1
|
Tahmasbi M, Capela M, Santos T, Mateus J, Ventura T, do Carmo Lopes M. Particular issues to be considered in small field dosimetry for TrueBeam STx commissioning. Appl Radiat Isot 2023; 202:111066. [PMID: 37865066 DOI: 10.1016/j.apradiso.2023.111066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/28/2023] [Accepted: 10/05/2023] [Indexed: 10/23/2023]
Abstract
This study aims to report the relevant issues concerning small fields in the commissioning of a TrueBeam STx for photon energies of 6MV, 10MV, 6FFF, and 10FFF. Percent depth doses, profiles, and field output factors were measured according to the beam model configuration of the treatment planning system. Multiple detectors were used based on the IAEA TRS-483 protocol as well as EBT3 radiochromic film. Analytical Anisotropic and Acuros XB algorithms, were configured and validated through basic dosimetry comparisons and end-to-end clinical tests.
Collapse
Affiliation(s)
- Marziyeh Tahmasbi
- Radiologic Technology Department, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal.
| | - Miguel Capela
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tania Santos
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Josefina Mateus
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Tiago Ventura
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| | - Maria do Carmo Lopes
- Medical Physics Department, Instituto Portugues de Oncologia Coimbra Francisco Gentil, E.P.E., Portugal
| |
Collapse
|
2
|
Frigo SP, Ohrt J, Suh Y, Balter P. Interinstitutional beam model portability study in a mixed vendor environment. J Appl Clin Med Phys 2021; 22:37-50. [PMID: 34643323 PMCID: PMC8664150 DOI: 10.1002/acm2.13445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/19/2021] [Accepted: 09/14/2021] [Indexed: 11/17/2022] Open
Abstract
A 6 MV flattened beam model for a Varian TrueBeamSTx c‐arm treatment delivery system in RayStation, developed and validated at one institution, was implemented and validated at another institution. The only parameter value adjustments were to accommodate machine output at the second institution. Validation followed MPPG 5.a. recommendations, with particular attention paid to IMRT and VMAT deliveries. With this minimal adjustment, the model passed validation across a broad spectrum of treatment plans, measurement devices, and staff who created the test plans and executed the measurements. This work demonstrates the possibility of using a single template model in the same treatment planning system with matched machines in a mixed vendor environment.
Collapse
Affiliation(s)
- Sean P Frigo
- Department of Human Oncology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jared Ohrt
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yelin Suh
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Peter Balter
- Department of Radiation Physics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
3
|
Côté B, Keszti F, Bancheri J, Sarfehnia A, Seuntjens J, Renaud J. Feasibility of operating a millimeter-scale graphite calorimeter for absolute dosimetry of small-field photon beams in the clinic. Med Phys 2021; 48:7476-7492. [PMID: 34549805 DOI: 10.1002/mp.15244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 07/06/2021] [Accepted: 08/28/2001] [Indexed: 11/11/2022] Open
Abstract
PURPOSE To characterize and build a cylindrically layered graphite calorimeter the size of a thimble ionization chamber for absolute dosimetry of small fields. This detector has been designed in a familiar probe format to facilitate integration into the clinical workflow. The feasibility of operating this absorbed dose calorimeter in quasi-adiabatic mode is assessed for high-energy accelerator-based photon beams. METHODS This detector, herein referred to as Aerrow MK7, is a miniaturized version of a previously validated aerogel-insulated graphite calorimeter known as Aerrow. The new model was designed and developed using numerical methods. Medium conversion factors from graphite to water, small-field output correction factors, and layer perturbation factors for this dosimeter were calculated using the EGSnrc Monte Carlo code system. A range of commercially available aerogel densities were studied for the insulating layers, and an optimal density was selected by minimizing the small-field output correction factors. Heat exchange within the detector was simulated using a five-body compartmental heat transfer model. In quasi-adiabatic mode, the sensitive volume (a 3 mm diameter cylindrical graphite core) experiences a temperature rise during irradiation on the order of 1.3 mK·Gy-1 . The absorbed dose is obtained by calculating the product of this temperature rise with the specific heat capacity of the graphite. The detector was irradiated with 6 MV ( % dd ( 10 ) x = 63.5%) and 10 MV ( % dd ( 10 ) x = 71.1%) flattening filter-free (FFF) photon beams for two field sizes, characterized by S clin dimensions of 2.16 and 11.0 cm. The dose readings were compared against a calibrated Exradin A1SL ionization chamber. All dose values are reported at d max in water. RESULTS The field output correction factors for this dosimeter design were computed for field sizes ranging from S clin = 0.54 to 11.0 cm. For all aerogel densities studied, these correction factors did not exceed 1.5%. The relative dose difference between the two dosimeters ranged between 0.3% and 0.7% for all beams and field sizes. The smallest field size experimentally investigated, S clin = 2.16 cm, which was irradiated with the 10 MV FFF beam, produced readings of 84.4 cGy (±1.3%) in the calorimeter and 84.5 cGy (±1.3%) in the ionization chamber. CONCLUSION The median relative difference in absorbed dose values between a calibrated A1SL ionization chamber and the proposed novel graphite calorimeter was 0.6%. This preliminary experimental validation demonstrates that Aerrow MK7 is capable of accurate and reproducible absorbed dose measurements in quasi-adiabatic mode.
