1
|
Pianka KT, Barahman M, Minocha J, Redmond JW, Schnickel GT, Rose SC, Fowler KJ, Berman ZT. Voxel-based tumor dose correlates to complete pathologic necrosis after transarterial radioembolization for hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2024; 51:3744-3752. [PMID: 38913189 DOI: 10.1007/s00259-024-06813-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/16/2024] [Indexed: 06/25/2024]
Abstract
PURPOSE The transarterial radioembolization (TARE) dose is traditionally calculated using the single-compartment Medical Internal Radiation Dose (MIRD) formula. This study utilized voxel-based dosimetry to correlate tumor dose with explant pathology in order to identify dose thresholds that predicted response. METHODS All patients with HCC treated with TARE using yttrium-90 [90Y] glass microspheres at a single institution between January 2015 - June 2023 who underwent liver transplantation were eligible. The [90Y] distribution and dose-volume histograms were determined using Simplicity90 (Mirada Medical, Oxford UK) with a Bremsstrahlung SPECT/CT. A complete response was assigned if explant pathology showed complete necrosis and the patient had not undergone additional treatments to the same tumor after TARE. Logistic regression and receiver operator characteristic (ROC) curves were constructed to evaluate dose thresholds correlated with response. RESULTS Forty-one patients were included. Twenty-six (63%) met criteria for complete response. Dose to 95% (D95), 70% (D70), and 50% (D50) of the tumor volume were associated with likelihood of complete response by logistic regression (all p < 0.05). For lesions with complete response versus without, the median D95 was 813 versus 232 Gy, D70 was 1052 versus 315 Gy, and D50 was 1181 versus 369 Gy (all p < 0.01). A D95 > 719 Gy had the highest accuracy at 68% (58% sensitivity, 87% specificity) for predicting complete response. Median percent of tumor volume receiving at least 100 Gy (V100), 200 Gy (V200), 300 Gy (V300), and 400 Gy (V400) also differed by pathologic response: the median V100, V200, V300, and V400 was 100% versus 99%, 100% versus 97%, 100% versus 74%, and 100% versus 43% in the complete response versus non-complete response groups, respectively (all p < 0.05). CONCLUSION Voxel-based dosimetry was well-correlated with explant pathology. The D95 threshold had the highest accuracy, suggesting the D95 may be a relevant target for multi-compartment dosimetry.
Collapse
Affiliation(s)
- Kurt T Pianka
- School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Mark Barahman
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, Mail Code 8756, San Diego, CA, USA
| | - Jeet Minocha
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, Mail Code 8756, San Diego, CA, USA
| | - Jonas W Redmond
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, Mail Code 8756, San Diego, CA, USA
| | - Gabriel T Schnickel
- Department of Surgery, University of California San Diego, La Jolla, CA, 92103, USA
| | - Steven C Rose
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, Mail Code 8756, San Diego, CA, USA
| | - Kathryn J Fowler
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, Mail Code 8756, San Diego, CA, USA
| | - Zachary T Berman
- Department of Radiology, University of California San Diego, 200 West Arbor Drive, Mail Code 8756, San Diego, CA, USA.
| |
Collapse
|
2
|
Lam M, Garin E, Haste P, Denys A, Geller B, Kappadath SC, Turkmen C, Sze DY, Alsuhaibani HS, Herrmann K, Maccauro M, Cantasdemir M, Dreher M, Fowers KD, Gates V, Salem R. Utility of pre-procedural [ 99mTc]TcMAA SPECT/CT Multicompartment Dosimetry for Treatment Planning of 90Y Glass microspheres in patients with Hepatocellular Carcinoma: comparison of anatomic versus [ 99mTc]TcMAA-based Segmentation. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06920-6. [PMID: 39331131 DOI: 10.1007/s00259-024-06920-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
PURPOSE Pre-treatment [99mTc]TcMAA-based radioembolization treatment planning using multicompartment dosimetry involves the definition of the tumor and normal tissue compartments and calculation of the prescribed absorbed doses. The aim was to compare the real-world utility of anatomic and [99mTc]TcMAA-based segmentation of tumor and normal tissue compartments. MATERIALS AND METHODS Included patients had HCC treated by glass [90Y]yttrium microspheres, ≥ 1 tumor, ≥ 3 cm diameter and [99mTc]TcMAA SPECT/CT imaging before treatment. Segmentation was performed retrospectively using dedicated dosimetry software: (1) anatomic (diagnostic CT/MRI-based), and (2) [99mTc]TcMAA threshold-based (i.e., using an activity-isocontour threshold). CT/MRI was co-registered with [99mTc]TcMAA SPECT/CT. Logistic regression and Cox regression, respectively, were used to evaluate relationships between total perfused tumor absorbed dose (TAD) and objective response rate (ORR) and overall survival (OS). In a subset-analysis pre- and post-treatment dosimetry were compared using Bland-Altman analysis and Pearson's correlation coefficient. RESULTS A total of 209 patients were enrolled. Total perfused tumor and normal tissue volumes were larger when using anatomic versus [99mTc]TcMAA threshold segmentation, resulting in lower absorbed doses. mRECIST ORR was higher with increasing total perfused TAD (odds ratio per 100 Gy TAD increase was 1.22 (95% CI: 1.01-1.49; p = 0.044) for anatomic and 1.19 (95% CI: 1.04-1.37; p = 0.012) for [99mTc]TcMAA threshold segmentation. Higher total perfused TAD was associated with improved OS (hazard ratio per 100 Gy TAD increase was 0.826 (95% CI: 0.714-0.954; p = 0.009) and 0.847 (95% CI: 0.765-0.936; p = 0.001) for anatomic and [99mTc]TcMAA threshold segmentation, respectively). For pre- vs. post-treatment dosimetry comparison, the average bias for total perfused TAD was + 11.5 Gy (95% limits of agreement: -227.0 to 250.0) with a strong positive correlation (Pearson's correlation coefficient = 0.80). CONCLUSION Real-world data support [99mTc]TcMAA imaging to estimate absorbed doses prior to treatment of HCC with glass [90Y]yttrium microspheres. Both anatomic and [99mTc]TcMAA threshold methods were suitable for treatment planning. TRIAL REGISTRATION NUMBER NCT03295006.
