1
|
Liu Y, Nie X, Ahmad A, Rimner A, Li G. Super-resolution reconstruction of time-resolved four-dimensional computed tomography (TR-4DCT) with multiple breathing cycles based on TR-4DMRI. Med Phys 2025; 52:504-517. [PMID: 39460999 DOI: 10.1002/mp.17487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/27/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Respiratory motion irregularities in lung cancer patients are common and can be severe during multi-fractional (∼20 mins/fraction) radiotherapy. However, the current clinical standard of motion management is to use a single-breath respiratory-correlated four-dimension computed tomography (RC-4DCT or 4DCT) to estimate tumor motion to delineate the internal tumor volume (ITV), covering the trajectory of tumor motion, as a treatment target. PURPOSE To develop a novel multi-breath time-resolved (TR) 4DCT using the super-resolution reconstruction framework with TR 4D magnetic resonance imaging (TR-4DMRI) as guidance for patient-specific breathing irregularity assessment, overcoming the shortcomings of RC-4DCT, including binning artifacts and single-breath limitations. METHODS Six lung cancer patients participated in the IRB-approved protocol study to receive multiple T1w MRI scans, besides an RC-4DCT scan on the simulation day, including 80 low-resolution (lowR: 5 × 5 × 5 mm3) free-breathing (FB) 3D cine MRFB images in 40 s (2 Hz) and a high-resolution (highR: 2 × 2 × 2 mm3) 3D breath-hold (BH) MRBH image for each patient. A CT (1 × 1 × 3 mm3) image was selected from 10-bin RC-4DCT with minimal binning artifacts and a close diaphragm match (<1 cm) to the MRBH image. A mutual-information-based Freeform deformable image registration (DIR) was used to register the CT and MRBH via the opposite directions (namely F1:C T Source → MR Target BH ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Source}}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{BH}}}$ and F2:C T Target ← MR Source BH ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Target}}}} \leftarrow {\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}}$ ) to establish CT-MR voxel correspondences. An intensity-based enhanced Demons DIR was then applied forMR Source BH → MR Target FB ${\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{FB}}}$ , in which the original MRBH was used in D1:C T Source → ( MR Source BH → MR Target FB ) Target ${\mathrm{C}}{{{\mathrm{T}}}_{{\mathrm{Source}}}} \to {{({\mathrm{MR}}_{{\mathrm{Source}}}^{{\mathrm{BH}}} \to {\mathrm{MR}}_{{\mathrm{Target}}}^{{\mathrm{FB}}})}_{{\mathrm{Target}}}}$ , while the deformed MRBH was used in D2:( C T Target ← MR Source BH ) Source → MR Target FB ${{( \text{C}{{\text{T}}_{\text{Target}}}\leftarrow \text{MR}_{\text{Source}}^{\text{BH}} )}_{\text{Source}}}\to \text{MR}_{\text{Target}}^{\text{FB}}$ . The deformation vector fields (DVFs) obtained from each DIR were composed to apply to the deformed CT (D1) and original CT (D2) to reconstruct TR-4DCT images. A digital 4D-XCAT phantom at the end of inhalation (EOI) and end of exhalation (EOE) with 2.5 cm diaphragmatic motion and three spherical targets (ϕ = 2, 3, 4 cm) were first tested to reconstruct TR-4DCT. For each of the six patients, TR-4DCT images at the EOI, middle (MID), and EOE were reconstructed with both D1 and D2 approaches. TR-4DCT image quality was evaluated with mean distance-to-agreement (MDA) at the diaphragm compared with MRFB, tumor volume ratio (TVR) referenced to MRBH, and tumor shape difference (DICE index) compared with the selected input CT. Additionally, differences in the tumor center of mass (|∆COMD1-D2|), together with TVR and DICE comparison, was assessed in the D1 and D2 reconstructed TR-4DCT images. RESULTS In the phantom, TR-4DCT quality is assessed by MDA = 2.0 ± 0.8 mm at the diaphragm, TVR = 0.8 ± 0.0 for all tumors, and DICE = 0.83 ± 0.01, 0.85 ± 0.02, 0.88 ± 0.01 for ϕ = 2, 3, 4 cm tumors, respectively. In six patients, the MDA in diaphragm match is -1.6 ± 3.1 mm (D1) and 1.0 ± 3.9 mm (D2) between the reconstructed TR-4DCT and lowR MRFB among 18 images (3 phases/patient). The tumor similarity is TVR = 1.2 ± 0.2 and DICE = 0.70 ± 0.07 for D1 and TVR = 1.4 ± 0.3 (D2) and DICE = 0.73 ± 0.07 for D2. The tumor position difference is |∆COMD1-D2| = 1.2 ± 0.8 mm between D1 and D2 reconstructions. CONCLUSION The feasibility of super-resolution reconstruction of multi-breathing-cycle TR-4DCT is demonstrated and image quality at the diaphragm and tumor is assessed in both the 4D-XCAT phantom and six lung cancer patients. The similarity of D1 and D2 reconstruction suggests consistent and reliable DIR results. Clinically, TR-4DCT has the potential for breathing irregularity assessment and dosimetry evaluation in radiotherapy.