Collapse
Affiliation(s)
- Benjamin Côté
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Federico Keszti
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Julien Bancheri
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - Arman Sarfehnia
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Jan Seuntjens
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - James Renaud
- Medical Physics Unit, Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada.,Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Pinnaduwage DS, Srivastava SP, Yan X, Jani SS, Jenkins C, Barani IJ, Sorensen S. Small-field beam data acquisition, detector dependency, and film-based validation for a novel self-shielded stereotactic radiosurgery system. Med Phys 2021; 48:6121-6136. [PMID: 34260069 DOI: 10.1002/mp.15091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/02/2021] [Accepted: 06/28/2021] [Indexed: 12/25/2022] Open
Abstract
PURPOSE This study reports a single-institution experience with beam data acquisition and film-based validation for a novel self-shielded sterotactic radiosurgery unit and investigates detector dependency on field output factors (OFs), off-axis ratios (OARs), and percent depth dose (PDD) measurements within the context of small-field dosimetry. METHODS The delivery platform for this unit consists of a 2.7-MV S-band linear accelerator mounted on coupled gimbals that rotate around a common isocenter (source-to-axis distance [SAD] = 450 mm), allowing for more than 260 noncoplanar beam angles. Beam collimation is achieved via a tungsten collimator wheel with eight circular apertures ranging from 4 mm to 25 mm in diameter. Three diodes (PTW 60012 Diode E, PTW 60018 SRS Diode, and Sun Nuclear EDGE) and a synthetic diamond detector (PTW 60019 micro Diamond [µD] detector) were used for OAR, PDD, and OF measurements. OFs were also acquired with a PTW 31022 PinPoint ionization chamber. Beam scanning was performed using a 3D water tank at depths of 7, 50, 100, 200, and 250 mm with a source-to-surface distance of 450 mm. OFs were measured at the depth of maximum dose (dmax = 7 mm) with the SAD at 450 mm. Gafchromic EBT3 film was used to validate OF and profile measurements and as a reference detector for estimating correction factors for active detector OFs. Deviations in field size, penumbra, and PDDs across the different detectors were quantified. RESULTS Relative OFs (ROFs) for the diodes were within 1.4% for all collimators except for 5 and 7.5 mm, for which SRS Diode measurements were higher by 1.6% and 2.6% versus Diode E. The µD ROFs were within 1.4% of the diode measurements. PinPoint ROFs were lower by >10% for the 4-mm and 5-mm collimators versus the Diode E and µD. Corrections to OFs using EBT3 film as a reference were within 1.2% for all diodes and the µD detector for collimators 10 mm and greater and within 2.0%, 2.8%, and 1.1% for the 7.5-, 5-, and 4-mm collimators, respectively. The maximum difference in full width at half maximum (FWHM) between the Diode E and the other active detectors was for the 25-mm collimator and was 0.09 mm (µD), 0.16 mm (SRS Diode), and 0.65 mm (EDGE). Differences seen in PDDs beyond the depth of dmax were <1% across the three diodes and the µD. FWHM and penumbra measurements made using EBT3 film were within 1.34% and 3.26%, respectively, of the processed profile data entered into the treatment planning system. CONCLUSIONS Minimal differences were seen in OAR and PDD measurements acquired with the diodes and the µD. ROFs measured with the three diodes were within 2.6% and within 1.4% versus the µD. Gafchromic Film measurements provided independent verification of the OAR and OF measurements. Estimated corrections to OFs using film as a reference were <1.6% for the Diode E, EDGE, and µD detector.
