1
|
Bastiaannet R, Lin M, Frey EC, de Jong HW. Intraprocedural C-arm dual-phase cone-beam enhancement patterns correlate with tumor absorbed dose after radioembolization. Med Phys 2024; 51:3045-3052. [PMID: 38064591 PMCID: PMC10994751 DOI: 10.1002/mp.16882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Recent studies have shown a clear relationship between absorbed dose and tumor response to treatment after hepatic radioembolization. These findings help to create more personalized treatment planning and dosimetry. However, crucial to this goal is the ability to predict the dose distribution prior to treatment. The microsphere distribution is ultimately determined by (i) the hepatic vasculature and the resulting blood flow dynamics and (ii) the catheter position. PURPOSE To show that pretreatment, intra-procedural imaging of blood flow patterns, as quantified by catheter-directed intra-arterial contrast enhancement, correlate with posttreatment microsphere accumulation and, consequently, absorbed dose. MATERIALS AND METHODS Patients who participated in a clinical trial (NCT01177007) and for whom both a pretreatment dual-phase contrast-enhanced cone-beam CT (CBCT) and a posttreatment 90Y PET/CT scan were available were included in this retrospective study. Tumors and perfused volumes were manually delineated on the CBCT by an experienced radiologist. The mean, sum, and standard deviation of the voxels in each volume were recorded. The delineations were transferred to the PET-based absorbed dose maps by coregistration of the corresponding CTs. Linear multiple regression was used to correlate pretreatment CBCT enhancement to posttreatment 90Y PET/CT-based absorbed dose in each region. Leave-one-out cross-validation and Bland-Altman analyses were performed on the predicted versus measured absorbed doses. RESULTS Nine patients, with a total of 23 tumors were included. All presented with hepatocellular carcinoma (HCC). Visually, all patients had a clear correspondence between CBCT enhancement and absorbed dose. The correlation between CBCT enhancement and posttherapy absorbed tumor dose based was strong (R2 = 0.91), and moderate for the non-tumor liver tissue (R2 = 0.61). Limits of agreement were approximately ±55 Gray for tumor tissue. CONCLUSION There is a linear relationship between pretreatment blood dynamics in HCC tumors and posttreatment absorbed dose, which, if shown to be generalizable, allows for pretreatment tumor absorbed dose prediction.
Collapse
Affiliation(s)
- Remco Bastiaannet
- The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - MingDe Lin
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT, United States
| | - Eric C. Frey
- The Russell H Morgan Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Hugo W.A.M. de Jong
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Sharma NK, Kappadath SC, Chuong M, Folkert M, Gibbs P, Jabbour SK, Jeyarajah DR, Kennedy A, Liu D, Meyer JE, Mikell J, Patel RS, Yang G, Mourtada F. The American Brachytherapy Society consensus statement for permanent implant brachytherapy using Yttrium-90 microsphere radioembolization for liver tumors. Brachytherapy 2022; 21:569-591. [PMID: 35599080 PMCID: PMC10868645 DOI: 10.1016/j.brachy.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To develop a multidisciplinary consensus for high quality multidisciplinary implementation of brachytherapy using Yttrium-90 (90Y) microspheres transarterial radioembolization (90Y TARE) for primary and metastatic cancers in the liver. METHODS AND MATERIALS Members of the American Brachytherapy Society (ABS) and colleagues with multidisciplinary expertise in liver tumor therapy formulated guidelines for 90Y TARE for unresectable primary liver malignancies and unresectable metastatic cancer to the liver. The consensus is provided on the most recent literature and clinical experience. RESULTS The ABS strongly recommends the use of 90Y microsphere brachytherapy for the definitive/palliative treatment of unresectable liver cancer when recommended by the multidisciplinary team. A quality management program must be implemented at the start of 90Y TARE program development and follow-up data should be tracked for efficacy and toxicity. Patient-specific dosimetry optimized for treatment intent is recommended when conducting 90Y TARE. Implementation in patients on systemic therapy should account for factors that may enhance treatment related toxicity without delaying treatment inappropriately. Further management and salvage therapy options including retreatment with 90Y TARE should be carefully considered. CONCLUSIONS ABS consensus for implementing a safe 90Y TARE program for liver cancer in the multidisciplinary setting is presented. It builds on previous guidelines to include recommendations for appropriate implementation based on current literature and practices in experienced centers. Practitioners and cooperative groups are encouraged to use this document as a guide to formulate their clinical practices and to adopt the most recent dose reporting policies that are critical for a unified outcome analysis of future effectiveness studies.