Collapse
Affiliation(s)
- Yilin Liu
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Xingyu Nie
- Department of Radiology, University of Kentucky, Lexington, Kentucky, USA
| | - Asala Ahmad
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
2
|
Nacif MS. Experience in other segments should shorten studies using Look-Locker and high-resolution T2 images in the study of focal lung lesions. Radiol Bras 2024; 57:e8. [PMID: 39439772 PMCID: PMC11494724 DOI: 10.1590/0100-3984.2024.57.e8-en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Affiliation(s)
- Marcelo Souto Nacif
- Adjunct Professor in the Department of Radiology at Universidade Federal Fluminense (UFF), Niterói, RJ, Brazil.
| |
Collapse
|
3
|
Nenoff L, Amstutz F, Murr M, Archibald-Heeren B, Fusella M, Hussein M, Lechner W, Zhang Y, Sharp G, Vasquez Osorio E. Review and recommendations on deformable image registration uncertainties for radiotherapy applications. Phys Med Biol 2023; 68:24TR01. [PMID: 37972540 PMCID: PMC10725576 DOI: 10.1088/1361-6560/ad0d8a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/30/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Deformable image registration (DIR) is a versatile tool used in many applications in radiotherapy (RT). DIR algorithms have been implemented in many commercial treatment planning systems providing accessible and easy-to-use solutions. However, the geometric uncertainty of DIR can be large and difficult to quantify, resulting in barriers to clinical practice. Currently, there is no agreement in the RT community on how to quantify these uncertainties and determine thresholds that distinguish a good DIR result from a poor one. This review summarises the current literature on sources of DIR uncertainties and their impact on RT applications. Recommendations are provided on how to handle these uncertainties for patient-specific use, commissioning, and research. Recommendations are also provided for developers and vendors to help users to understand DIR uncertainties and make the application of DIR in RT safer and more reliable.
Collapse
Affiliation(s)
- Lena Nenoff
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
- OncoRay—National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden—Rossendorf, Dresden Germany
- Helmholtz-Zentrum Dresden—Rossendorf, Institute of Radiooncology—OncoRay, Dresden, Germany
| | - Florian Amstutz
- Department of Physics, ETH Zurich, Switzerland
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany
| | | | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Mohammad Hussein
- Metrology for Medical Physics, National Physical Laboratory, Teddington, United Kingdom
| | - Wolfgang Lechner
- Department of Radiation Oncology, Medical University of Vienna, Austria
| | - Ye Zhang
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Greg Sharp
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA, United States of America
- Harvard Medical School, Boston, MA, United States of America
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
4
|
Feng L. Live-view 4D GRASP MRI: A framework for robust real-time respiratory motion tracking with a sub-second imaging latency. Magn Reson Med 2023; 90:1053-1068. [PMID: 37203314 PMCID: PMC10330383 DOI: 10.1002/mrm.29700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023]
Abstract
PURPOSE To propose a framework called live-view golden-angle radial sparse parallel (GRASP) MRI for low-latency and high-fidelity real-time volumetric MRI. METHODS Live-view GRASP MRI has two stages. The first one is called an off-view stage and the second one is called a live-view stage. In the off-view stage, 3D k-space data and 2D navigators are acquired alternatively using a new navi-stack-of-stars sampling scheme. A 4D motion database is then generated that contains time-resolved MR images at a sub-second temporal resolution, and each image is linked to a 2D navigator. In the live-view stage, only 2D navigators are acquired. At each time point, a live-view 2D navigator is matched to all the off-view 2D navigators. A 3D image that is linked to the best-matched off-view 2D navigator is then selected for this time point. This framework places the typical acquisition and reconstruction burden of MRI in the off-view stage, enabling low-latency real-time 3D imaging in the live-view stage. The accuracy of live-view GRASP MRI and the robustness of 2D navigators for characterizing respiratory variations and/or body movements were assessed. RESULTS Live-view GRASP MRI can efficiently generate real-time volumetric images that match well with the ground-truth references, with an imaging latency below 500 ms. Compared to 1D navigators, 2D navigators enable more reliable characterization of respiratory variations and/or body movements that may occur throughout the two imaging stages. CONCLUSION Live-view GRASP MRI represents a novel, accurate, and robust framework for real-time volumetric imaging, which can potentially be applied for motion adaptive radiotherapy on MRI-Linac.
