1
|
Lu Z, Zhu G, Qiu Z, Guo H, Li J, Zheng L, Chen C, Che J, Xiang Y, Wang Y. 3D-printed brachytherapy in patients with cervical cancer: improving efficacy and safety outcomes. Radiat Oncol 2024; 19:152. [PMID: 39488692 PMCID: PMC11531177 DOI: 10.1186/s13014-024-02536-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/08/2024] [Indexed: 11/04/2024] Open
Abstract
OBJECTIVE This study aims to evaluate the efficacy and safety of 3D printing technology in brachytherapy for cervical cancer, comparing its outcomes with conventional free hand implantation brachytherapy. METHODS A total of 50 cervical cancer patients treated at the First Affiliated Hospital of Gannan Medical College from January 2019 to July 2023 were included in this study. Patients were divided into two groups: 25 patients received intensity-modulated radiotherapy (IMRT) combined with 3D-printed brachytherapy, and 25 patients underwent IMRT combined with free hand brachytherapy implantation. Key indicators analyzed included short-term therapeutic effects, survival outcomes, operation times, the number of CT scans, the number of needles inserted, dosimetric parameters, and complications. RESULTS The use of 3D-printed brachytherapy significantly improved the safety of radiation therapy operations, especially for large tumors (≥ 30 mm), by providing more precise dose distribution and reducing the radiation doses received by critical organs such as the bladder and rectum. Compared to the artificial implant group (88% prevalence), the 3D-printed brachytherapy group showed a significantly lower incidence of radiation enteritis (29.2% prevalence, p < 0.001). There were no significant differences in other complications between the two groups. For instance, the incidence of radiation cystitis was relatively high in the 3D-printed brachytherapy group (79.2% prevalence) compared to the artificial implant group (64% prevalence, p = 0.240). The median follow-up period in this study was 22.5 months [IQR 18-29]. Among the 49 patients included, 43 had cervical squamous carcinoma and 6 had cervical adenocarcinoma. Short-term therapeutic response rates were comparable, with no significant difference in overall survival observed between the two groups. CONCLUSION 3D-printed brachytherapy offers a more effective and safer therapeutic option for patients with cervical cancer, particularly for those with large tumors or complex anatomical structures.
Collapse
Affiliation(s)
- Zenghong Lu
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Gangfeng Zhu
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Zhengang Qiu
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Hailiang Guo
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
- Radiotherapy Center, The First Affiliated Hospital, Gannan Medical University, Ganzhou, China
| | - Junyan Li
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Liangjian Zheng
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Cixiang Chen
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China
| | - Jie Che
- First Clinical Medical College, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Yi Xiang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| | - Yili Wang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou, 341000, Jiangxi Province, China.
| |
Collapse
|
2
|
Ashraf MR, Melemenidis S, Liu K, Grilj V, Jansen J, Velasquez B, Connell L, Schulz JB, Bailat C, Libed A, Manjappa R, Dutt S, Soto L, Lau B, Garza A, Larsen W, Skinner L, Yu AS, Surucu M, Graves EE, Maxim PG, Kry SF, Vozenin MC, Schüler E, Loo BW. Multi-Institutional Audit of FLASH and Conventional Dosimetry With a 3D Printed Anatomically Realistic Mouse Phantom. Int J Radiat Oncol Biol Phys 2024; 120:287-300. [PMID: 38493902 DOI: 10.1016/j.ijrobp.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 03/03/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024]
Abstract
PURPOSE We conducted a multi-institutional dosimetric audit between FLASH and conventional dose rate (CONV) electron irradiations by using an anatomically realistic 3-dimensional (3D) printed mouse phantom. METHODS AND MATERIALS A computed tomography (CT) scan of a live mouse was used to create a 3D model of bony anatomy, lungs, and soft tissue. A dual-nozzle 3D printer was used to print the mouse phantom using acrylonitrile butadiene styrene (∼1.02 g/cm3) and polylactic acid (∼1.24 g/cm3) simultaneously to simulate soft tissue and bone densities, respectively. The lungs were printed separately using lightweight polylactic acid (∼0.64 g/cm3). Hounsfield units (HU), densities, and print-to-print stability of the phantoms were assessed. Three institutions were each provided a phantom and each institution performed 2 replicates of irradiations at selected anatomic regions. The average dose difference between FLASH and CONV dose distributions and deviation from the prescribed dose were measured with radiochromic film. RESULTS Compared with the reference CT scan, CT scans of the phantom demonstrated mass density differences of 0.10 g/cm3 for bone, 0.12 g/cm3 for lung, and 0.03 g/cm3 for soft tissue regions. Differences in HU between phantoms were <10 HU for soft tissue and bone, with lung showing the most variation (54 HU), but with minimal effect on dose distribution (<0.5%). Mean differences between FLASH and CONV decreased from the first to the second replicate (4.3%-1.2%), and differences from the prescribed dose decreased for both CONV (3.6%-2.5%) and FLASH (6.4%-2.7%). Total dose accuracy suggests consistent pulse dose and pulse number, although these were not specifically assessed. Positioning variability was observed, likely due to the absence of robust positioning aids or image guidance. CONCLUSIONS This study marks the first dosimetric audit for FLASH using a nonhomogeneous phantom, challenging conventional calibration practices reliant on homogeneous phantoms. The comparison protocol offers a framework for credentialing multi-institutional studies in FLASH preclinical research to enhance reproducibility of biologic findings.
