1
|
Liu C, Wang B, Bai X, Cheng X, Wang X, Yang X, Shan G. A novel EPID-based MLC QA method with log files achieving submillimeter accuracy. J Appl Clin Med Phys 2024; 25:e14450. [PMID: 39031891 DOI: 10.1002/acm2.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/26/2024] [Accepted: 06/07/2024] [Indexed: 07/22/2024] Open
Abstract
The purpose of this study is to develop an electronic portal imaging device-based multi-leaf collimator calibration procedure using log files. Picket fence fields with 2-14 mm nominal strip widths were performed and normalized by open field. Normalized pixel intensity profiles along the direction of leaf motion for each leaf pair were taken. Three independent algorithms and an integration method derived from them were developed according to the valley value, valley area, full-width half-maximum (FWHM) of the profile, and the abutment width of the leaf pairs obtained from the log files. Three data processing schemes (Scheme A, Scheme B, and Scheme C) were performed based on different data processing methods. To test the usefulness and robustness of the algorithm, the known leaf position errors along the direction of perpendicular leaf motion via the treatment planning system were introduced in the picket fence field with nominal 5, 8, and 11 mm. Algorithm tests were performed every 2 weeks over 4 months. According to the log files, about 17.628% and 1.060% of the leaves had position errors beyond ± 0.1 and ± 0.2 mm, respectively. The absolute position errors of the algorithm tests for different data schemes were 0.062 ± 0.067 (Scheme A), 0.041 ± 0.045 (Scheme B), and 0.037 ± 0.043 (Scheme C). The absolute position errors of the algorithms developed by Scheme C were 0.054 ± 0.063 (valley depth method), 0.040 ± 0.038 (valley area method), 0.031 ± 0.031 (FWHM method), and 0.021 ± 0.024 (integrated method). For the efficiency and robustness test of the algorithm, the absolute position errors of the integration method of Scheme C were 0.020 ± 0.024 (5 mm), 0.024 ± 0.026 (8 mm), and 0.018 ± 0.024 (11 mm). Different data processing schemes could affect the accuracy of the developed algorithms. The integration method could integrate the benefits of each algorithm, which improved the level of robustness and accuracy of the algorithm. The integration method can perform multi-leaf collimator (MLC) quality assurance with an accuracy of 0.1 mm. This method is simple, effective, robust, quantitative, and can detect a wide range of MLC leaf position errors.
Collapse
Affiliation(s)
- Chenlu Liu
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan, PR China
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Binbing Wang
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Xue Bai
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Xiaolong Cheng
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Xiaotong Wang
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| | - Xiaohua Yang
- School of Nuclear Science and Technology, University of South China, Hengyang, Hunan, PR China
| | - Guoping Shan
- Department of Radiation Physics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, PR China
| |
Collapse
|
2
|
Yarlagadda S, Weiss Y, Chuong MD, Bassiri N, Gutierrez AN, Kotecha R, Mehta MP, Mittauer KE. Case report: Intrafraction dose-guided tracking for gastrointestinal organ-at-risk isotoxicity delivery on an MR-guided radiotherapy system. Front Oncol 2024; 14:1357916. [PMID: 39055555 PMCID: PMC11269146 DOI: 10.3389/fonc.2024.1357916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/20/2024] [Indexed: 07/27/2024] Open
Abstract
In the current era of high-precision radiation therapy, real-time magnetic resonance (MR)-guided tracking of the tumor and organs at risk (OARs) is a novel approach that enables accurate and safe delivery of high-dose radiation. Organ tracking provides a general sense of the need for daily online adaptation but lacks precise information regarding exact dosimetry. To overcome this limitation, we developed the methodology for monitoring intrafraction motion with real-time MR-guided isodose line-based tracking of an OAR in combination with anatomic tumor-based tracking and reported the first case treated with this approach. An isolated para-aortic (PA) nodal recurrence from carcinosarcoma of the endometrium was treated with an ablative dose of 50 Gy in five fractions using MR-guided radiotherapy (MRgRT). This report demonstrates the feasibility, workflow, dosimetric constraints, and treatment paradigm for real-time isodose line-based OAR tracking and gating to enable an isotoxicity delivery approach. This innovative treatment strategy effectively tracked the intrafraction motion of both the target and OAR independently and enhanced the accuracy of structure localization in time and space with a more precise dosimetric evaluation.