Collapse
Affiliation(s)
- Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Huispostnummer E01.132. Postbus 85500, Utrecht, 3508 GA, The Netherlands.
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, 3584 CX, The Netherlands.
| | - Etienne Garin
- Nuclear Medicine Department, Eugene Marquis Center, Rennes, France
| | - Paul Haste
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Brian Geller
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | - S Cheenu Kappadath
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cuneyt Turkmen
- Department of Nuclear Medicine, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Daniel Y Sze
- Division of Interventional Radiology, Stanford University, Stanford, CA, USA
| | | | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (TKTK)-University Hospital Essen, Essen, Germany
| | - Marco Maccauro
- Nuclear Medicine Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Murat Cantasdemir
- Division of Interventional Radiology, Istanbul Florence Nightingale Hospital, Istanbul, Turkey
| | | | | | - Vanessa Gates
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
3
|
Marquis H, Ocampo Ramos JC, Carter LM, Zanzonico P, Bolch WE, Laforest R, Kesner AL. MIRD Pamphlet No. 29: MIRDy90-A 90Y Research Microsphere Dosimetry Tool. J Nucl Med 2024; 65:jnumed.123.266743. [PMID: 38388514 PMCID: PMC11064830 DOI: 10.2967/jnumed.123.266743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
90Y-microsphere radioembolization has become a well-established treatment option for liver malignancies and is one of the first U.S. Food and Drug Administration-approved unsealed radionuclide brachytherapy devices to incorporate dosimetry-based treatment planning. Several different mathematical models are used to calculate the patient-specific prescribed activity of 90Y, namely, body surface area (SIR-Spheres only), MIRD single compartment, and MIRD dual compartment (partition). Under the auspices of the MIRDsoft initiative to develop community dosimetry software and tools, the body surface area, MIRD single-compartment, MIRD dual-compartment, and MIRD multicompartment models have been integrated into a MIRDy90 software worksheet. The worksheet was built in MS Excel to estimate and compare prescribed activities calculated via these respective models. The MIRDy90 software was validated against available tools for calculating 90Y prescribed activity. The results of MIRDy90 calculations were compared with those obtained from vendor and community-developed tools, and the calculations agreed well. The MIRDy90 worksheet was developed to provide a vetted tool to better evaluate patient-specific prescribed activities calculated via different models, as well as model influences with respect to varying input parameters. MIRDy90 allows users to interact and visualize the results of various parameter combinations. Variables, equations, and calculations are described in the MIRDy90 documentation and articulated in the MIRDy90 worksheet. The worksheet is distributed as a free tool to build expertise within the medical physics community and create a vetted standard for model and variable management.
Collapse
Affiliation(s)
- Harry Marquis
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Juan C Ocampo Ramos
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lukas M Carter
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Pat Zanzonico
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Wesley E Bolch
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida; and
| | - Richard Laforest
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Adam L Kesner
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York;
| |
Collapse
|
4
|
Villalobos A, Pisanie JLD, Gandhi RT, Kokabi N. Yttrium-90 Radioembolization Dosimetry: Dose Considerations, Optimization, and Tips. Semin Intervent Radiol 2024; 41:63-78. [PMID: 38495257 PMCID: PMC10940044 DOI: 10.1055/s-0044-1779715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Affiliation(s)
- Alexander Villalobos
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Johannes L. du Pisanie
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Ripal T. Gandhi
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nima Kokabi
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
5
|
Lam M, Garin E, Palard-Novello X, Mahvash A, Kappadath C, Haste P, Tann M, Herrmann K, Barbato F, Geller B, Schaefer N, Denys A, Dreher M, Fowers KD, Gates V, Salem R. Direct comparison and reproducibility of two segmentation methods for multicompartment dosimetry: round robin study on radioembolization treatment planning in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2023; 51:245-257. [PMID: 37698645 PMCID: PMC10684706 DOI: 10.1007/s00259-023-06416-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/24/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Investigate reproducibility of two segmentation methods for multicompartment dosimetry, including normal tissue absorbed dose (NTAD) and tumour absorbed dose (TAD), in hepatocellular carcinoma patients treated with yttrium-90 (90Y) glass microspheres. METHODS TARGET was a retrospective investigation in 209 patients with < 10 tumours per lobe and at least one tumour ≥ 3 cm ± portal vein thrombosis. Dosimetry was compared using two distinct segmentation methods: anatomic (CT/MRI-based) and count threshold-based on pre-procedural 99mTc-MAA SPECT. In a round robin substudy in 20 patients with ≤ 5 unilobar tumours, the inter-observer reproducibility of eight reviewers was evaluated by computing reproducibility coefficient (RDC) of volume and absorbed dose for whole liver, whole liver normal tissue, perfused normal tissue, perfused liver, total perfused tumour, and target lesion. Intra-observer reproducibility was based on second assessments in 10 patients ≥ 2 weeks later. RESULTS 99mTc-MAA segmentation calculated higher absorbed doses compared to anatomic segmentation (n = 209), 43.9% higher for TAD (95% limits of agreement [LoA]: - 49.0%, 306.2%) and 21.3% for NTAD (95% LoA: - 67.6%, 354.0%). For the round robin substudy (n = 20), inter-observer reproducibility was better for anatomic (RDC range: 1.17 to 3.53) than 99mTc-MAA SPECT segmentation (1.29 to 7.00) and similar between anatomic imaging modalities (CT: 1.09 to 3.56; MRI: 1.24 to 3.50). Inter-observer reproducibility was better for larger volumes. Perfused normal tissue volume RDC was 1.95 by anatomic and 3.19 by 99mTc-MAA SPECT, with corresponding absorbed dose RDC 1.46 and 1.75. Total perfused tumour volume RDC was higher, 2.92 for anatomic and 7.0 by 99mTc-MAA SPECT with corresponding absorbed dose RDC of 1.84 and 2.78. Intra-observer variability was lower for perfused NTAD (range: 14.3 to 19.7 Gy) than total perfused TAD (range: 42.8 to 121.4 Gy). CONCLUSION Anatomic segmentation-based dosimetry, versus 99mTc-MAA segmentation, results in lower absorbed doses with superior reproducibility. Higher volume compartments, such as normal tissue versus tumour, exhibit improved reproducibility. TRIAL REGISTRATION NCT03295006.