Collapse
Affiliation(s)
- Li Feng
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University Grossman School of Medicine, New York, New York, USA
- BioMedical Engineering and Imaging Institute (BMEII), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
5
|
A Simulation Study of Tolerance of Breathing Amplitude Variations in Radiotherapy of Lung Cancer Using 4DCT and Time-Resolved 4DMRI. J Clin Med 2022; 11:jcm11247390. [PMID: 36556006 PMCID: PMC9784418 DOI: 10.3390/jcm11247390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
As patient breathing irregularities can introduce a large uncertainty in targeting the internal tumor volume (ITV) of lung cancer patients, and thereby affect treatment quality, this study evaluates dose tolerance of tumor motion amplitude variations in ITV-based volumetric modulated arc therapy (VMAT). A motion-incorporated planning technique was employed to simulate treatment delivery of 10 lung cancer patients' clinical VMAT plans using original and three scaling-up (by 0.5, 1.0, and 2.0 cm) motion waveforms from single-breath four-dimensional computed tomography (4DCT) and multi-breath time-resolved 4D magnetic resonance imaging (TR-4DMRI). The planning tumor volume (PTV = ITV + 5 mm margin) dose coverage (PTV D95%) was evaluated. The repeated waveforms were used to move the isocenter in sync with the clinical leaf motion and gantry rotation. The continuous VMAT arcs were broken down into many static beam fields at the control points (2°-interval) and the composite plan represented the motion-incorporated VMAT plan. Eight motion-incorporated plans per patient were simulated and the plan with the native 4DCT waveform was used as a control. The first (D95% ≤ 95%) and second (D95% ≤ 90%) plan breaching points due to motion amplitude increase were identified and analyzed. The PTV D95% in the motion-incorporated plans was 99.4 ± 1.0% using 4DCT, closely agreeing with the corresponding ITV-based VMAT plan (PTV D95% = 100%). Tumor motion irregularities were observed in TR-4DMRI and triggered D95% ≤ 95% in one case. For small tumors, 4 mm extra motion triggered D95% ≤ 95%, and 6-8 mm triggered D95% ≤ 90%. For large tumors, 14 mm and 21 mm extra motions triggered the first and second breaching points, respectively. This study has demonstrated that PTV D95% breaching points may occur for small tumors during treatment delivery. Clinically, it is important to monitor and avoid systematic motion increase, including baseline drift, and large random motion spikes through threshold-based beam gating.