Collapse
Affiliation(s)
- Sreenija Yarlagadda
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Yonatan Weiss
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
| | - Michael David Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Alonso N. Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Minesh P. Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Kathryn Elizabeth Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, United States
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
3
|
Wang Q, Li Q, Wang Z, Yang C, Zhang D, Wang J, Wang P, Wang W. Characterization of a novel VenusX orthogonal dual-layer multileaf collimator. J Appl Clin Med Phys 2024; 25:e14357. [PMID: 38620027 PMCID: PMC11087167 DOI: 10.1002/acm2.14357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/27/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024] Open
Abstract
PURPOSE To investigate and characterize the performance of a novel orthogonal dual-layer alpha multileaf collimator (αMLC) mounted on the LinaTech VenusX linac. METHODS We evaluated leaf positioning accuracy and reproducibility using an electronic portal imaging device through the picket fence test. The average, interleaf, intraleaf, and leaf tip transmissions of the single and dual layers were measured using an ionization chamber. Square and rhombus fields were used to evaluate the leaf penumbra of αMLC. To investigate the advantages of the orthogonal dual-layer multileaf collimator (MLC) in field shaping, right triangular and circular pattern fields were formed using both the dual layers and single layers of the αMLC. RESULTS The average maximum positioning deviations of the upper and lower αMLC over 1 year were 0.76 ± 0.09 mm and 0.62 ± 0.07 mm, respectively. The average transmissions were 1.87%, 1.83%, and 0.03% for the upper-, lower- and dual-layer αMLC, respectively. The maximum interleaf transmissions of the lower- and dual-layer were 2.43% and 0.17%, respectively. The leaf tip transmissions were 9.34% and 0.25%, respectively. The penumbra of the square field was 6.2 mm in the X direction and 8.0 mm in the Y direction. The average penumbras of the rhombus fields with side lengths of 5 and 10 cm were 3.6 and 4.9 mm, respectively. For the right triangular and circular fields, the fields shaped by the dual-layer leaves were much closer to the set field than those shaped by single-layer leaves. The dose undulation amplitude of the 50% isodose lines and leaf stepping angle change of the dual-layer leaves were smaller than those of the single-layer leaves. CONCLUSIONS The αMLC benefits from its orthogonal dual-layer design. Leaf transmission, dose undulations at the field edge, and MLC field dependence of the leaf stepping angle of the dual-layer αMLC were remarkably reduced.
Collapse
Affiliation(s)
- Qingxin Wang
- School of Precision Instrument and Opto‐Electronics EngineeringTianjin UniversityTianjinChina
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Qifeng Li
- School of Precision Instrument and Opto‐Electronics EngineeringTianjin UniversityTianjinChina
| | - Zhongqiu Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Chengwen Yang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Daguang Zhang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Jun Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
- Department of Radiation OncologyTianjin Cancer Hospital Airport HospitalTianjinChina
| | - Ping Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
- Department of Radiation OncologyTianjin Cancer Hospital Airport HospitalTianjinChina
| | - Wei Wang
- Department of Radiation OncologyTianjin Medical University Cancer Institute & HospitalNational Clinical Research Center for CancerTianjin's Clinical Research Center for CancerKey Laboratory of Cancer Prevention and TherapyTianjinChina
- Department of Radiation OncologyTianjin Cancer Hospital Airport HospitalTianjinChina
| |
Collapse
|
4
|
Mittauer KE, Tolakanahalli R, Kotecha R, Chuong MD, Mehta MP, Gutierrez AN, Bassiri N. Commissioning Intracranial Stereotactic Radiosurgery for a Magnetic Resonance-Guided Radiation Therapy (MRgRT) System: MR-RT Localization and Dosimetric End-to-End Validation. Int J Radiat Oncol Biol Phys 2024; 118:512-524. [PMID: 37793574 DOI: 10.1016/j.ijrobp.2023.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE This is the first reporting of the MRIdian A3iTM intracranial package (BrainTxTM) and benchmarks the end-to-end localization and dosimetric accuracy for commissioning an magnetic resonace (MR)-guided stereotactic radiosurgery program. We characterized the localization accuracy between MR and radiation (RT) isocenter through an end-to-end hidden target test, relative dose profile intercomparison, and absolute dose validation. METHODS AND MATERIALS BrainTx consists of a dedicated head coil, integrated mask immobilization system, and high-resolution MR sequences. Coil and baseplate attenuation was quantified. An in-house phantom (Cranial phantOm foR magNetic rEsonance Localization of a stereotactIc radiosUrgery doSimeter, CORNELIUS) was developed from a mannequin head filled with silicone gel, film, and MR BB with pinprick. A hidden target test evaluated MR-RT localization of the 1×1×1 mm3 TrueFISP MR and relative dose accuracy in film for a 1 cm diameter (International Electrotechnical Commission (IEC)-X/IEC-Y) and 1.5 cm diameter (IEC-Y/IEC-Z) spherical target. Two clinical cases (irregular-shaped target and target abutting brainstem) were mapped to the CORNELIUS phantom for feasibility assessment. A 2-dimensional (2D)-gamma compared calculated and measured dose for spherical and clinical targets with 1 mm/1% and 2 mm/2% criteria, respectively. A small-field chamber (A26MR) measured end-to-end absolute dose for a 1 cm diameter target. RESULTS Coil and baseplate attenuation were 0.7% and 2.7%, respectively. The displacement of MR to RT localization as defined through the pinprick was 0.49 mm (IEC-X), 0.27 mm (IEC-Y), and 0.51 mm (IEC-Z) (root mean square 0.76 mm). The reproducibility across IEC-Y demonstrated high fidelity (<0.02 mm). Gamma pass rates were 97.1% and 95.4% for 1 cm and 1.5 cm targets, respectively. Dose profiles for an irregular-shaped target and abutting organ-at-risk-target demonstrated pass rates of 99.0% and 92.9%, respectively. The absolute end-to-end dose difference was <1%. CONCLUSIONS All localization and dosimetric evaluation demonstrated submillimeter accuracy, per the TG-142, TG-101, MPPG 9.a. criteria for SRS/SRT systems, indicating acceptable delivery capabilities with a 1 mm setup margin.