Collapse
Affiliation(s)
- Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Etienne Garin
- Nuclear Medicine Department, Eugene Marquis Center, Rennes, France
| | | | - Armeen Mahvash
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cheenu Kappadath
- Department of Interventional Radiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Haste
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mark Tann
- Department of Clinical Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ken Herrmann
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Francesco Barbato
- Department of Nuclear Medicine, University of Duisburg-Essen, and German Cancer Consortium (DKTK)-University Hospital Essen, Essen, Germany
| | - Brian Geller
- Department of Radiology, University of Florida, Gainesville, FL, USA
| | - Niklaus Schaefer
- Department of Nuclear Medicine and Molecular Imaging, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | - Alban Denys
- Department of Radiology and Interventional Radiology, Lausanne University Hospital CHUV, University of Lausanne, Lausanne, Switzerland
| | | | | | - Vanessa Gates
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Henry EC, Lopez B, Mahvash A, Thomas MA, Kappadath SC. Predicting the net administered activity in 90 Y-radioembolization patients from post-procedure 90 Y-SPECT/CT. Med Phys 2023; 50:7003-7015. [PMID: 37272198 DOI: 10.1002/mp.16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 05/17/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND The calculation of the net administered activity (Aadmin ) in patients undergoing 90 Y-radioembolization is essential for dosimetry and radiation safety, yet current methods for measuring residual 90 Y activity are often associated with high uncertainty. Therefore, an accurate, robust, and clinically viable method for the determination of Aadmin across approved 90 Y microsphere devices is desirable. PURPOSE We report on a novel method to determine Aadmin by leveraging the quantitative capabilities of SPECT/CT to measure 90 Y-emission in vivo from patients following 90 Y-radioembolization with glass or resin microspheres. METHODS 90 Y-SPECT/CT attenuation-corrected count data from 147 sequential 90 Y-radioembolization patients was used for this analysis. Aadmin was calculated as part of routine clinical practice via the exposure rate differences between the initial 90 Y-vial and the 90 Y-residual jar. This served as our gold standard measure of Aadmin . Patient data for each microsphere device were separated into training and testing cohorts to first develop regression models and then to independently assess model performance. The training cohorts were divided into four groups: first, based on the microsphere device (glass or resin), and second, based on the SPECT volume used to calculate counts (the full SPECT field of view (FOV) or liver only (VOIliver )). Univariate linear regression models were generated for each group to predict Aadmin based on 90 Y-SPECT data from the training cohorts. Leave-one-out cross validation was implemented to estimate variability in model parameters. To assess performance, linear models derived from the training cohort were applied to 90 Y-SPECT data from the testing cohort. A comparison of the models between microspheres devices was also performed. RESULTS Linear models derived from the glass and resin training cohorts demonstrated a strong, positive correlation between 90 Y-SPECT image counts and Aadmin for VOIliver and FOV with R2 > 0.98 in all cases. In the glass training cohort, model accuracy (100%-absolute mean prediction error) and precision (95% prediction intervals of mean prediction error) were 99.0% and 15.4% for the VOIliver and 99.7% and 17.5% for the FOV models, respectively. In the resin training cohort, the corresponding values were 98.6% and 16.7% for VOIliver and > 99.9% and 11.4% for the FOV models, respectively. The application of these linear models to 90 Y-SPECT data from the testing cohort showed Aadmin prediction errors to have high accuracy and precision for both microsphere devices. For the glass testing cohort, accuracy (precision) was 96.9% (19.6%) and 98.8% (21.1%) for the VOIliver and FOV models, respectively. The corresponding values for the resin training cohort were 97.3% (26.2%) and 98.5% (25.7%) for the VOIliver and FOV models, respectively. The slope of the linear models between the two microsphere devices was observed to be significantly different with resin microspheres generating 48%-49% more SPECT counts for equivalent 90 Y activity based on each device manufacturer's activity calibration process. CONCLUSION 90 Y-SPECT image counts can reliably predict (accuracy > 95% and precision < 18%) Aadmin after 90 Y-radioembolization, with performance characteristics essentially equivalent for both glass and resin microspheres. There is a clear indication that activity calibrations are fundamentally different between the two microsphere devices.
Collapse
Affiliation(s)
- Eric C Henry
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Benjamin Lopez
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Armeen Mahvash
- Department of Interventional Radiology, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Matthew A Thomas
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Srinivas C Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
7
|
Kappadath SC, Lopez BP. Single-Compartment Dose Prescriptions for Ablative 90Y-Radioembolization Segmentectomy. Life (Basel) 2023; 13:1238. [PMID: 37374021 DOI: 10.3390/life13061238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Yttrium-90 (90Y) radioembolization is increasingly being utilized with curative intent. While single-compartment doses with respect to the perfused volume for the complete pathologic necrosis (CPN) of tumors have been reported, the actual doses delivered to the tumor and at-risk margins that leads to CPN have hitherto not been estimated. We present an ablative dosimetry model that calculates the dose distribution for tumors and at-risk margins based on numerical mm-scale dose modeling and the available clinical CPN evidence and report on the necessary dose metrics needed to achieve CPN following 90Y-radioembolization. METHODS Three-dimensional (3D) activity distributions (MBq/voxel) simulating spherical tumors were modeled with a 121 × 121 × 121 mm3 soft tissue volume (1 mm3 voxels). Then, 3D dose distributions (Gy/voxel) were estimated by convolving 3D activity distributions with a 90Y 3D dose kernel (Gy/MBq) sized 61 × 61 × 61 mm3 (1 mm3 voxels). Based on the published data on single-compartment segmental doses for the resected liver samples of HCC tumors showing CPN after radiation segmentectomy, the nominal voxel-based mean tumor dose (DmeanCPN), point dose at tumor rim (DrimCPN), and point dose 2 mm beyond the tumor boundary (D2mmCPN), which are necessary to achieve CPN, were calculated. The single-compartment dose prescriptions to required achieve CPN were then analytically modeled for more general cases of tumors with diameters dt = 2, 3, 4, 5, 6, and 7 cm and with tumor-to-normal-liver uptake ratios T:N = 1:1, 2:1, 3:1, 4:1, and 5:1. RESULTS The nominal case defined to estimate the doses needed for CPN, based on the previously published clinical data, was a single hyperperfused tumor with a diameter of 2.5 cm and T:N = 3:1, treated with a single-compartment segmental dose of 400 Gy. The voxel-level doses necessary to achieve CPN were 1053 Gy for the mean tumor dose, 860 Gy for the point dose at the tumor boundary, and 561 Gy for the point dose at 2 mm beyond the tumor edge. The single-compartment segmental doses necessary to satisfy the criteria for CPN in terms of the mean tumor dose, point dose at the tumor boundary, and the point dose at 2 mm beyond the tumor edge were tabulated for a range of tumor diameters and tumor-to-normal-liver uptake ratios. CONCLUSIONS The analytical functions that describe the relevant dose metrics for CPN and, more importantly, the single-compartment dose prescriptions for the perfused volume needed to achieve CPN are reported for a large range of conditions in terms of tumor diameters (1-7 cm) and T:N uptake ratios (2:1-5:1).