Collapse
Affiliation(s)
- Navesh K Sharma
- Department of Radiation Oncology, Penn State Hershey School of Medicine, Hershey, PA
| | - S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL
| | - Michael Folkert
- Northwell Health Cancer Institute, Radiation Medicine at the Center for Advanced Medicine, New Hyde Park, NY
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | | | | | - David Liu
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | - Rahul S Patel
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gary Yang
- Loma Linda University, Loma Linda, CA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE; Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
3
|
Nodari G, Popoff R, Riedinger JM, Lopez O, Pellegrinelli J, Dygai-Cochet I, Tabouret-Viaud C, Presles B, Chevallier O, Gehin S, Gallet M, Latournerie M, Manfredi S, Loffroy R, Vrigneaud JM, Cochet A. Impact of contouring methods on pre-treatment and post-treatment dosimetry for the prediction of tumor control and survival in HCC patients treated with selective internal radiation therapy. EJNMMI Res 2021; 11:24. [PMID: 33687596 PMCID: PMC7943673 DOI: 10.1186/s13550-021-00766-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The aim of this study was to evaluate the impact of the contouring methods on dose metrics and their predictive value on tumor control and survival, in both situations of pre-treatment and post-treatment dosimetry, for patients with advanced HCC treated with SIRT. METHODS Forty-eight patients who underwent SIRT between 2012 and 2020 were retrospectively included in this study. Target volumes were delineated using two methods: MRI-based contours manually drawn by a radiologist and then registered on SPECT/CT and PET/CT via deformable registration (Pre-CMRI and Post-CMRI), 99mTc-MAA-SPECT and 90Y-microspheres-PET 10% threshold contouring (Pre-CSPECT and Post-CPET). The mean absorbed dose (Dm) and the minimal absorbed dose delivered to 70% of the tumor volume (D70) were evaluated with both contouring methods; the tumor-to-normal liver uptake ratio (TNR) was evaluated with MRI-based contours only. Tumor response was assessed using the mRECIST criteria on the follow-up MRIs. RESULTS No significant differences were found for Dm and TNR between pre- and post-treatment. TNR evaluated with radiologic contours (Pre-CMRI and Post-CMRI) were predictive of tumor control at 6 months on pre- and post-treatment dosimetry (OR 5.9 and 7.1, respectively; p = 0.02 and 0.01). All dose metrics determined with both methods were predictive of overall survival (OS) on pre-treatment dosimetry, but only Dm with MRI-based contours was predictive of OS on post-treatment images with a median of 23 months for patients with a supramedian Dm versus 14 months for the others (p = 0.04). CONCLUSION In advanced HCC treated with SIRT, Dm and TNR determined with radiologic contours were predictive of tumor control and OS. This study shows that a rigorous clinical workflow (radiologic contours + registration on scintigraphic images) is feasible and should be prospectively considered for improving therapeutic strategy.
Collapse
Affiliation(s)
- Guillaume Nodari
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.
| | - Romain Popoff
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.,ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| | - Jean Marc Riedinger
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France
| | - Olivier Lopez
- Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Julie Pellegrinelli
- Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Inna Dygai-Cochet
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France
| | | | - Benoit Presles
- ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| | - Olivier Chevallier
- ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France.,Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Sophie Gehin
- Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Matthieu Gallet
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France
| | | | - Sylvain Manfredi
- Department of Gastroenterology, University Hospital Dijon, Dijon, France
| | - Romaric Loffroy
- ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France.,Department of Vascular and Interventional Radiology, University Hospital Dijon, Dijon, France
| | - Jean Marc Vrigneaud
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.,ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| | - Alexandre Cochet
- Department of Nuclear Medicine, Centre Georges-François Leclerc, Dijon, France.,ImViA Laboratory, IFTIM Team, EA 7535, University of Burgundy, Dijon, France
| |
Collapse
|
4
|
Kappadath SC, Lopez BP, Salem R, Lam MG. Lung shunt and lung dose calculation methods for radioembolization treatment planning. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2021; 65:32-42. [PMID: 33393753 DOI: 10.23736/s1824-4785.20.03287-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Radioembolization, also known as selective internal radiation therapy (SIRT), is firmly established in the management of patients with unresectable liver cancers. Advances in normal and tumor liver dosimetry and new knowledge about tumor dose response relationships have helped promote the safe use of higher prescribed doses, consequently transitioning radioembolization from palliative to curative therapy. The lungs are considered a critical organ of risk for radioembolization treatment planning. Unfortunately, lung dosimetry has not achieved similar advances in dose calculation methodology as liver dosimetry. Current estimations of lung dose are dependent on a number of parameters associated with data acquisition and processing algorithms, leading to poor accuracy and precision. Therefore, the efficacy of curative radioembolization may be compromised in patients for whom the lung dose derived using currently available methods unnecessarily limits the desired administered activity to the liver. We present a systematic review of the various methods of determining the lung shunt fraction (LSF) and lung mean dose (LD). This review encompasses pretherapy estimations and post-therapy assessments of the LSF and LD using both 2D planar and 3D SPECT/CT based calculations. The advantages and limitations of each of these methods are deliberated with a focus on accuracy and practical considerations. We conclude the review by presenting a lexicon to precisely describe the methodology used for the estimation of LSF and LD; specifically, category, agent, modality, contour and algorithm, in order to aid in their interpretation and standardization in routine clinical practice.
Collapse
Affiliation(s)
- S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, USA -
| | - Benjamin P Lopez
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX, USA
| | - Riad Salem
- Department of Radiology, Northwestern Memorial Hospital, Chicago, IL, USA
| | - Marnix G Lam
- Department of Radiology and Nuclear Medicine, University Medical Center, Utrecht, The Netherlands
| |
Collapse
|