Collapse
Affiliation(s)
- Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
5
|
Bassiri N, Bayouth JE, Mittauer KE. Characterization of mechanical and radiation isocenter on an MR-guided radiotherapy (MRgRT) Linac. J Appl Clin Med Phys 2023; 24:e14111. [PMID: 37535938 PMCID: PMC10647948 DOI: 10.1002/acm2.14111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND AND PURPOSE In the emerging paradigm of stereotactic radiosurgery being proposed for MR-guided radiotherapy (MRgRT), assessment of mechanical geometric accuracy is critical for the implementation of stereotactic delivery. We benchmarked the mechanical accuracy of an MR Linac system that lacks an onboard detector/array. Our mechanical tests utilize a half beam block (HBB) geometry that takes advantage of the sensitivity of a partially occluded detector. MATERIALS AND METHODS Mechanical tests benchmarked the couch, MLC, and gantry geometric accuracy for an MR-Linac system. An HBB technique was used to irradiate an ionization chamber profiler (ICP) array with partial occlusion of individual detectors for characterization of MLC skew, beam divergence displacement, and RT isocenter localization. The sensitivity of the partially occluded detector's ICP-X (detector width) and ICP-Y (detector length) was characterized by displacing the detector relative to radiation isocenter by 0.2 mm increments, introduced through couch motion. The accuracy of the HBB ICP technique was verified with a starshot using radiochromic film, and the reproducibility was verified on a conventional C-arm Linac and compared to Winston-Lutz. RESULTS The sensitivity of the HBB technique as quantified through the dose difference normalized to open field as a function of displacement from RT isocenter was 6.4%/mm and 13.0%/mm for the ICP-X and ICP-Y orientation, respectively, due to the oblong detector orientation. Couch positional accuracy and sag was within ±0.1 mm. Maximum MLC positional displacement was 0.7 mm with mean MLC skew at 0.07°. The maximum beam divergence displacement was 0.03 mm. The gantry angle was within 0.1°. Independent verification of the RT isocenter localization procedure produced repeatable results. CONCLUSION This work serves for characterizing the mechanical and geometric radiation accuracy for the foundation of an MR-guided stereotactic radiosurgery program, as demonstrated with high sensitivity and independent validation.
Collapse
Affiliation(s)
- Nema Bassiri
- Department of Radiation OncologyMiami Cancer InstituteBaptist Health South FloridaMiamiFloridaUSA
- Herbert Wertheim College of MedicineFlorida International UniversityMiamiFloridaUSA
| | - John E. Bayouth
- Department of Radiation MedicineOregon Health and Science UniversityPortlandOregonUSA
| | - Kathryn E. Mittauer
- Department of Radiation OncologyMiami Cancer InstituteBaptist Health South FloridaMiamiFloridaUSA
- Herbert Wertheim College of MedicineFlorida International UniversityMiamiFloridaUSA
| |
Collapse
|
6
|
Rippke C, Renkamp CK, Attieh C, Schlüter F, Buchele C, Debus J, Alber M, Klüter S. Leaf-individual calibration for a double stack multileaf collimator in photon radiotherapy. Phys Imaging Radiat Oncol 2023; 27:100477. [PMID: 37635846 PMCID: PMC10457557 DOI: 10.1016/j.phro.2023.100477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
Background and Purpose In online adaptive stereotactic body radiotherapy treatments, linear accelerator delivery accuracy is essential. Recently introduced double stack multileaf collimators (MLCs) have new facets in their calibration. We established a radiation-based leaf-individual calibration (LIMCA) method for double stack MLCs. Materials and Methods MLC leaf positions were evaluated from four cardinal angles with test patterns at measurement positions throughout the radiation field on EBT3 radiochromic film for each single stack. The accuracy of the method and repeatability of the results were assessed. The effect of MLC positioning errors was characterized for a measured output factor curve and a clinical patient plan. Results All positions in the motor step - position calibration file were optimized in the established LIMCA method. The resulting double stack mean accuracy for all angles was 0.2 ± 0.1 mm for X1 (left bank) and 0.2 ± 0.2 mm for X2 (right bank). The accuracy of the leaf position evaluation was 0.2 mm (95% confidence level). The MLC calibration remained stable over four months. Small MLC leaf position errors (e.g. 1.2 mm field size reduction) resulted in important dose errors (-5.8 %) for small quadratic fields of 0.83 × 0.83 cm2. Single stack position accuracy was essential for highly modulated treatment plans. Conclusions LIMCA is a new double stack MLC calibration method that increases treatment accuracy from four angles and for all moving leaves.