Collapse
Affiliation(s)
- Srinivas Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, 1155 Pressler St., Unit 1352, Houston, TX 77030, USA
| | - Benjamin P Lopez
- Department of Imaging Physics, UT MD Anderson Cancer Center, 1155 Pressler St., Unit 1352, Houston, TX 77030, USA
| |
Collapse
|
8
|
Vergnaud L, Robert A, Baudier T, Parisse-Di Martino S, Boissard P, Rit S, Badel JN, Sarrut D. Dosimetric impact of 3D motion-compensated SPECT reconstruction for SIRT planning. EJNMMI Phys 2023; 10:8. [PMID: 36749446 PMCID: PMC9905464 DOI: 10.1186/s40658-023-00525-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/11/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND In selective internal radiation therapy, 99mTc SPECT images are used to optimize patient treatment planning, but they are affected by respiratory motion. In this study, we evaluated on patient data the dosimetric impact of motion-compensated SPECT reconstruction on several volumes of interest (VOI), on the tumor-to-normal liver (TN) ratio and on the activity to be injected. METHODS Twenty-nine patients with liver cancer or hepatic metastases treated by radioembolization were included in this study. The biodistribution of 90Y is assumed to be the same as that of 99mTc when predictive dosimetry is implemented. A total of 31 99mTc SPECT images were acquired and reconstructed with two methods: conventional OSEM (3D) and motion-compensated OSEM (3Dcomp). Seven VOI (liver, lungs, tumors, perfused liver, hepatic reserve, healthy perfused liver and healthy liver) were delineated on the CT or obtained by thresholding SPECT images followed by Boolean operations. Absorbed doses were calculated for each reconstruction using Monte Carlo simulations. Percentages of dose difference (PDD) between 3Dcomp and 3D reconstructions were estimated as well as the relative differences for TN ratio and activities to be injected. The amplitude of movement was determined with local rigid registration of the liver between the 3Dcomp reconstructions of the extreme phases of breathing. RESULTS The mean amplitude of the liver was 9.5 ± 2.7 mm. Medians of PDD were closed to zero for all VOI except for lungs (6.4%) which means that the motion compensation overestimates the absorbed dose to the lungs compared to the 3D reconstruction. The smallest lesions had higher PDD than the largest ones. Between 3D and 3Dcomp reconstructions, means of differences in lung dose and TN ratio were not statistically significant, but in some cases these differences exceed 1 Gy (4/31) and 8% (2/31). The absolute differences in activity were on average 3.1% ± 5.1% and can reach 22.8%. CONCLUSION The correction of respiratory motion mainly impacts the lung and tumor doses but only for some patients. The largest dose differences are observed for the smallest lesions.
Collapse
Affiliation(s)
- Laure Vergnaud
- CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France. .,Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France.
| | - Antoine Robert
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France
| | - Thomas Baudier
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France ,grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | | | - Philippe Boissard
- grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | - Simon Rit
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France
| | - Jean-Noël Badel
- grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| | - David Sarrut
- grid.7849.20000 0001 2150 7757CREATIS; CNRS UMR 5220; INSERM U 1044; Université de Lyon; INSA-Lyon, Université Lyon 1, Lyon, France ,grid.418116.b0000 0001 0200 3174Centre de Lutte Contre Le Cancer Léon Bérard, Lyon, France
| |
Collapse
|
9
|
Salem R, Padia SA, Lam M, Chiesa C, Haste P, Sangro B, Toskich B, Fowers K, Herman JM, Kappadath SC, Leung T, Sze DY, Kim E, Garin E. Clinical, dosimetric, and reporting considerations for Y-90 glass microspheres in hepatocellular carcinoma: updated 2022 recommendations from an international multidisciplinary working group. Eur J Nucl Med Mol Imaging 2023; 50:328-343. [PMID: 36114872 PMCID: PMC9816298 DOI: 10.1007/s00259-022-05956-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE In light of recently published clinical reports and trials, the TheraSphere Global Dosimetry Steering Committee (DSC) reconvened to review new data and to update previously published clinical and dosimetric recommendations for the treatment of hepatocellular carcinoma (HCC). METHODS The TheraSphere Global DSC is comprised of health care providers across multiple disciplines involved in the treatment of HCC with yttrium-90 (Y-90) glass microsphere-based transarterial radioembolization (TARE). Literature published between January 2019 and September 2021 was reviewed, discussed, and adjudicated by the Delphi method. Recommendations included in this updated document incorporate both the results of the literature review and the expert opinion and experience of members of the committee. RESULTS Committee discussion and consensus led to the expansion of recommendations to apply to five common clinical scenarios in patients with HCC to support more individualized efficacious treatment with Y-90 glass microspheres. Existing clinical scenarios were updated to reflect recent developments in dosimetry approaches and broader treatment paradigms evolving for patients presenting with HCC. CONCLUSION Updated consensus recommendations are provided to guide clinical and dosimetric approaches for the use of Y-90 glass microsphere TARE in HCC, accounting for disease presentation, tumor biology, and treatment intent.