Collapse
Affiliation(s)
- M Ramish Ashraf
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Stavros Melemenidis
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Veljko Grilj
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jeannette Jansen
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland
| | - Brett Velasquez
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luke Connell
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph B Schulz
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Claude Bailat
- Institute of Radiation Physics, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Aaron Libed
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Rakesh Manjappa
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Suparna Dutt
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Luis Soto
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Brianna Lau
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Aaron Garza
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - William Larsen
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Lawrie Skinner
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Amy S Yu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Peter G Maxim
- Department of Radiation Oncology, University of California, Irvine, California
| | - Stephen F Kry
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Imaging and Radiation Oncology Core, MD Anderson Cancer Center, Houston, USA
| | - Marie-Catherine Vozenin
- Radiation Oncology Laboratory, Department of Radiation Oncology, Lausanne, University Hospital and University of Lausanne, Switzerland; Radiotherapy and Radiobiology Sector, Radiation Therapy Service, University Hospital of Geneva, Geneva, Switzerland.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
3
|
Antoniou A, Nikolaou A, Georgiou A, Evripidou N, Damianou C. Development of an US, MRI, and CT imaging compatible realistic mouse phantom for thermal ablation and focused ultrasound evaluation. ULTRASONICS 2023; 131:106955. [PMID: 36854247 DOI: 10.1016/j.ultras.2023.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Tissue mimicking phantoms (TMPs) play an essential role in modern biomedical research as cost-effective quality assurance and training tools, simultaneously contributing to the reduction of animal use. Herein, we present the development and evaluation of an anatomically accurate mouse phantom intended for image-guided thermal ablation and Focused Ultrasound (FUS) applications. The proposed mouse model consists of skeletal and soft tissue mimics, whose design was based on the Computed tomography (CT) scans data of a live mouse. Advantageously, it is compatible with US, CT, and Magnetic Resonance Imaging (MRI). The compatibility assessment was focused on the radiological behavior of the phantom due to the lack of relevant literature. The X-ray linear attenuation coefficient of candidate materials was estimated to assess the one that matches best the radiological behavior of living tissues. The bone part was manufactured by Fused Deposition Modeling (FDM) printing using Acrylonitrile styrene acrylate (ASA) material. For the soft-tissue mimic, a special mold was 3D printed having a cavity with the unique shape of the mouse body and filled with an agar-based silica-doped gel. The mouse phantom accurately matched the size and reproduced the body surface of the imaged mouse. Tissue-equivalency in terms of X-ray attenuation was demonstrated for the agar-based soft-tissue mimic. The phantom demonstrated excellent MRI visibility of the skeletal and soft-tissue mimics. Good radiological contrast between the skeletal and soft-tissue models was also observed in the CT scans. The model was also able to reproduce realistic behavior during trans-skull sonication as proved by thermocouple measurements. Overall, the proposed phantom is inexpensive, ergonomic, and realistic. It could constitute a powerful tool for image-guided thermal ablation and FUS studies in terms of testing and optimizing the performance of relevant equipment and protocols. It also possess great potential for use in transcranial FUS applications, including the emerging topic of FUS-mediated blood brain barrier (BBB) disruption.
Collapse
Affiliation(s)
- Anastasia Antoniou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Anastasia Nikolaou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Andreas Georgiou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Nikolas Evripidou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| | - Christakis Damianou
- Department of Electrical Engineering, Computer Engineering, and Informatics, Cyprus University of Technology, Limassol, Cyprus.