Collapse
Affiliation(s)
- Carolin Rippke
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - C. Katharina Renkamp
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| | | | - Fabian Schlüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| | - Carolin Buchele
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
- National Center for Tumor Diseases (NCT), Heidelberg, Baden-Württemberg, Germany
- Heidelberg Ion-Beam Therapy Center (HIT), Heidelberg, Baden-Württemberg, Germany
- German Cancer Consortium (DKTK), Core-center Heidelberg, Heidelberg, Baden-Württemberg, Germany
- Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Baden-Württemberg, Germany
| | - Markus Alber
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
- Medical Faculty, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Sebastian Klüter
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
- Heidelberg Institute of Radiation Oncology (HIRO), National Center for Radiation Oncology (NCRO), Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
7
|
Khan AU, Simiele EA, Lotey R, DeWerd LA, Yadav P. An independent Monte Carlo-based IMRT QA tool for a 0.35 T MRI-guided linear accelerator. J Appl Clin Med Phys 2022; 24:e13820. [PMID: 36325743 PMCID: PMC9924112 DOI: 10.1002/acm2.13820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To develop an independent log file-based intensity-modulated radiation therapy (IMRT) quality assurance (QA) tool for the 0.35 T magnetic resonance-linac (MR-linac) and investigate the ability of various IMRT plan complexity metrics to predict the QA results. Complexity metrics related to tissue heterogeneity were also introduced. METHODS The tool for particle simulation (TOPAS) Monte Carlo code was utilized with a previously validated linac head model. A cohort of 29 treatment plans was selected for IMRT QA using the developed QA tool and the vendor-supplied adaptive QA (AQA) tool. For 27 independent patient cases, various IMRT plan complexity metrics were calculated to assess the deliverability of these plans. A correlation between the gamma pass rates (GPRs) from the AQA results and calculated IMRT complexity metrics was determined using the Pearson correlation coefficients. Tissue heterogeneity complexity metrics were calculated based on the gradient of the Hounsfield units. RESULTS The median and interquartile range for the TOPAS GPRs (3%/3 mm criteria) were 97.24% and 3.75%, respectively, and were 99.54% and 0.36% for the AQA tool, respectively. The computational time for TOPAS ranged from 4 to 8 h to achieve a statistical uncertainty of <1.5%, whereas the AQA tool had an average calculation time of a few minutes. Of the 23 calculated IMRT plan complexity metrics, the AQA GPRs had correlations with 7 out of 23 of the calculated metrics. Strong correlations (|r| > 0.7) were found between the GPRs and the heterogeneity complexity metrics introduced in this work. CONCLUSIONS An independent MC and log file-based IMRT QA tool was successfully developed and can be clinically deployed for offline QA. The complexity metrics will supplement QA reports and provide information regarding plan complexity.
