generated by a 6 MV from a TrueBeam linac. Consistency of the results was evaluated against measurements on a clinical Halcyon unit, as well as a TrueBeam 6 MV FFF for comparison. RESULTS The five parameters in the analytical equation for estimating the renormalization factor were determined with an R2 of 0.997. The comparison of the unflatness parameters between the Halcyon representative and hospital beam data was consistent within a range of 0.6%. Consistently with the computed parameters, the Halcyon profiles resulted in a less pronounced peak than TrueBeam. CONCLUSION Renormalization factors and related fit parameters from the 6 MV FFF beam generated by the Varian Halcyon unit are provided.
Collapse
Affiliation(s)
- A Fogliata
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - R Cayez
- Oscar Lambret Center, rue Frédéric Combemale, Radiotherapy, 59000, Lille, France
| | - R Garcia
- Medical Physics Department, Institut Sainte-Catherine, 250 Chemin de Baigne Pieds, 84000, Avignon, France
| | - C Khamphan
- Medical Physics Department, Institut Sainte-Catherine, 250 Chemin de Baigne Pieds, 84000, Avignon, France
| | - G Reggiori
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy
| | - M Scorsetti
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
| | - L Cozzi
- Humanitas Clinical and Research Center - IRCCS, Radiotherapy Dept, via Manzoni 56, 20089, Milan, Rozzano, Italy.,Department of Biomedical Science, Humanitas University, via Rita Levi Montalcini 4, 20090, Milan, Pieve Emanuele, Italy
| |
Collapse
|
10
|
Abdulle A, Chow JCL. Contrast Enhancement for Portal Imaging in Nanoparticle-Enhanced Radiotherapy: A Monte Carlo Phantom Evaluation Using Flattening-Filter-Free Photon Beams. NANOMATERIALS 2019; 9:nano9070920. [PMID: 31248046 PMCID: PMC6669570 DOI: 10.3390/nano9070920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/02/2022]
Abstract
Our team evaluated contrast enhancement for portal imaging using Monte Carlo simulation in nanoparticle-enhanced radiotherapy. Dependencies of percentage contrast enhancement on flattening-filter (FF) and flattening-filter-free (FFF) photon beams were determined by varying the nanoparticle material (gold, platinum, iodine, silver, iron oxide), nanoparticle concentration (3–40 mg/mL) and photon beam energy (6 and 10 MV). Phase-space files and energy spectra of the 6 MV FF, 6 MV FFF, 10 MV FF and 10 MV FFF photon beams were generated based on a Varian TrueBeam linear accelerator. We found that gold and platinum nanoparticles (NP) produced the highest contrast enhancement for portal imaging, compared to other NP with lower atomic numbers. The maximum percentage contrast enhancements for the gold and platinum NP were 18.9% and 18.5% with a concentration equal to 40 mg/mL. The contrast enhancement was also found to increase with the nanoparticle concentration. The maximum rate of increase of contrast enhancement for the gold NP was equal to 0.29%/mg/mL. Using the 6 MV photon beams, the maximum contrast enhancements for the gold NP were 79% (FF) and 78% (FFF) higher than those using the 10 MV beams. For the FFF beams, the maximum contrast enhancements for the gold NP were 53.6% (6 MV) and 53.8% (10 MV) higher than those using the FF beams. It is concluded that contrast enhancement for portal imaging can be increased when a higher atomic number of NP, higher nanoparticle concentration, lower photon beam energy and no flattening filter of photon beam are used in nanoparticle-enhanced radiotherapy.
Collapse
Affiliation(s)
- Aniza Abdulle
- Department of Physics, Ryerson University, Toronto, ON M5B 2K3, Canada
| | - James C L Chow
- Department of Radiation Oncology, University of Toronto and Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, ON M5T 1P5, Canada.
| |
Collapse
|