Collapse
Affiliation(s)
- Riad Salem
- Department of Radiology, Northwestern Feinberg School of Medicine, 676 N. St. Clair, Suite 800, Chicago, IL, USA.
| | - Siddharth A Padia
- Department of Radiology, University of California-Los Angeles, Los Angeles, CA, USA
| | - Marnix Lam
- Department of Radiology and Nuclear Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carlo Chiesa
- Department of Nuclear Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Paul Haste
- Department of Interventional Radiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Bruno Sangro
- Liver Unit, Clinica Universidad de Navarra and CIBEREHD, Pamplona, Spain
| | - Beau Toskich
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Kirk Fowers
- Boston Scientific Corporation, Marlborough, MA, USA
| | - Joseph M Herman
- Department of Radiation Medicine, Northwell Health, New Hyde Park, NY, USA
| | - S Cheenu Kappadath
- Department of Imaging Physics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Thomas Leung
- Comprehensive Oncology Centre, Hong Kong Sanatorium and Hospital, Hong Kong, Hong Kong
| | - Daniel Y Sze
- Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Edward Kim
- Department of Interventional Radiology, Mount Sinai, New York City, NY, USA
| | - Etienne Garin
- INSERM, INRA, Centre de Lutte Contre Le Cancer Eugène Marquis, Institut NUMECAN (Nutrition Metabolisms and Cancer), Univ Rennes, 35000, Rennes, France
| |
Collapse
|
10
|
A Theranostic Approach in SIRT: Value of Pre-Therapy Imaging in Treatment Planning. J Clin Med 2022; 11:jcm11237245. [PMID: 36498819 PMCID: PMC9736029 DOI: 10.3390/jcm11237245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Selective internal radiation therapy (SIRT) is one of the treatment options for liver tumors. Microspheres labelled with a therapeutic radionuclide (90Y or 166Ho) are injected into the liver artery feeding the tumor(s), usually achieving a high tumor absorbed dose and a high tumor control rate. This treatment adopts a theranostic approach with a mandatory simulation phase, using a surrogate to radioactive microspheres (99mTc-macroaggregated albumin, MAA) or a scout dose of 166Ho microspheres, imaged by SPECT/CT. This pre-therapy imaging aims to evaluate the tumor targeting and detect potential contraindications to SIRT, i.e., digestive extrahepatic uptake or excessive lung shunt. Moreover, the absorbed doses to the tumor(s) and the healthy liver can be estimated and used for planning the therapeutic activity for SIRT optimization. The aim of this review is to evaluate the accuracy of this theranostic approach using pre-therapy imaging for simulating the biodistribution of the microspheres. This review synthesizes the recent publications demonstrating the advantages and limitations of pre-therapy imaging in SIRT, particularly for activity planning.
Collapse
|
11
|
Sharma NK, Kappadath SC, Chuong M, Folkert M, Gibbs P, Jabbour SK, Jeyarajah DR, Kennedy A, Liu D, Meyer JE, Mikell J, Patel RS, Yang G, Mourtada F. The American Brachytherapy Society consensus statement for permanent implant brachytherapy using Yttrium-90 microsphere radioembolization for liver tumors. Brachytherapy 2022; 21:569-591. [PMID: 35599080 PMCID: PMC10868645 DOI: 10.1016/j.brachy.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/25/2022] [Accepted: 04/14/2022] [Indexed: 11/02/2022]
Abstract
PURPOSE To develop a multidisciplinary consensus for high quality multidisciplinary implementation of brachytherapy using Yttrium-90 (90Y) microspheres transarterial radioembolization (90Y TARE) for primary and metastatic cancers in the liver. METHODS AND MATERIALS Members of the American Brachytherapy Society (ABS) and colleagues with multidisciplinary expertise in liver tumor therapy formulated guidelines for 90Y TARE for unresectable primary liver malignancies and unresectable metastatic cancer to the liver. The consensus is provided on the most recent literature and clinical experience. RESULTS The ABS strongly recommends the use of 90Y microsphere brachytherapy for the definitive/palliative treatment of unresectable liver cancer when recommended by the multidisciplinary team. A quality management program must be implemented at the start of 90Y TARE program development and follow-up data should be tracked for efficacy and toxicity. Patient-specific dosimetry optimized for treatment intent is recommended when conducting 90Y TARE. Implementation in patients on systemic therapy should account for factors that may enhance treatment related toxicity without delaying treatment inappropriately. Further management and salvage therapy options including retreatment with 90Y TARE should be carefully considered. CONCLUSIONS ABS consensus for implementing a safe 90Y TARE program for liver cancer in the multidisciplinary setting is presented. It builds on previous guidelines to include recommendations for appropriate implementation based on current literature and practices in experienced centers. Practitioners and cooperative groups are encouraged to use this document as a guide to formulate their clinical practices and to adopt the most recent dose reporting policies that are critical for a unified outcome analysis of future effectiveness studies.
Collapse
Affiliation(s)
- Navesh K Sharma
- Department of Radiation Oncology, Penn State Hershey School of Medicine, Hershey, PA
| | - S Cheenu Kappadath
- Department of Imaging Physics, UT MD Anderson Cancer Center, Houston, TX
| | - Michael Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Miami, FL
| | - Michael Folkert
- Northwell Health Cancer Institute, Radiation Medicine at the Center for Advanced Medicine, New Hyde Park, NY
| | - Peter Gibbs
- Personalised Oncology Division, Walter and Eliza Hall Institute, Melbourne, Victoria, Australia
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ
| | | | | | - David Liu
- Vancouver General Hospital, Vancouver, British Columbia, Canada
| | | | | | - Rahul S Patel
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Gary Yang
- Loma Linda University, Loma Linda, CA
| | - Firas Mourtada
- Helen F. Graham Cancer Center & Research Institute, Christiana Care Health System, Newark, DE; Department of Radiation Oncology, Sidney Kimmel Cancer Center at Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
12
|
Ahmadzadehfar H, Ilhan H, Lam MGEH, Sraieb M, Stegger L. Radioembolization, Principles and indications. Nuklearmedizin 2022; 61:262-272. [PMID: 35354218 DOI: 10.1055/a-1759-4238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Radioembolization is the selective application of radionuclide-loaded microspheres into liver arteries for the therapy of liver tumours and metastases. In this review, we focused on therapy planning and dosimetry, as well as the main indications of 90Y-glass and resin microspheres and 166Ho-microspheres.