Collapse
|
6
|
Li G. Advances and potential of optical surface imaging in radiotherapy. Phys Med Biol 2022; 67:10.1088/1361-6560/ac838f. [PMID: 35868290 PMCID: PMC10958463 DOI: 10.1088/1361-6560/ac838f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/22/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the recent advancements and future potential of optical surface imaging (OSI) in clinical applications as a four-dimensional (4D) imaging modality for surface-guided radiotherapy (SGRT), including OSI systems, clinical SGRT applications, and OSI-based clinical research. The OSI is a non-ionizing radiation imaging modality, offering real-time 3D surface imaging with a large field of view (FOV), suitable for in-room interactive patient setup, and real-time motion monitoring at any couch rotation during radiotherapy. So far, most clinical SGRT applications have focused on treating superficial breast cancer or deep-seated brain cancer in rigid anatomy, because the skin surface can serve as tumor surrogates in these two clinical scenarios, and the procedures for breast treatments in free-breathing (FB) or at deep-inspiration breath-hold (DIBH), and for cranial stereotactic radiosurgery (SRS) and radiotherapy (SRT) are well developed. When using the skin surface as a body-position surrogate, SGRT promises to replace the traditional tattoo/laser-based setup. However, this requires new SGRT procedures for all anatomical sites and new workflows from treatment simulation to delivery. SGRT studies in other anatomical sites have shown slightly higher accuracy and better performance than a tattoo/laser-based setup. In addition, radiographical image-guided radiotherapy (IGRT) is still necessary, especially for stereotactic body radiotherapy (SBRT). To go beyond the external body surface and infer an internal tumor motion, recent studies have shown the clinical potential of OSI-based spirometry to measure dynamic tidal volume as a tumor motion surrogate, and Cherenkov surface imaging to guide and assess treatment delivery. As OSI provides complete datasets of body position, deformation, and motion, it offers an opportunity to replace fiducial-based optical tracking systems. After all, SGRT has great potential for further clinical applications. In this review, OSI technology, applications, and potential are discussed since its first introduction to radiotherapy in 2005, including technical characterization, different commercial systems, and major clinical applications, including conventional SGRT on top of tattoo/laser-based alignment and new SGRT techniques attempting to replace tattoo/laser-based setup. The clinical research for OSI-based tumor tracking is reviewed, including OSI-based spirometry and OSI-guided tumor tracking models. Ongoing clinical research has created more SGRT opportunities for clinical applications beyond the current scope.
Collapse
Affiliation(s)
- Guang Li
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, United States of America
| |
Collapse
|
7
|
Nie X, Li G. Real-Time 2D MR Cine From Beam Eye's View With Tumor-Volume Projection to Ensure Beam-to-Tumor Conformality for MR-Guided Radiotherapy of Lung Cancer. Front Oncol 2022; 12:898771. [PMID: 35847879 PMCID: PMC9277147 DOI: 10.3389/fonc.2022.898771] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/20/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose To minimize computation latency using a predictive strategy to retrieve and project tumor volume onto 2D MR beam eye’s view (BEV) cine from time-resolved four-dimensional magnetic resonance imaging (TR-4DMRI) libraries (inhalation/exhalation) for personalized MR-guided intensity-modulated radiotherapy (IMRT) or volumetric-modulated arc therapy (VMAT). Methods Two time-series forecasting algorithms, autoregressive (AR) modeling and deep-learning-based long short-term memory (LSTM), were applied to predict the diaphragm position in the next 2D BEV cine to identify a motion-matched and hysteresis-accounted image to retrieve the tumor volume from the inhalation/exhalation TR-4DMRI libraries. Three 40-s TR-4DMRI (2 Hz, 3 × 80 images) per patient of eight lung cancer patients were used to create patient-specific inhalation/exhalation 4DMRI libraries, extract diaphragmatic waveforms, and interpolate them to f = 4 and 8 Hz to match 2D cine frame rates. Along a (40•f)-timepoint waveform, 30•f training timepoints were moved forward to produce 3×(10•f-1) predictions. The accuracy of position prediction was assessed against the waveform ground truth. The accuracy of tumor volume projections was evaluated using the center-of-mass difference (∆COM) and Dice similarity index against the TR-4DMRI ground truth for both IMRT (six beam angles, 30° interval) and VMAT (240/480 beam angles, 1.5°/0.75° interval, at 4/8 Hz, respectively). Results The accuracy of the first-timepoint prediction is 0.36 ± 0.10 mm (AR) and 0.62 ± 0.21 mm (LSTM) at 4 Hz and 0.06 ± 0.02 mm (AR) and 0.18 ± 0.06 mm (LSTM) at 8 Hz. A 10%–20% random error in prediction-library matching increases the overall uncertainty slightly. For both IMRT and VMAT, the accuracy of projected tumor volume contours on 2D BEV cine is ∆COM = 0.39 ± 0.13 mm and DICE = 0.97 ± 0.02 at 4 Hz and ∆COM = 0.10 ± 0.04 mm and DICE = 1.00 ± 0.00 at 8Hz. Conclusion This study demonstrates the feasibility of accurately predicting respiratory motion during 2D BEV cine imaging, identifying a motion-matched and hysteresis-accounted tumor volume, and projecting tumor volume contour on 2D BEV cine for real-time assessment of beam-to-tumor conformality, promising for optimal personalized MR-guided radiotherapy.
