1
|
Ishii T, Yamanishi T, Kamasako T, Shibata C, Fuse M, Kaga M, Kaga K, Nahas H, Yiu BYS, Yu ACH, Saijo Y. Transrectal ultrasound vector projectile imaging for time-resolved visualization of flow dynamics in the male urethra: A clinical pilot study. Med Phys 2024; 51:428-438. [PMID: 37983613 DOI: 10.1002/mp.16834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Quantitative and comprehensive visualization of urinary flow dynamics in the urethra is crucial for investigating patient-specific mechanisms of lower urinary tract symptoms (LUTS). Although some methods can evaluate the global properties of the urethra, it is critical to assess the local information, such as the location of the responsible lesion and its interactions with urinary flow in relation to LUTS. This approach is vital for enhancing personalized and focal treatments. However, there is a lack of such diagnostic tools that can directly observe how the urethral shape and motion impact urinary flow in the urethra. PURPOSE This study aimed to develop a novel transrectal ultrasound imaging modality based on the contrast-enhanced urodynamic vector projectile imaging (CE-UroVPI) framework and validate its clinical applicability for visualizing time-resolved flow dynamics in the urethra. METHODS A new CE-UroVPI system was developed using a research-purpose ultrasound platform and a custom transrectal linear probe, and an imaging protocol for acquiring urodynamic echo data in male patients was designed. Thirty-four male patients with LUTS participated in this study. CE-UroVPI was performed to acquire ultrasound echo signals from the participant's urethra and urinary flow at various voiding phases (initiation, maintenance, and terminal). The ultrasound datasets were processed with custom software to visualize urinary flow dynamics and urethra tissue deformation. RESULTS The transrectal CE-UroVPI system successfully visualized the time-resolved multidirectional urinary flow dynamics in the prostatic urethra during the initiation, maintenance, and terminal phases of voiding in 17 patients at a frame rate of 1250 fps. The maximum flow speed measured in this study was 2.5 m/s. In addition, when the urethra had an obstruction or an irregular partial deformation, the devised imaging modality visualized complex flow patterns, such as vortices and flow jets around the lesion. CONCLUSIONS Our study findings demonstrate that the transrectal CE-UroVPI system developed in this study can effectively image fluid-structural interactions in the urethra. This new diagnostic technology has the potential to facilitate quantitative and precise assessments of urethral voiding functions and aid in the improvement of focal and effective treatments for patients with LUTS.
Collapse
Affiliation(s)
- Takuro Ishii
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| | - Tomonori Yamanishi
- Continence Center, Dokkyo Medical University Hospital, Utsumomiya, Tochigi, Japan
| | - Tomohiko Kamasako
- Continence Center, Dokkyo Medical University Hospital, Utsumomiya, Tochigi, Japan
| | - Chiharu Shibata
- Continence Center, Dokkyo Medical University Hospital, Utsumomiya, Tochigi, Japan
| | - Miki Fuse
- Continence Center, Dokkyo Medical University Hospital, Utsumomiya, Tochigi, Japan
| | - Mayuko Kaga
- Continence Center, Dokkyo Medical University Hospital, Utsumomiya, Tochigi, Japan
| | - Kanya Kaga
- Continence Center, Dokkyo Medical University Hospital, Utsumomiya, Tochigi, Japan
| | - Hassan Nahas
- Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Billy Y S Yiu
- Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Alfred C H Yu
- Research Institute for Aging, University of Waterloo, Waterloo, Ontario, Canada
| | - Yoshifumi Saijo
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
2
|
Huang H, Hsu P, Tsai S, Chuang Y, Chen D, Xu G, Chen C, Kuo Y, Huang C. High-Spatiotemporal-Resolution Ultrasound Flow Imaging to Determine Cerebrovascular Hemodynamics in Alzheimer's Disease Mice Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302345. [PMID: 37964413 PMCID: PMC10724386 DOI: 10.1002/advs.202302345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/28/2023] [Indexed: 11/16/2023]
Abstract
Although the relationships of cerebrovascular hemodynamic dysfunction with neurodegenerative diseases remain unclear, many studies have indicated that poor cerebral perfusion accelerates the progression of neurodegenerative diseases, such as Alzheimer's disease (AD). Small animal models are widely used in AD research. However, providing an imaging modality with a high spatiotemporal resolution and sufficiently large field of view to assess cerebrovascular hemodynamics in vivo remains a challenge. The present study proposes a novel technique for high-spatiotemporal-resolution vector micro-Doppler imaging (HVμDI) based on contrast-free ultrafast high frequency ultrasound imaging to visualize the cerebrovascular hemodynamics of the mouse, with a data acquisition time of 0.4 s, a minimal detectable vessel size of 38 µm, and a temporal resolution of 500 Hz. In vivo experiments are conducted on wild-type and AD mice. Cerebrovascular hemodynamics are quantified using the cerebral vascular density, diameter, velocity, tortuosity, cortical flow pulsatility, and instant flow direction variations. Results reveal that AD significantly change the cerebrovascular hemodynamics. HVμDI offers new opportunities for in vivo analysis of cerebrovascular hemodynamics in neurodegenerative pathologies in preclinical animal research.