Collapse
Affiliation(s)
| | - Harun Ilhan
- Department of Nuclear Medicine, Klinikum der Universität München, Munich, Germany.,Die Radiologie, Practice for Radiology, Nuclear Medicine, and Radiation Oncology, Munich, Germany
| | - Marnix G E H Lam
- Radiology and Nuclear Medicine, University of Utrecht Faculty of Medicine, Utrecht, Netherlands
| | - Miriam Sraieb
- Nuclear Medicine, University Hospital Essen, Germany
| | - Lars Stegger
- Nuclear Medicine, University Hospital Münster, Germany
| |
Collapse
|
13
|
Yoo MY, Paeng JC, Kim HC, Lee MS, Lee JS, Lee DS, Kang KW, Cheon GJ. Efficacy of voxel-based dosimetry map for predicting response to trans-arterial radioembolization therapy for hepatocellular carcinoma: a pilot study. Nucl Med Commun 2021; 42:1396-1403. [PMID: 34392298 DOI: 10.1097/mnm.0000000000001471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Typical clinical dosimetry models for trans-arterial radioembolization (TARE) assume uniform dose distribution in each tissue compartment. We performed simple voxel-based dosimetry using post-treatment 90Y PET following TARE with 90Y-resin microspheres and investigated its prognostic value in a pilot cohort. METHOD Ten patients with 14 hepatocellular carcinoma lesions who underwent TARE with 90Y-resin microspheres were retrospectively included. The partition model-based expected target tumor dose (TDp) was calculated using a pretreatment 99mTc-macroaggregated albumin scan. From post-treatment 90Y-microsphere PET and voxel-wise S-value kernels, voxel-based dose maps were produced and the absorbed dose of each lesion (TDv) was calculated. Heterogeneity of intratumoral absorbed doses was assessed using the SD and coefficient of variation of voxel doses. The response of each lesion was determined based on contrast-enhanced MRI or CT, or both. Lesion responses were classified as local control success or failure. Prognostic values of dosimetry parameters and clinicopathological factors were evaluated in terms of progression-free survival (PFS) of each lesion. RESULTS TDv was significantly different between local control success and failure groups, whereas tumor size, TDp and intratumoral dose heterogeneity were not. Univariate survival analysis identified serum aspartate transaminase level ≥40 IU/L, tumor size ≥66 mm and TDv <81 Gy as significant prognostic factors for PFS. However, only TDv was an independent predictive factor in the multivariate analysis (P = 0.022). There was a significant correlation between TDv and PFS (P = 0.009; r = 0.669). CONCLUSIONS In TARE, voxel-based dose index TDv can be estimated on post-treatment 90Y PET using a simple method. TDv was a more effective prognostic factor for TARE than TDp and clinicopathologic factors in this pilot study. Further studies are warranted on the role of voxel-based dose and dose distribution in TARE.
Collapse
Affiliation(s)
- Min Young Yoo
- Departments of Nuclear Medicine, Chungbuk National University Hospital, Cheongju
| | - Jin Chul Paeng
- Department of Nuclear Medicine, Seoul National University Hospital
| | - Hyo-Cheol Kim
- Department of Radiology, Seoul National University Hospital
| | - Min Sun Lee
- Department of Nuclear Medicine, Seoul National University Hospital
- Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul
- Nuclear Emergency and Environmental Protection Division, Korea Atomic Energy Research Institute, Daejeon
| | - Jae Sung Lee
- Department of Nuclear Medicine, Seoul National University Hospital
- Interdisciplinary Program in Radiation Applied Life Science, Seoul National University, Seoul
- Department of Biomedical Sciences, Seoul National University College of Medicine
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University Hospital
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul
| | - Keon Wook Kang
- Department of Nuclear Medicine, Seoul National University Hospital
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Gi Jeong Cheon
- Department of Nuclear Medicine, Seoul National University Hospital
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
14
|
Chiesa C, Sjogreen-Gleisner K, Walrand S, Strigari L, Flux G, Gear J, Stokke C, Gabina PM, Bernhardt P, Konijnenberg M. EANM dosimetry committee series on standard operational procedures: a unified methodology for 99mTc-MAA pre- and 90Y peri-therapy dosimetry in liver radioembolization with 90Y microspheres. EJNMMI Phys 2021; 8:77. [PMID: 34767102 PMCID: PMC8589932 DOI: 10.1186/s40658-021-00394-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 06/21/2021] [Indexed: 11/27/2022] Open
Abstract
The aim of this standard operational procedure is to standardize the methodology employed for the evaluation of pre- and post-treatment absorbed dose calculations in 90Y microsphere liver radioembolization. Basic assumptions include the permanent trapping of microspheres, the local energy deposition method for voxel dosimetry, and the patient-relative calibration method for activity quantification.The identity of 99mTc albumin macro-aggregates (MAA) and 90Y microsphere biodistribution is also assumed. The large observed discrepancies in some patients between 99mTc-MAA predictions and actual 90Y microsphere distributions for lesions is discussed. Absorbed dose predictions to whole non-tumoural liver are considered more reliable and the basic predictors of toxicity. Treatment planning based on mean absorbed dose delivered to the whole non-tumoural liver is advised, except in super-selective treatments.Given the potential mismatch between MAA simulation and actual therapy, absorbed doses should be calculated both pre- and post-therapy. Distinct evaluation between target tumours and non-tumoural tissue, including lungs in cases of lung shunt, are vital for proper optimization of therapy. Dosimetry should be performed first according to a mean absorbed dose approach, with an optional, but important, voxel level evaluation. Fully corrected 99mTc-MAA Single Photon Emission Computed Tomography (SPECT)/computed tomography (CT) and 90Y TOF PET/CT are regarded as optimal acquisition methodologies, but, for institutes where SPECT/CT is not available, non-attenuation corrected 99mTc-MAA SPECT may be used. This offers better planning quality than non dosimetric methods such as Body Surface Area (BSA) or mono-compartmental dosimetry. Quantitative 90Y bremsstrahlung SPECT can be used if dedicated correction methods are available.The proposed methodology is feasible with standard camera software and a spreadsheet. Available commercial or free software can help facilitate the process and improve calculation time.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine Unit, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| | | | - Stephan Walrand
- Nuclear Medicine, Molecular Imaging, Radiotherapy and Oncology Unit (MIRO), IECR, Université Catholique de Louvain, Brussels, Belgium
| | - Lidia Strigari
- Medical Physics Division, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Glenn Flux
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Jonathan Gear
- Joint Department of Physics, Royal Marsden Hospital & Institute of Cancer Research, Sutton, UK
| | - Caroline Stokke
- Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Pablo Minguez Gabina
- Department of Medical Physics and Radiation Protection, Gurutzeta/Cruces University Hospital, Barakaldo, Spain
| | - Peter Bernhardt
- Department of Radiation Physics, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
Webster LA, Villalobos A, Majdalany BS, Bercu ZL, Gandhi RT, Kokabi N. Standard Radiation Dosimetry Models: What Interventional Radiologists Need to Know. Semin Intervent Radiol 2021; 38:405-411. [PMID: 34629706 DOI: 10.1055/s-0041-1732323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Thoughtful and accurate dosimetry is critical to obtain the safest and most efficacious yttrium-90 (Y90) radioembolization of primary and secondary liver cancers. Three dosimetry models are currently used in clinical practice, namely, body surface area model, medical internal radiation dose model, and the partition model. The objective of this review is to briefly outline the history behind Y90 dosimetry and the difference between the aforementioned models. When applying these three models to a single case, the differences between them are further demonstrated. Each dosimetry model in clinical practice has its own benefits and limitations. Therefore, it is incumbent upon practicing interventional radiologists to be aware of these differences to optimize treatment outcomes for their patients.