Collapse
Affiliation(s)
- Dilini S Pinnaduwage
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Shiv P Srivastava
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Xiangsheng Yan
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Shyam S Jani
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | | - Igor J Barani
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | - Stephen Sorensen
- Department of Radiation Oncology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| |
Collapse
|
5
|
Kinhikar R, Kaushik S, Tambe C, Kadam S, Kale S, Upreti R. Implementation and Challenges of International Atomic Energy Agency/American Association of Physicists in Medicine TRS 483 Formalism for Field Output Factors and Involved Uncertainties Determination in Small Fields for TomoTherapy. J Med Phys 2021; 46:162-170. [PMID: 34703100 PMCID: PMC8491308 DOI: 10.4103/jmp.jmp_11_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 11/04/2022] Open
Abstract
PURPOSE International Atomic Energy Agency published TRS-483 to address the issues of small field dosimetry. Our study calculates the output factor in the small fields of TomoTherapy using different detectors and dosimetric conditions. Furthermore, it estimates the various components of uncertainty and presents challenges faced during implementation. MATERIALS AND METHODS Beam quality TPR20,10(10) at the hypothetical field size of 10 cm × 10 cm was calculated from TPR20,10(S). Two ionization chambers based on the minimum field width required to satisfy the lateral charge particle equilibrium and one unshielded electron field diode (EFD) were selected. Output factor measurements were performed in various dosimetric conditions. RESULTS Beam quality TPR20,10(10) has a mean value of 0.627 ± 0.001. The maximum variation of output factor between CC01 chamber and EFD diode at the smallest field size was 11.80%. In source to surface setup, the difference between water and virtual water was up to 9.68% and 8.13%, respectively, for the CC01 chamber and EFD diode. The total uncertainty in the ionization chamber was 2.43 times higher compared to the unshielded EFD diode at the smallest field size. CONCLUSIONS Beam quality measurements, chamber selection procedure, and output factors were successfully carried out. A difference of up to 10% in output factor can occur if density scaling for electron density in virtual water is not considered. The uncertainty in output correction factors dominates, while positional and meter reading uncertainty makes a minor contribution to total uncertainty. An unshielded EFD diode is a preferred detector in small fields because of lower uncertainty in measurements compared to ionization chambers.
Collapse
Affiliation(s)
- Rajesh Kinhikar
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| | - Suryakant Kaushik
- Department of Radiation Oncology, Advanced Centre for Treatment Research and Education in Cancer, Tata Memorial Centre Kharghar, Navi Mumbai, Maharashtra, India
| | | | - Sudarshan Kadam
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
| | - Shrikant Kale
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
| | - Rituraj Upreti
- Department of Medical Physics, Tata Memorial Centre, Parel, Mumbai, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai, Maharashtra, India
| |
Collapse
|
6
|
Hansen JB, Frigo SP. Evaluation of candidate template beam models for a matched TrueBeam treatment delivery system. J Appl Clin Med Phys 2021; 22:92-103. [PMID: 34036726 PMCID: PMC8200503 DOI: 10.1002/acm2.13278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To explore candidate RayStation beam models to serve as a class-specific template for a TrueBeam treatment delivery system. METHODS Established validation techniques were used to evaluate three photon beam models: a clinically optimized model from the authors' institution, the built-in RayStation template, and a hybrid consisting of the RayStation template except substituting average MLC parameter values from a recent IROC survey. Comparisons were made for output factors, dose profiles from open fields, as well as representative VMAT test plans. RESULTS For jaw-defined output factors, each beam model was within 1.6% of expected published values. Similarly, the majority (57-66%) of jaw-defined dose curves from each model had a gamma pass rate >95% (2% / 3 mm, 20% threshold) when compared to TrueBeam representative beam data. For dose curves from MPPG 5.a MLC-defined fields, average gamma pass rates (1% / 1 mm, 20% threshold) were 92.9%, 85.1%, and 86.0% for the clinical, template, and hybrid models, respectively. For VMAT test plans measured with a diode array detector, median dose differences were 0.6%, 1.3%, and 1.1% for the clinical, template, and hybrid models, respectively. For in-phantom ionization chamber measurements with the same VMAT test plans, the average percent difference was -0.3%, -1.4%, and -1.0% for the clinical, template, and hybrid models, respectively. CONCLUSION Beam model templates taken from the vendor and aggregate results within the community were both reasonable starting points, but neither approach was as optimal as a clinically tuned model, the latter producing better agreement with all validation measurements. Given these results, the clinically optimized model represents a better candidate as a consensus template. This can benefit the community by reducing commissioning time and improving dose calculation accuracy for matched TrueBeam treatment delivery systems.