Collapse
Affiliation(s)
- Xingyu Nie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States.,Department of Radiology, University of Kentucky, Lexington, KY, United States
| | - Guang Li
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
8
|
Milewski A, Li G. Stability and Reliability of Enhanced External-Internal Motion Correlation via Dynamic Phase-Shift Corrections Over 30-min Timeframe for Respiratory-Gated Radiotherapy. Technol Cancer Res Treat 2022; 21:15330338221111592. [PMID: 35880289 PMCID: PMC9340341 DOI: 10.1177/15330338221111592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To assess the stability of patient-specific phase shifts between external- and
internal-respiratory motion waveforms, the reliability of enhanced
external–internal correlation with phase-shift correction, and the feasibility
of guiding respiratory-gated radiotherapy (RGRT) over 30 min. In this clinical
feasibility investigation, external bellows and internal-navigator waveforms
were simultaneously and prospectively acquired along with two four-dimensional
magnetic resonance imaging (4DMRI) scans (6–15 m each) with 15–20 m intervals in
10 volunteers. A bellows was placed 5 cm inferior to the xiphoid to monitor
abdominal motion, and an MR navigator was used to track the diaphragmatic
motion. The mean phase-domain (MPD) method was applied, which combines three
individual phase-calculating methods: phase-space oval fitting, principal
component analysis, and analytic signal analysis, weighted by the reciprocal of
their residual errors (RE) excluding outliers (RE >2σ). The time-domain
cross-correlation (TCC) analysis was applied for comparison. Dynamic phase-shift
correction was performed based on the phase shift detected on the fly within two
10 s moving datasets. Simulating bellows-triggered gating, the median and 95%
confidence interval for the navigator's position at beam-on/beam-off and %harm
(percentage of beam-on time outside the safety margin) were calculated. Averaged
across all subjects, the mean phase shifts are found indistinguishable
(p > .05) between scan 1 (55˚ ± 9˚) and scan 2
(59˚ ± 11˚). Using the MPD method the averaged correlation increases from
0.56 ± 0.22 to 0.85 ± 0.11 for scan 1 and from 0.47 ± 0.30 to 0.84 ± 0.08 for
scan 2. The TCC correction results in similar results. After phase-shift
correction, the number of cases that were suitable for amplitude gating (with
<10%harm) increased from 2 to 17 out of 20 cases. A patient-specific, stable
phase-shift between the external and internal motions was observed and corrected
using the MPD and TCC methods, producing long-lasting enhanced motion
correlation over 30m. Phase-shift correction offers a feasible strategy for
improving the accuracy of tumor-motion prediction during RGRT.
Collapse
Affiliation(s)
- Andrew Milewski
- Department of Medical Physics, 5803Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guang Li
- Department of Medical Physics, 5803Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
9
|
Freedman JN, Gurney-Champion OJ, Nill S, Shiarli AM, Bainbridge HE, Mandeville HC, Koh DM, McDonald F, Kachelrieß M, Oelfke U, Wetscherek A. Rapid 4D-MRI reconstruction using a deep radial convolutional neural network: Dracula. Radiother Oncol 2021; 159:209-217. [PMID: 33812914 PMCID: PMC8216429 DOI: 10.1016/j.radonc.2021.03.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/07/2021] [Accepted: 03/26/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE 4D and midposition MRI could inform plan adaptation in lung and abdominal MR-guided radiotherapy. We present deep learning-based solutions to overcome long 4D-MRI reconstruction times while maintaining high image quality and short scan times. METHODS Two 3D U-net deep convolutional neural networks were trained to accelerate the 4D joint MoCo-HDTV reconstruction. For the first network, gridded and joint MoCo-HDTV-reconstructed 4D-MRI were used as input and target data, respectively, whereas the second network was trained to directly calculate the midposition image. For both networks, input and target data had dimensions of 256 × 256 voxels (2D) and 16 respiratory phases. Deep learning-based MRI were verified against joint MoCo-HDTV-reconstructed MRI using the structural similarity index (SSIM) and the naturalness image quality evaluator (NIQE). Moreover, two experienced observers contoured the gross tumour volume and scored the images in a blinded study. RESULTS For 12 subjects, previously unseen by the networks, high-quality 4D and midposition MRI (1.25 × 1.25 × 3.3 mm3) were each reconstructed from gridded images in only 28 seconds per subject. Excellent agreement was found between deep-learning-based and joint MoCo-HDTV-reconstructed MRI (average SSIM ≥ 0.96, NIQE scores 7.94 and 5.66). Deep-learning-based 4D-MRI were clinically acceptable for target and organ-at-risk delineation. Tumour positions agreed within 0.7 mm on midposition images. CONCLUSION Our results suggest that the joint MoCo-HDTV and midposition algorithms can each be approximated by a deep convolutional neural network. This rapid reconstruction of 4D and midposition MRI facilitates online treatment adaptation in thoracic or abdominal MR-guided radiotherapy.