Collapse
Affiliation(s)
- Linzi Arndt Webster
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Alexander Villalobos
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bill S Majdalany
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Zachary L Bercu
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Ripal T Gandhi
- Miami Cardiac and Vascular Institute, Miami Cancer Institute, Miami, FL
| | - Nima Kokabi
- Division of Interventional Radiology and Image-Guided Medicine, Department of Radiology and Imaging Sciences, Emory University School of Medicine, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Chiesa C, Strigari L, Pacilio M, Richetta E, Cannatà V, Stasi M, Marzola MC, Schillaci O, Bagni O, Maccauro M. Dosimetric optimization of nuclear medicine therapy based on the Council Directive 2013/59/EURATOM and the Italian law N. 101/2020. Position paper and recommendations by the Italian National Associations of Medical Physics (AIFM) and Nuclear Medicine (AIMN). Phys Med 2021; 89:317-326. [PMID: 34583307 DOI: 10.1016/j.ejmp.2021.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022] Open
Abstract
This recommendation by the Italian Associations of Nuclear Medicine (AIMN) and Medical Physics (AIFM) focuses on the dosimetric optimization of Nuclear Medicine Therapy (NMT) as clearly requested by the article 56 of the EURATOM Directive 2013/59 and its consequent implementation in article 158 in the Italian Law n. 101/2020. However, this statement must deal with scientific and methodological limits that still exist and, above all, with the currently available limited resources. This paper addresses these specific issues. It distinguishes among many possible kinds of NMT. For each type, dosimetric optimization is recommended or considered optional, according to the general criteria adopted in any human choice, i.e. a check of technical feasibility first, followed by a cost/benefit argument. The classification of therapies as standardized or non-standardized is presented. This is based on the complexity of the type of pathology, on the variability of the treatment outcome, and on the risks involved. According to the present document, which was officially delivered to Italian Health Ministry as necessary interpretation of the law, a therapeutic team can, in science and consciousness, overcome the indications of posology, to optimize and tailoring a treatment with dosimetry, on the basis of published national or international data or guidelines, without need of an Ethics Committee approval. Data collected in this way will provide additional evidence about optimal dosimetric reference values. As conclusion, a formal appeal is made to the European and National regulatory agencies for pharmaceuticals to obtain the official acknowledgment of this principle.
Collapse
Affiliation(s)
- Carlo Chiesa
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy.
| | - Lidia Strigari
- Director of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Massimiliano Pacilio
- Director of Medical Physics, Azienda Ospedaliero-Universitaria Policlinico Umberto I, Rome, Italy
| | - Elisa Richetta
- Medical Physics, Azienda Ospedaliera Ordine Mauriziano, Turin, Italy
| | - Vittorio Cannatà
- Director of Medical Physics Unit, Medical Physics Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Michele Stasi
- Medical Physics, Azienda Ospedaliera Ordine Mauriziano, Turin, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, Rovigo, Italy
| | - Orazio Schillaci
- Dean of University Tor Vergata, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Oreste Bagni
- Director of Nuclear Medicine, S. Maria Goretti Hospital, Latina, Italy
| | - Marco Maccauro
- Nuclear Medicine, Foundation IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
17
|
Kaseb AO, Kappadath SC, Lee SS, Raghav KP, Mohamed YI, Xiao L, Morris JS, Ohaji C, Avritscher R, Odisio BC, Kuban J, Abdelsalam ME, Chasen B, Elsayes KM, Elbanan M, Wolff RA, Yao JC, Mahvash A. A Prospective Phase II Study of Safety and Efficacy of Sorafenib Followed by 90Y Glass Microspheres for Patients with Advanced or Metastatic Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:1129-1145. [PMID: 34527608 PMCID: PMC8437411 DOI: 10.2147/jhc.s318865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose The most common cause of death in advanced/metastatic hepatocellular carcinoma (HCC) is liver failure due to tumor progression. While retrospective studies and meta-analyses of systemic therapy combined with liver-directed therapy have been performed, prospective studies of safety/efficacy of antiangiogenesis followed by intra-arterial therapies are lacking. We tested our hypothesis that sorafenib followed by yttrium 90 glass microspheres (90Y GMs) is safe and that survival outcomes may improve by controlling hepatic tumors. Methods We enrolled 38 Child–Pugh A patients with advanced/metastatic HCC. In sum, 34 received sorafenib, followed after 4 weeks by 90Y GMs. Analysis of safety and survival outcomes was performed to assess adverse events, median progression-free survival, and overall survival. Results A total of 34 patients were evaluable: 14 (41.2%) with chronic hepatitis, nine (26.5%) with vascular invasion, and eleven (32.4%) with extrahepatic diseases. Safety analysis revealed that the combination therapy was well tolerated. Grade III–IV adverse events comprised fatigue (n=3), diarrhea (n=2), nausea (n=1), vomiting (n=2), hypertension (n=4), thrombocytopenia (n=1), hyperbilirubinemia (n=1), proteinuria (n=1), hyponatremia (n=1), and elevated alanine or aspartate aminotransferase (n=5). Median progression-free and overall survival were 10.4 months (95% CI 5.8–14.4) and 13.2 months (95% CI 7.9–18.9), respectively. Twelve patients (35.3%) achieved partial responses and 16 (47.0%) stable disease. Median duration of sorafenib was 20 (3–90) weeks, and average dose was 622 (466–800) mg daily. Dosimetry showed similar mean doses between planned and delivered calculations to normal liver and tumor:normal liver uptake ratio, with no significant correlation with adverse events at 3 and 6 months post-90Y treatment. Conclusion This is the first prospective study to evaluate sorafenib followed by 90Y in patients with advanced HCC. The study validated our hypothesis of safety with encouraging efficacy signals of the sequencing treatment, and provides proof of concept for future combination modalities for patients with advanced or metastatic HCC. Clinical Trial Registration Number NCT01900002.