Collapse
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Eric A. Simiele
- Department of Radiation OncologyRutgers Cancer Institute of New Jersey, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | | | - Larry A. DeWerd
- Department of Medical PhysicsSchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Poonam Yadav
- Department of Radiation OncologyNorthwestern Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| |
Collapse
|
8
|
Khan AU, Lotey R, DeWerd LA, Yadav P. A multi-institutional comparison of dosimetric data for a 0.35 T MR-linac. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac53df] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/10/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. A comparison of percent depth dose (PDD) curves, lateral beam profiles, output factors (OFs), multileaf collimator (MLC) leakage, and couch transmission factors was performed between ten institutes for a commercial 0.35 T MR-linac. Approach. The measured data was collected during acceptance testing of the MR-linac. The PDD curves were measured for the 3.32 × 3.32 cm2, 9.96 × 9.96 cm2, and 27.20 × 24.07 cm2 field sizes. The lateral beam profiles were acquired for a 27.20 × 24.07 cm2 field size using an ion chamber array and penumbra was defined as the distance between 80% of the maximum dose and 20% of the maximum dose after normalizing the profiles to the dose at the inflection points. The OFs were measured using solid-state dosimeters, whereas radiochromic films were utilized to measure radiation leakage through the MLC stacks. The relative couch transmission factors were measured for various gantry angles. The variation in the multi-institutional data was quantified using the percent standard deviation metric. Main results. Minimal variations (<1%) were found between the PDD data, except for the build-up region and the deeper regions of the PDD curve. The in-field region of the lateral beam profiles varied <1.5% between different institutions and a small variation (<0.7 mm) in penumbra was observed. A variation of <1% was observed in the OF data for field sizes above 1.66 × 1.66 cm2, whereas large variations were shown for small-field sizes. The average and maximum MLC leakage was calculated to be <0.3% and <0.6%, which was well below the international electrotechnical commission (IEC) leakage thresholds. The couch transmission was smallest for oblique beams and ranged from 0.83 to 0.87. Significance. The variation in the data was found to be relatively small and the different 0.35 T MR-linacs were concluded to have similar dosimetric characteristics.
Collapse
|
9
|
Price AT, Knutson NC, Kim T, Green OL. Commissioning a secondary dose calculation software for a 0.35 T MR-linac. J Appl Clin Med Phys 2022; 23:e13452. [PMID: 35166011 PMCID: PMC8906210 DOI: 10.1002/acm2.13452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 08/09/2021] [Accepted: 08/28/2021] [Indexed: 11/09/2022] Open
Abstract
Secondary external dose calculations for a 0.35 T magnetic resonance image-guided radiation therapy (MRgRT) are needed within the radiation oncology community to follow safety standards set forth within the field. We evaluate the commercially available software, RadCalc, in its ability to accurately perform monitor unit dose calculations within a magnetic field. We also evaluate the potential effects of a 0.35 T magnetic field upon point dose calculations. Monitor unit calculations were evaluated with (wMag) and without (noMag) a magnetic field considerations in RadCalc for the ViewRay MRIdian. The magnetic field is indirectly accounted for by using asymmetric profiles for calculation. The introduction of double-stacked multi-leaf collimator leaves was also included in the monitor unit calculations and a single transmission value was determined. A suite of simple and complex geometries with a variety field arrangements were calculated for each method to demonstrate the effect of the 0.35 T magnetic field on monitor unit calculations. Finally, 25 patient-specific treatment plans were calculated using each method for comparison. All simple geometries calculated in RadCalc were within 2% of treatment planning system (TPS) values for both methods, except for a single noMag off-axis comparison. All complex muilt-leaf collimator (MLC) pattern calculations were within 5%. All complex phantom geometry calculations were within 5% except for a single field within a lung phantom at a distal point. For the patient calculations, the noMag method average percentage difference was 0.09 ± 2.5% and the wMag average percentage difference was 0.08 ± 2.5%. All results were within 5% for the wMag method. We performed monitor unit calculations for a 0.35 T MRgRT system using a commercially available secondary monitor unit dose calculation software and demonstrated minimal impact of the 0.35 T magnetic field on monitor unit dose calculations. This is the first investigation demonstrating successful calculations of dose using RadCalc in the low-field 0.35 T ViewRay MRIdian system.