Collapse
Affiliation(s)
- Joshua N Freedman
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Oliver J Gurney-Champion
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; Department of Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, The Netherlands.
| | - Simeon Nill
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Anna-Maria Shiarli
- Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Hannah E Bainbridge
- Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom; Department of Radiotherapy, Portsmouth Hospitals University NHS Trust, Queen Alexandra Hospital, United Kingdom.
| | - Henry C Mandeville
- Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Dow-Mu Koh
- Department of Radiology, The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Fiona McDonald
- Department of Radiotherapy, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Marc Kachelrieß
- Division of X-Ray Imaging and CT, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Uwe Oelfke
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| | - Andreas Wetscherek
- Joint Department of Physics, The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
10
|
Nie X, Rimner A, Li G. Feasibility of MR-guided radiotherapy using beam-eye-view 2D-cine with tumor-volume projection. Phys Med Biol 2021; 66:045020. [PMID: 33361569 DOI: 10.1088/1361-6560/abd66a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Current magnetic resonance imaging (MRI) guided radiotherapy (MRgRT) applies sagittal/coronal 2D-cine to monitor major tumor motions, however, the beam eye's view (BEV) with volumetric tumor projection would be the best measure for radiation beam conformality, independent of tumor through-plane motion. The goal is to assess the feasibility, accuracy, and performance of the BEV approach. METHODS Beam-specific BEV 2D-cine with volume-projected tumor contours were simulated to establish a 2D/3D tumor match against a tumor-motion library based on multi-breath time-resolved (TR) 4DMRI images. Two BEV-library-matching methods were developed: (1) fast screening with tumor center-of-mass (∆COM), in-plane area ratio, and DICE similarity, and finalizing with the highest DICE score and (2) DICE screening for top-3 candidates and finalizing with rigid registration. A 4D-XCAT digital phantom and 8 lung-cancer patients were used for assessment. For each patient, 3 sets of 40 s TR-4DMRI were acquired at 2 Hz and 6 representative BEV were created with the isocenter set at tumor COM in mid-respiration. One TR-4DMRI set (40 × 2 = 80-images) was used to simulate BEV 2D-cine and the other two (160-images) were used to create a library. The matching result was validated against the ground truth within the test set. Using a leave-one-out strategy, the success rate, accuracy, and speed of tumor matching were assessed for volume-projected tumors over 11520 time-points (=8patients•3sets•80images•6BEVs). RESULTS Volume-projected tumor contour area on the 6 BEVs varies by 60% ± 8% and [Formula: see text] (in-plane/volume-projected) varies by 82% ± 9%. The [Formula: see text] changes with tumor shape, orientation, and through-plane motion. Method-1 produces 96% matching success (ΔCOM = 0.7 ± 0.2 mm, [Formula: see text]=1.01 ± 0.02, Dice=0.92 ± 0.02) with the computational time of 15 ± 1 ms/match, while method-2 produces 94% ± 1% success (ΔCOM = 0.2 ± 0.1 mm, [Formula: see text]=1.00 ± 0.01, Dice = 0.94 ± 0.02) with 223 ± 13 ms/match. CONCLUSION This study has demonstrated the feasibility, accuracy, and benefits of BEV 2D-cine imaging with tumor-volume projection, allowing real-time tumor motion monitoring and beam conformality checking. Further clinical evaluation is necessary before MRgRT applications.
Collapse
Affiliation(s)
- Xingyu Nie
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States of America
| | | | | |
Collapse
|