Collapse
Affiliation(s)
- Jon B. Hansen
- Department of Human OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| | - Sean P. Frigo
- Department of Human OncologySchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
| |
Collapse
|
7
|
Shepard AJ, Frigo SP. Characteristics and limitations of a secondary dose check software for VMAT plan calculation. J Appl Clin Med Phys 2021; 22:216-223. [PMID: 33666339 PMCID: PMC7984465 DOI: 10.1002/acm2.13206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/21/2020] [Accepted: 01/25/2021] [Indexed: 11/19/2022] Open
Abstract
Purpose To assess the implementation, accuracy, and validity of the dosimetric leaf gap correction (DLGC) in Mobius3D VMAT plan calculations. Methods The optimal Mobius3D DLGC was determined for both a TrueBeam with a Millennium multi‐leaf collimator and a TrueBeamSTx with a high‐definition multi‐leaf collimator. By analyzing a broad series of seven VMAT plans and comparing the calculated to the measured dose delivered to a cylindrical phantom, optimal DLGC values were determined by minimizing the dose difference for both the collection of all plans, as well as for each plan individually. The effects of plan removal from the optimization of the collective DLGC value, as well as plan‐specific DLGC values, were explored to determine the impact of plan suite design on the final DLGC determination. Results Optimal collective DLGC values across all energies were between −0.71 and 0.89 mm for the TrueBeam, and between 0.35 and 1.85 mm for the TrueBeamSTx. The dose differences ranged between −6.1% and 2.6% across all plans when the optimal collective DLGC values were used. On a per‐plan basis, the plan‐specific optimal DLGC values ranged from −4.36 to 2.35 mm for the TrueBeam, and between −1.83 and 2.62 mm for the TrueBeamSTx. Comparing the plan‐specific optimal DLGC to the average absolute leaf position from the central axis for each plan, a negative correlation was observed. Conclusions The optimal DLGC determination depends on the plans investigated, making it essential for users to utilize a suite of test plans that encompasses the full range of expected clinical plans when determining the optimal DLGC value. Validation of the secondary dose calculation should always be based on measurements, and not a comparison with the primary TPS. Varying disagreement with measurements across plans for a single DLGC value indicates potential limitations in the Mobius3D MLC model.
Collapse
Affiliation(s)
- Andrew J Shepard
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Sean P Frigo
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
8
|
Santos T, Ventura T, Capela M, Mateus J, Lopes MDC. A protocol for absolute dose verification of SBRT/SRS treatment plans using Gafchromic™ EBT-XD films. Phys Med 2021; 82:150-157. [PMID: 33618154 DOI: 10.1016/j.ejmp.2021.01.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022] Open
Abstract
PURPOSE To provide a practical protocol for absolute dose verification of stereotactic body radiotherapy (SBRT) and stereotactic radiosurgery (SRS) treatment plans, based on our clinical experience. It aims to be a concise summary of the main aspects to be considered when establishing an accurate film dosimetry system. METHODS Procedures for film calibration and conversion to dose are described for a dosimetry system composed of Gafchromic™ EBT-XD films and a flatbed document scanner. Factors that affect the film-scanner response are also reviewed and accounted for. The accuracy of the proposed methodology was assessed by taking a set of strips irradiated to known doses and its applicability is illustrated for ten SBRT/SRS treatment plans. The film response was converted to dose using red and triple channel dosimetry. The agreement between the planned and measured dose distributions was evaluated using global gamma analysis with criteria of 3%/2mm 10% threshold (TH), 2%/2mm 10% TH, and 2%/2mm 20% TH. RESULTS The differences between the expected and determined doses from the strips analysis were 0.9 ± 0.6% for the red channel and 1.1 ± 0.7% for the triple channel method. Regarding the SBRT/SRS plans verification, the mean gamma passing rates were 99.5 ± 1.0% vs 99.6 ± 1.0% (3%/2mm 10% TH), 96.9 ± 3.5% vs 99.1 ± 1.3% (2%/2mm 10% TH) and 98.4 ± 1.8% vs 98.8 ± 1.5% (2%/2mm 20% TH) for red and triple channel dosimetry, respectively. CONCLUSIONS The proposed protocol allows for accurate absolute dose verification of SBRT/SRS treatment plans, applying both single and triple channel methods. It may work as a guide for users that intend to implement a film dosimetry system.
Collapse
Affiliation(s)
- Tania Santos
- Physics Department, University of Coimbra, Coimbra, Portugal; Medical Physics Department, IPOCFG, E.P.E., Coimbra, Portugal.
| | - Tiago Ventura
- Medical Physics Department, IPOCFG, E.P.E., Coimbra, Portugal
| | - Miguel Capela
- Medical Physics Department, IPOCFG, E.P.E., Coimbra, Portugal
| | - Josefina Mateus
- Medical Physics Department, IPOCFG, E.P.E., Coimbra, Portugal
| | | |
Collapse
|
9
|
Santos T, Ventura T, Lopes MDC. A review on radiochromic film dosimetry for dose verification in high energy photon beams. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2020.109217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|