Collapse
Affiliation(s)
- Alex T Price
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nels C Knutson
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Taeho Kim
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Olga L Green
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Morrow A, Trisnadi N, Chung H. Multi-level multi-leaf collimators: optimization of layer thicknesses and a feasibility study. Med Phys 2021; 49:792-800. [PMID: 34958149 DOI: 10.1002/mp.15431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The function of multi-leaf collimators (MLC) is to modulate and shape the intensity of a radiotherapy beam by either blocking or unblocking beamlets. A variation on this functionality is tested in this work wherein the MLC is split into layers, with each layer attenuating the beam by a different amount. In this design, full blocking of a beamlet occurs only if all layers are blocked. This work suggests that such a device, a multi-layer MLC (MLMLC), can deliver dose distributions like a single layer MLC can deliver while requiring less time and monitor units (MU) . METHODS Optimal fluences were made for prostate plans using the Eclipse v13.6. An algorithm was developed to create step-and-shoot MLMLC patterns to match these optimal fluences when using up to six layers of MLC. Twelve MLMLC plans were made in total. These patterns were imported back into Eclipse as equivalent tungsten compensators and doses were calculated. Dose volume histogram (DVH) values, total monitor units (MU), and total time to deliver were compared between arc-style MLMLC plans and nine-field step and shoot IMRT plans created completely in Eclipse using a single layer MLC . RESULTS When using three or more layers, specified DVH values between the two sets agreed to within 5% while requiring roughly half as much time to deliver and about 20% fewer MU . CONCLUSIONS Demonstrated that having multi-layer MLC can deliver dose distributions like a single layer MLC with less time and monitor units. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew Morrow
- Baylor Scott and White Health, Department of Radiation Oncology, Temple, TX, USA
| | | | - Heeteak Chung
- Baylor Scott and White Health, Department of Radiation Oncology, Temple, TX, USA
| |
Collapse
|
11
|
Placidi L, Nardini M, Cusumano D, Boldrini L, Catucci F, Chiloiro G, Votta C, Valentini V, Indovina L. Dosimetric accuracy of dual isocenter irradiation in low magnetic field resonance guided radiotherapy system for extended abdominal tumours. Phys Med 2021; 84:149-158. [PMID: 33895666 DOI: 10.1016/j.ejmp.2021.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/23/2021] [Accepted: 03/30/2021] [Indexed: 10/21/2022] Open
Abstract
PURPOSE Due to limited field size of Magnetic Resonance Linear Accelerators (MR-Linac), some treatments could require a dual-isocenter planning approach to achieve a complete target coverage and thus exploit the benefits of the online adaptation. This study evaluates the dosimetric accuracy of the dual-isocenter intensity modulated radiation therapy (IMRT) delivery technique for MR-Linac. MATERIAL AND METHODS Dual-isocenter multi leaf collimator (MLC) and couch accuracy tests have been performed to evaluate the delivery accuracy of the system. A mono-isocenter plan delivered in clinical practice has then been retrospectively re-planned with dual-isocenter technique. The dual-isocenter plan has been re-calculated and delivered on a 3-dimensional (3D) ArcCHECK phantom and 2-dimensional (2D) films to assess its dosimetric accuracy in terms of gamma analysis. Clinical and planning target volume (CTV and PTV respectively) coverage robustness was then investigated after the introduction of ± 2 mm and ± 5 mm positioning errors by shifting the couch. RESULTS MLC and couch accuracy tests confirmed the system accuracy in delivering a dual-isocenter irradiation. 2D/3D gamma analysis results occurred always to be above 95% if considered a gamma criteria 1%/2 mm and 1%/1 mm respectively for the 2D and 3D analysis. The mean variations for CTV D98% and PTV V95% were 0.2% and 1.1% respectively when positioning error was introduced separately in each direction, while the maximum observed variations were 0.9% (CTV) and 3.7% (PTV). CONCLUSION The dosimetric accuracy of dual-isocenter irradiation has been verified for MR-Linac, achieving accurate and robust treatment strategy and improving dose conformality also in presence of targets whose extension exceeds the nominal maximum field size.
Collapse
Affiliation(s)
- L Placidi
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - M Nardini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy; Università Cattolica del Sacro Cuore, Rome, Italy.
| | - D Cusumano
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - L Boldrini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - F Catucci
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - G Chiloiro
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - C Votta
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| | - V Valentini
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy; Università Cattolica del Sacro Cuore, Rome, Italy
| | - L Indovina
- Fondazione Policlinico Universitario ''A. Gemelli'' IRCCS, Italy
| |
Collapse
|
12
|
Khan AU, Simiele EA, Lotey R, DeWerd LA, Yadav P. Development and evaluation of a GEANT4-based Monte Carlo Model of a 0.35 T MR-guided radiation therapy (MRgRT) linear accelerator. Med Phys 2021; 48:1967-1982. [PMID: 33555052 PMCID: PMC8251819 DOI: 10.1002/mp.14761] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 01/05/2021] [Accepted: 02/02/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this work was to develop and benchmark a magnetic resonance (MR)-guided linear accelerator head model using the GEANT4 Monte Carlo (MC) code. The validated model was compared to the treatment planning system (TPS) and was also used to quantify the electron return effect (ERE) at a lung-water interface. METHODS The average energy, including the spread in the energy distribution, and the radial intensity distribution of the incident electron beam were iteratively optimized in order to match the simulated beam profiles and percent depth dose (PDD) data to measured data. The GEANT4 MC model was then compared to the TPS model using several photon beam tests including oblique beams, an off-axis aperture, and heterogeneous phantoms. The benchmarked MC model was utilized to compute output factors (OFs) with the 0.35 T magnetic field turned on and off. The ERE was quantified at a lung-water interface by simulating PDD curves with and without the magnetic field for 6.6 × 6.6 cm 2 and 2.5 × 2.5 cm 2 field sizes. A 2%/2 mm gamma criterion was used to compare the MC model with the TPS data throughout this study. RESULTS The final incident electron beam parameters were 6.0 MeV average energy with a 1.5 MeV full width at half maximum (FWHM) Gaussian energy spread and a 1.0 mm FWHM Gaussian radial intensity distribution. The MC-simulated OFs were found to be in agreement with the TPS-calculated and measured OFs, and no statistical difference was observed between the 0.35 T and 0.0 T OFs. Good agreement was observed between the TPS-calculated and MC-simulated data for the photon beam tests with gamma pass rates ranging from 96% to 100%. An increase of 4.3% in the ERE was observed for the 6.6 × 6.6 cm 2 field size relative to the 2.5 × 2.5 cm 2 field size. The ratio of the 0.35 T PDD to the 0.0 T PDD was found to be up to 1.098 near lung-water interfaces for the 6.6 × 6.6 cm 2 field size using the MC model. CONCLUSIONS A vendor-independent Monte Carlo model has been developed and benchmarked for a 0.35 T/6 MV MR-linac. Good agreement was obtained between the GEANT4 and TPS models except near heterogeneity interfaces.