Collapse
Affiliation(s)
- Hsin Huang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Pei‐Ling Hsu
- Department of AnatomySchool of MedicineCollege of MedicineKaohsiung Medical UniversityKaohsiung80708Taiwan
- Department of Medical ResearchKaohsiung Medical University HospitalKaohsiung80708Taiwan
- Drug Development and Value Creation Research CenterKaohsiung Medical UniversityKaohsiung80708Taiwan
| | - Sheng‐Feng Tsai
- Department of Cell Biology and AnatomyCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
| | - Yi‐Hsiang Chuang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - De‐Quan Chen
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Guo‐Xuan Xu
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Chien Chen
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Min Kuo
- Department of Cell Biology and AnatomyCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
- Institute of Basic Medical SciencesCollege of MedicineNational Cheng Kung UniversityTainan70101Taiwan
| | - Chih‐Chung Huang
- Department of Biomedical EngineeringNational Cheng Kung UniversityTainan70101Taiwan
- Medical Device Innovation CenterNational Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
3
|
Huang H, Chang WT, Huang CC. High-Spatiotemporal-Resolution Visualization of Myocardial Strains Through Vector Doppler Estimation: A Small-Animal Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1859-1870. [PMID: 35108204 DOI: 10.1109/tuffc.2022.3148873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
High-frequency ultrasound (HFUS) imaging is extensively used for cardiac diseases in small animals due to its high spatial resolution. However, there is a lack of a system that can provide a 2-D high-spatiotemporal dynamic visualization of mouse myocardial strains. In this article, a dynamic HFUS (40 MHz) high-resolution strain imaging was developed through the vector Doppler imaging. Following in vitro tests using a rubber balloon phantom, in vivo experiments were performed on wild-type (WT) and myocardial infarction (MI) mice. High-resolution dynamic images of myocardial strains were obtained in the longitudinal, radial, and circumferential directions at a frame rate of 1 kHz. Global peak strain values for WT mice were -19.3% ± 1.3% (longitudinal), 31.4% ± 1.7% (radial in the long axis), -19.9% ±.8% (circumferential), and 34.4% ± 1.9% (radial in the short axis); those for the MI mice were -16.1% ±.9% (longitudinal), 26.8% ± 2.9% (radial in the long axis), -15.2% ± 2.7% (circumferential), and 21.6% ± 4.8% (radial in the short axis). These results indicate that the strains for MI mice are significantly lower than those for WT mice. Regional longitudinal strain curves in the epicardial, midcardial, and endocardial layers were measured and the peak strain values for WT mice were -22.% and -16.8% in the endocardial and epicardial layers, respectively. However, no significant difference in the layer-based values was noted for the MI mice. Regional analysis results revealed obvious myocardial strain variation in the apical anterior region in the MI mice. The experimental results demonstrate that the proposed dynamic cardiac strain imaging can be useful in high-performance imaging of small-animal cardiac diseases.