| |
Collapse
|
4
|
Esplen N, Egoriti L, Paley B, Planche T, Hoehr C, Gottberg A, Bazalova-Carter M. Design optimization of an electron-to-photon conversion target for ultra-high dose rate x-ray (FLASH) experiments at TRIUMF. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5ed6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/17/2022] [Indexed: 12/29/2022]
Abstract
Abstract
Objective. To develop a bremsstrahlung target and megavoltage (MV) x-ray irradiation platform for ultrahigh dose-rate (UHDR) irradiation of small-animals on the Advanced Rare Isotope Laboratory (ARIEL) electron linac (e-linac) at TRIUMF. Approach. An electron-to-photon converter design for UHDR radiotherapy (RT) was centered around optimization of a tantalum–aluminum (Ta–Al) explosion-bonded target. Energy deposition within a homogeneous water-phantom and the target itself were evaluated using EGSnrc and FLUKA MC codes, respectively, for various target thicknesses (0.5–1.5 mm), beam energies (E
e− = 8, 10 MeV) and electron (Gaussian) beam sizes (
2
σ
= 2–10 mm). Depth dose-rates in a 3D-printed mouse phantom were also calculated to infer the compatibility of the 10 MV dose distributions for FLASH-RT in small-animal models. Coupled thermo-mechanical FEA simulations in ANSYS were subsequently used to inform the stress–strain conditions and fatigue life of the target assembly. Main results. Dose-rates of up to 128 Gy s−1 at the phantom surface, or 85 Gy s−1 at 1 cm depth, were obtained for a 1 × 1 cm2 field size, 1 mm thick Ta target and 7.5 cm source-to-surface distance using the FLASH-mode beam (E
e− = 10 MeV, 2
σ
= 5 mm, P = 1 kW); furthermore, removal of the collimation assembly and using a shorter (3.5 cm) SSD afforded dose-rates >600 Gy s−1, albeit at the expense of field conformality. Target temperatures were maintained below the tantalum, aluminum and cooling-water thresholds of 2000 °C, 300 °C and 100 °C, respectively, while the aluminum strain behavior remained everywhere elastic and helped ensure the converter survives its prescribed 5 yr operational lifetime. Significance. Effective design iteration, target cooling and failure mitigation have culminated in a robust target compatible with intensive transient (FLASH) and steady-state (diagnostic) applications. The ARIEL UHDR photon source will facilitate FLASH-RT experiments concerned with sub-second, pulsed or continuous beam irradiations at dose rates in excess of 40 Gy s−1.
Collapse
|
5
|
Poirier Y, Xu J, Mossahebi S, Therriault‐Proulx F, Sawant A. Technical note: Characterization and practical applications of a novel plastic scintillator for on‐line dosimetry for ultra‐high dose rate (FLASH). Med Phys 2022; 49:4682-4692. [DOI: 10.1002/mp.15671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Yannick Poirier
- University of Maryland School of Medicine Baltimore MD 21201
- McGill University Montreal QC H3A 2T5 Canada
| | - Junliang Xu
- University of Maryland School of Medicine Baltimore MD 21201
| | - Sina Mossahebi
- University of Maryland School of Medicine Baltimore MD 21201
| | | | - Amit Sawant
- University of Maryland School of Medicine Baltimore MD 21201
| |
Collapse
|
6
|
Robinson SM, Esplen N, Wells D, Bazalova-Carter M. Monte Carlo simulations of EBT3 film dose deposition for percentage depth dose (PDD) curve evaluation. J Appl Clin Med Phys 2020; 21:314-324. [PMID: 33155768 PMCID: PMC7769387 DOI: 10.1002/acm2.13078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/04/2020] [Accepted: 10/05/2020] [Indexed: 02/04/2023] Open
Abstract
Purpose To use Monte Carlo (MC) calculations to evaluate the effects of Gafchromic EBT3 film orientation on percentage depth dose (PDD) curves. Methods Dose deposition in films placed in a water phantom, and oriented either parallel or perpendicular with respect to beam axis, were simulated with MC and compared to PDDs scored in a homogenous water phantom. The effects of introducing 0.01–1.00 mm air gaps on each side of the film as well as a small 1°‐3° tilt for film placed in parallel orientation were studied. PDDs scored based on two published EBT3 film compositions were compared. Three photon beam energies of 120 kVp, 220 kVp, and 6 MV and three field sizes between 1 × 1 and 5 × 5 cm2 were considered. Experimental PDDs for a 6‐MV 3 × 3 cm2 beam were acquired. Results PDD curves for films in perpendicular orientation more closely agreed to water PDDs than films placed in parallel orientation. The maximum difference between film and water PDD for films in parallel orientation was −12.9% for the 220 kVp beam. For the perpendicular film orientation, the maximum difference decreased to 5.7% for the 120 kVp beam. The inclusion of an air gap had the largest effect on the 6‐MV 1 × 1 cm2 beam, for which the dose in the buildup region was underestimated by 21.2% compared to the simulation with no air gap. A 2° film tilt decreased the difference between the parallel film and homogeneous water phantom PDDs from −5.0% to −0.5% for the 6 MV 3 × 3 cm2 beam. The “newer” EBT3 film composition resulted in larger PDD discrepancies than the previous composition. Experimental film data qualitatively agreed with MC simulations. Conclusions PDD measurements with films should either be performed with film in perpendicular orientation to the beam axis or in parallel orientation with a ~ 2º tilt and no air gaps.
Collapse
Affiliation(s)
- Spencer M Robinson
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Nolan Esplen
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
| | - Derek Wells
- Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada.,BC Cancer Vancouver Island Centre, Victoria, BC, Canada
| | | |
Collapse
|