Collapse
Affiliation(s)
- Ahtesham Ullah Khan
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Eric A Simiele
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rajiv Lotey
- ViewRay Inc, Oakwood Village, Ohio, 44146, USA
| | - Larry A DeWerd
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, 53705, USA
| | - Poonam Yadav
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
| |
Collapse
|
13
|
Alexander DA, Zhang R, Brůža P, Pogue BW, Gladstone DJ. Scintillation imaging as a high‐resolution, remote, versatile 2D detection system for MR‐linac quality assurance. Med Phys 2020; 47:3861-3869. [PMID: 32583484 PMCID: PMC10363284 DOI: 10.1002/mp.14353] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/31/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE To demonstrate the potential benefits of remote camera-based scintillation imaging for routine quality assurance (QA) measurements for magnetic resonance guided radiotherapy (MRgRT) linear accelerators. METHODS A wall-mounted CMOS camera with a time-synchronized intensifier was used to image photons produced from a scintillation screen in response to dose deposition from a 6 MV FFF x-ray beam produced by a 0.35 T MR-linac. The oblique angle of the field of view was corrected using a projective transform from a checkerboard calibration target. Output sensitivity and constancy was measured using the scintillator and benchmarked against an A28 ion chamber. Field cross-plane and in-plane profiles were measured for field sizes ranging from 1.68 × 1.66 cm2 to 20.02 × 19.92 cm2 with both scintillation imaging and using an IC profiler. Multileaf collimator (MLC) shifts were introduced to test sensitivity of the scintillation imaging system to small spatial deviations. A picket fence test and star-shot were delivered to both the scintillator and EBT3 film to compare accuracy in measuring MLC positions and isocenter size. RESULTS The scintillation imaging system showed comparable sensitivity and linearity to the ion chamber in response to changes in machine output down to 0.5 MU (R2 = 0.99). Cross-plane profiles show strong agreement with defined field sizes using full width half maximum (FWHM) measurement of <2 mm for field sizes below 15 cm, but the oblique viewing angle was the limiting factor in accuracy of in-plane profile widths. However, the system provided high-resolution profiles in both directions for constancy measurements. Small shifts in the field position down to 0.5 mm were detectable with <0.1 mm accuracy. Multileaf collimator positions as measured with both scintillation imaging and EBT3 film were measured within ± 1 mm tolerance and both detection systems produced similar isocenter sizes from the star-shot analysis (0.81 and 0.83 mm radii). CONCLUSIONS Remote scintillation imaging of a two-dimensional screen provided a rapid, versatile, MR-compatible solution to many routine quality assurance procedures including output constancy, profile flatness and symmetry constancy, MLC position verification and isocenter size. This method is high-resolution, does not require post-irradiation readout, and provides simple, instantaneous data acquisition. Full automation of the readout and processing could make this a very simple but effective QA tool, and is adaptable to all medical accelerators.