Collapse
|
4
|
Qiu XR, Wang MT, Huang H, Kuo LC, Hsu HY, Yang TH, Su FC, Huang CC. Estimating the neovascularity of human finger tendon through high frequency ultrasound micro-Doppler imaging. IEEE Trans Biomed Eng 2022; 69:2667-2678. [PMID: 35192458 DOI: 10.1109/tbme.2022.3152151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Neovascularization of injured tendons prolongs the proliferative phase of healing, but prolonged neovascularization may cause improper healing and pain. Currently, ultrasound Doppler imaging is used for measuring the neovascularization of injured tendons (e.g., Achilles tendon). However, the resolution of state-of-the-art clinical ultrasound machines is insufficient for visualizing the neovascularization in finger tendons. In this study, a high-resolution micro-Doppler imaging (HFDI) based on 40-MHz ultrafast ultrasound imaging was proposed for visualizing the neovascularization in injured finger tendons during multiple rehabilitation phases. METHOD The vessel visibility was enhanced through a block-wise singular value decomposition filter and several curvilinear structure enhancement strategies, including the bowler-hat transform and Hessian-based vessel enhancement filtering. HFDI was verified through small animal kidney and spleen imaging because the related vessel structure patterns of mice are well studied. Five patients with finger tendon injuries underwent HFDI examination at various rehabilitation phases after surgery (weeks 1156), and finger function evaluations were performed for comparisons. RESULTS The results of small animal experiments revealed that the proposed HFDI provides excellent microvasculature imaging performance; the contrast-to-noise ratio of HFDI was approximately 15 dB higher than that of the conventional singular value decomposition filter, and the minimum detectable vessel size for mouse kidney was 35 m without the use of contrast agent. In the human study, neovascularization was clearly observed in injured finger tendons during the early phase of healing (weeks 1121), but it regressed from week 52 to 56. Finger rehabilitation appears to help reduce neovascularization; neovascular density decreased by approximately 1.8%8.0% in participants after 4 weeks of rehabilitation. CONCLUSION The experimental results verified the performance of HFDI for microvasculature imaging and its potential for injured finger tendon evaluations.
Collapse
|
5
|
Wang IC, Huang H, Chang WT, Huang CC. Wall shear stress mapping for human femoral artery based on ultrafast ultrasound vector Doppler estimations. Med Phys 2021; 48:6755-6764. [PMID: 34525217 DOI: 10.1002/mp.15230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Wall shear stress (WSS), a type of friction exerted on the artery wall by flowing blood, is considered a crucial factor in atherosclerotic plaque development. Currently, achieving a reliable WSS mapping of an artery noninvasively by using existing imaging modalities is still challenging. In this study, a WSS mapping based on vector Doppler flow velocity estimation was proposed to measure the dynamic WSS on the human femoral artery. METHODS Because ultrafast ultrasound imaging was used here, flow-enhanced imaging was also performed to observe the moving blood flow condition. The performance of WSS mapping was verified using both straight (8 mm in diameter) and stenosis (70% of stenosis) phantoms under a pulsatile flow condition. A human study was conducted from five healthy volunteers. RESULTS Experimental results demonstrated that the WSS estimation was close to the standard value that was obtained from maximum velocity estimation in straight phantom experiments. In a stenosis phantom experiment, a low WSS region was observed at a site downstream of an obstruction, which is a high-risk area for plaque formation. Dynamic WSS mapping was accomplished in measurement in the femoral artery bifurcation. In measurements, the time-averaged WSS of the common femoral artery, superficial femoral artery, and deep femoral artery was 0.52± 0.19, 0.44 ± 0.21, and 0.29 ± 0.16 Pa, respectively, for the anterior wall and 0.29 ± 0.11, 0.54 ± 0.24, and 0.23 ± 0.10 Pa, respectively, for the posterior wall. CONCLUSIONS All results indicated that WSS mapping has the potential to be a useful tool for vessel duplex scanning in the future.