Collapse
Affiliation(s)
- Ahmed Omar Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Cheenu Kappadath
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sunyoung S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kanwal Pratap Raghav
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yehia I Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lianchun Xiao
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Morris
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chimela Ohaji
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rony Avritscher
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bruno C Odisio
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joshua Kuban
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed E Abdelsalam
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beth Chasen
- Department of Nuclear Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Khaled M Elsayes
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mohamed Elbanan
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Armeen Mahvash
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Accurate non-tumoral 99mTc-MAA absorbed dose prediction to plan optimized activities in liver radioembolization using resin microspheres. Phys Med 2021; 89:250-257. [PMID: 34438353 DOI: 10.1016/j.ejmp.2021.07.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/19/2022] Open
Abstract
AIM The manufacturers' recommended methods to calculate delivered activities in liver radioembolization are simplistic and only slightly personalized. Activity planning could also be based on a 99mTc-macroaggregated albumin SPECT/CT (MAA) using the partition model but its accuracy is controversial. This study evaluates the dose parameters in the normal liver and in the tumor compartments using MAA SPECT/CT (pre-therapeutic imaging) and 90Y TOF-PET/CT (post-therapy imaging). Finally, we propose a prescription of the activity as a function of the normal liver MAA distribution. METHOD 66 procedures of RE (with resin microspheres) corresponding to 171 lesions were analyzed. Tumor to normal targeted liver uptake (T/NTL), tumor absorbed dose (TD) and whole normal liver absorbed (WNLD) were assessed with MAA and 90Y imaging. Secondly, activities were recalculated using the MAA distribution in the normal liver compartment to reach the maximal tolerable liver dose. These Activities were compared to activities defined with the BSA method. RESULTS Compared to 90Y imaging, our study demonstrated an accurate estimation of the WNLD using MAA imaging (Pearson's R = 0.97, p < 0.001). On the contrary, significant variations were found for TD (R = 0.65, p < 0.001). The MAA T/NTL ratio has a 85% positive predictive value in identifying patients who will get a 90Y T/NTL ratio above 1.5. Moreover, activities calculated using the MAA distribution in the normal liver compartment were significantly higher to activities defined with the BSA method. CONCLUSION Whole normal liver absorbed doses are accurately predicted with MAA imaging and could be used to optimize the activity planning.
Collapse
|
19
|
Van BJ, Dewaraja YK, Sangogo ML, Mikell JK. Y-90 SIRT: evaluation of TCP variation across dosimetric models. EJNMMI Phys 2021; 8:45. [PMID: 34114115 PMCID: PMC8192668 DOI: 10.1186/s40658-021-00391-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction Much progress has been made in implementing selective internal radiation therapy (SIRT) as a viable treatment option for hepatic malignancies. However, there is still much need for improved options for calculating the amount of activity to be administered. To make advances towards this goal, this study examines the relationship between predicted biological outcomes of liver tumors via tumor control probabilities (TCP) and parenchyma via normal tissue complication probabilities (NTCP) given variations in absorbed dose prescription methodologies. Methods Thirty-nine glass microsphere treatments in 35 patients with hepatocellular carcinoma or metastatic liver disease were analyzed using 99mTc-MAA SPECT/CT and 90Y PET/CT scans. Predicted biological outcomes corresponding to the single compartment (standard) model and multi-compartment (partition) dosimetry model were compared using our previously derived TCP dose-response curves over a range of 80–150 Gy prescribed absorbed dose to the perfused volume, recommended in the package insert for glass microspheres. Retrospective planning dosimetry was performed on the MAA SPECT/CT; changes from the planned infused activity due to selection of absorbed dose level and dosimetry model (standard or partition) were used to scale absorbed doses reported from 90Y PET/CT including liver parenchyma and lesions (N = 120) > 2 ml. A parameterized charting system was developed across all potential prescription options to enable a clear relationship between standard prescription vs. the partition model-based prescription. Using a previously proposed NTCP model, the change in prescribed dose from a standard model prescription of 120 Gy to the perfused volume to a 15% NTCP prescription to the normal liver was explored. Results Average TCP predictions for the partition model compared with the standard model varied from a 13% decrease to a 32% increase when the prescribed dose was varied across the range of 80–150 Gy. In the parametrized chart comparing absorbed dose prescription ranges across the standard model and partition models, a line of equivalent absorbed dose to a tumor was identified. TCP predictions on a per lesion basis varied between a 26% decrease and a 81% increase for the most commonly chosen prescription options when comparing the partition model with the standard model. NTCP model was only applicable to a subset of patients because of the small volume fraction of the liver that was targeted in most cases. Conclusion Our retrospective analysis of patient imaging data shows that the choice of prescribed dose and which model to prescribe potentially contribute to a wide variation in average tumor efficacy. Biological response data should be included as one factor when looking to improve patient care in the clinic. The use of parameterized charting, such as presented here, will help direct physicians when transitioning to newer prescription methods. Supplementary Information The online version contains supplementary material available at 10.1186/s40658-021-00391-6.
Collapse
Affiliation(s)
- Benjamin J Van
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Yuni K Dewaraja
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Mamadou L Sangogo
- Department of Radiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Justin K Mikell
- Department of Radiation Oncology, University of Michigan, Ann Arbor, 48109, MI, USA
| |
Collapse
|