Collapse
Affiliation(s)
| | - Rongxiao Zhang
- Thayer School of Engineering and Geisel School of Medicine Dartmouth College Hanover NH03755USA
- Norris Cotton Cancer Center Dartmouth‐Hitchcock Medical Center Lebanon NH03756USA
| | - Petr Brůža
- Thayer School of Engineering Dartmouth College Hanover NH03755USA
| | - Brian W. Pogue
- Thayer School of Engineering and Geisel School of Medicine Dartmouth College Hanover NH03755USA
- Norris Cotton Cancer Center Dartmouth‐Hitchcock Medical Center Lebanon NH03756USA
| | - David J. Gladstone
- Thayer School of Engineering and Geisel School of Medicine Dartmouth College Hanover NH03755USA
- Norris Cotton Cancer Center Dartmouth‐Hitchcock Medical Center Lebanon NH03756USA
| |
Collapse
|
14
|
Mittauer KE, Hill PM, Bassetti MF, Bayouth JE. Validation of an MR-guided online adaptive radiotherapy (MRgoART) program: Deformation accuracy in a heterogeneous, deformable, anthropomorphic phantom. Radiother Oncol 2020; 146:97-109. [DOI: 10.1016/j.radonc.2020.02.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 01/11/2023]
|
15
|
Mittauer KE, Dunkerley DA, Yadav P, Bayouth JE. Characterization and longitudinal assessment of daily quality assurance for an MR-guided radiotherapy (MRgRT) linac. J Appl Clin Med Phys 2019; 20:27-36. [PMID: 31633882 PMCID: PMC6839363 DOI: 10.1002/acm2.12735] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/01/2019] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To describe and characterize daily machine quality assurance (QA) for an MR-guided radiotherapy (MRgRT) linac system, in addition to reporting a longitudinal assessment of the dosimetric and mechanical stability over a 7-month period of clinical operation. METHODS Quality assurance procedures were developed to evaluate MR imaging/radiation isocenter, imaging and patient handling system, and linear accelerator stability. A longitudinal assessment was characterized for safety interlocks, laser and imaging isocenter coincidence, imaging and radiation (RT) isocentricity, radiation dose rate and output, couch motion, and MLC positioning. A cylindrical water phantom and an MR-compatible A1SL detector were utilized. MR and RT isocentricity and MLC positional accuracy was quantified through dose measured with a 0.40 cm2 x 0.83 cm2 field at each cardinal angle. The relationship between detector response to MR/RT isocentricity and MLC positioning was established through introducing known errors in phantom position. RESULTS Correlation was found between detector response and introduced positional error (N = 27) with coefficients of determination of 0.9996 (IEC-X), 0.9967 (IEC-Y), 0.9968 (IEC-Z) in each respective shift direction. The relationship between dose (DoseMR/RT+MLC ) and the vector magnitude of MLC and MR/RT positional error (Errormag ) was calculated to be a nonlinear response and resembled a quadratic function: DoseMR/RT+MLC [%] = -0.0253 Errormag [mm]2 - 0.0195 Errormag [mm]. For the temporal assessment (N = 7 months), safety interlocks were functional. Laser coincidence to MR was within ±2.0 mm (99.6%) and ±1.0 mm (86.8%) over the 7-month assessment. IGRT position-reposition shifts were within ±2.0 mm (99.4%) and ±1.0 mm (92.4%). Output was within ±3% (99.4%). Mean MLC and MR/RT isocenter accuracy was 1.6 mm, averaged across cardinal angles for the 7-month period. CONCLUSIONS The linac and IGRT accuracy of an MR-guided radiotherapy system has been validated and monitored over seven months for daily QA. Longitudinal assessment demonstrated a drift in dose rate, but temporal assessment of output, MLC position, and isocentricity has been stable.
Collapse
Affiliation(s)
- Kathryn E. Mittauer
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
- Department of Radiation OncologyMiami Cancer InstituteBaptist Health South FloridaMiamiFLUSA
| | - David A.P. Dunkerley
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Poonam Yadav
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - John E. Bayouth
- Department of Human OncologySchool of Medicine and Public HealthUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
16
|
Mittauer KE, Hill PM, Geurts MW, De Costa AM, Kimple RJ, Bassetti MF, Bayouth JE. STAT-ART: The Promise and Practice of a Rapid Palliative Single Session of MR-Guided Online Adaptive Radiotherapy (ART). Front Oncol 2019; 9:1013. [PMID: 31696053 PMCID: PMC6817496 DOI: 10.3389/fonc.2019.01013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022] Open
Abstract
This work describes a novel application of MR-guided online adaptive radiotherapy (MRgoART) in the management of patients whom urgent palliative care is indicated using statum-adaptive radiotherapy (STAT-ART). The implementation of STAT-ART, as performed at our institution, is presented including a discussion of the advantages and limitations compared to the standard of care for palliative radiotherapy on conventional c-arm linacs. MR-based treatment planning techniques of STAT-ART for density overrides and deformable image registration (DIR) of diagnostic CT to the treatment MR are also addressed.
Collapse
Affiliation(s)
- Kathryn E. Mittauer
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiation Oncology, Baptist Health South Florida, Miami Cancer Institute, Miami, FL, United States
| | - Patrick M. Hill
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark W. Geurts
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
- Department of Radiation Oncology, Aspirus Wausau Hospital, Aspirus Inc., Wausau, WI, United States
| | - Anna-Maria De Costa
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Randall J. Kimple
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael F. Bassetti
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| | - John E. Bayouth
- Department of Human Oncology, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|