Collapse
Affiliation(s)
- I-Chieh Wang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Hsin Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan
| | - Wei-Ting Chang
- Department of Cardiology, Chi-Mei Medical Center, Tainan City, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan City, Taiwan.,Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan City, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan City, Taiwan.,Medical Device Innovation Center, National Cheng Kung University, Tainan City, Taiwan
| |
Collapse
|
6
|
Ho YJ, Huang CC, Fan CH, Liu HL, Yeh CK. Ultrasonic technologies in imaging and drug delivery. Cell Mol Life Sci 2021; 78:6119-6141. [PMID: 34297166 PMCID: PMC11072106 DOI: 10.1007/s00018-021-03904-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
Ultrasonic technologies show great promise for diagnostic imaging and drug delivery in theranostic applications. The development of functional and molecular ultrasound imaging is based on the technical breakthrough of high frame-rate ultrasound. The evolution of shear wave elastography, high-frequency ultrasound imaging, ultrasound contrast imaging, and super-resolution blood flow imaging are described in this review. Recently, the therapeutic potential of the interaction of ultrasound with microbubble cavitation or droplet vaporization has become recognized. Microbubbles and phase-change droplets not only provide effective contrast media, but also show great therapeutic potential. Interaction with ultrasound induces unique and distinguishable biophysical features in microbubbles and droplets that promote drug loading and delivery. In particular, this approach demonstrates potential for central nervous system applications. Here, we systemically review the technological developments of theranostic ultrasound including novel ultrasound imaging techniques, the synergetic use of ultrasound with microbubbles and droplets, and microbubble/droplet drug-loading strategies for anticancer applications and disease modulation. These advancements have transformed ultrasound from a purely diagnostic utility into a promising theranostic tool.
Collapse
Affiliation(s)
- Yi-Ju Ho
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chung Huang
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Hao-Li Liu
- Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan.
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
7
|
Weng CC, Chen PY, Chou D, Shih CC, Huang CC. High Frequency Ultrasound Elastography for Estimating the Viscoelastic Properties of the Cornea Using Lamb Wave Model. IEEE Trans Biomed Eng 2020; 68:2637-2644. [PMID: 33306463 DOI: 10.1109/tbme.2020.3044066] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Estimating the elasticity distribution in the cornea is important because corneal elasticity is usually influenced by corneal pathologies and surgical treatments, especially for early corneal sclerosis. Because the thickness of the cornea is typically less than 1 mm, high-resolution ultrasound elastography as well as the Lamb wave model is required for viscoelastic property estimation. In the present study, an array high-frequency ultrasound (HFUS) elastography method based on ultrafast ultrasound imaging was proposed for estimating the viscoelastic properties of porcine cornea. METHODS The elastic wave was generated by an external vibrator, after which the wave propagation image was obtained using a 40-MHz array transducer. Viscoelasticity estimation was performed by fitting the phase velocity curve using the Lamb wave model. The performance of the proposed HFUS elastography system was verified using 2-mm-thick thin-layer gelatin phantoms with gelatin concentrations of 7% and 12%. Ex vivo experiments were carried out using fresh porcine cornea with artificial sclerosing. RESULTS Experimental results showed that the estimated elasticity was close to the standard value obtained in the phantom study when the Lamb wave model was used for elasticity measurement. However, the error between the standard elasticity values and the elasticity values estimated using group shear wave velocity was large. In the ex vivo eyeball experiments, the estimated elasticities and viscosities were respectively 9.1 ± 1.3 kPa and 0.5 ± 0.10 Pa·s for a healthy cornea and respectively 15.9 ± 2.1 kPa and 1.1 ± 0.12 Pa·s for a cornea with artificial sclerosis. A 3D HFUS elastography was also obtained for distinguishing the region of sclerosis in the cornea. CONCLUSION The experimental results demonstrated that the proposed HFUS elastography method has high potential for the clinical diagnosis of corneal diseases compared with other HFUS single-element transducer elastography systems.
Collapse
|