1
|
Smith BR, Hyer DE. The LET enhancement of energy-specific collimation in pencil beam scanning proton therapy. J Appl Clin Med Phys 2025; 26:e14477. [PMID: 39644507 PMCID: PMC11712952 DOI: 10.1002/acm2.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/11/2024] [Accepted: 06/18/2024] [Indexed: 12/09/2024] Open
Abstract
PURPOSE To computationally characterize the LET distribution during dynamic collimation in PBS and quantify its impact on the resultant dose distribution. METHODS Monte Carlo simulations using Geant4 were used to model the production of low-energy proton scatter produced in the collimating components of a novel PBS collimator. Custom spectral tallies were created to quantify the energy, track- and dose-averaged LET resulting from individual beamlet and composite fields simulated from a model of the IBA dedicated nozzle system. The composite dose distributions were optimized to achieve a uniform physical dose coverage of a cubical and pyramidal target, and the resulting dose-average LET distributions were calculated for uncollimated and collimated PBS deliveries and used to generate RBE-weighted dose distributions. RESULTS For collimated beamlets, the scattered proton energy fluence is strongly dependent on collimator position relative to the central axis of the beamlet. When delivering a uniform profile, the distribution of dose-average LET was nearly identical within the target and increased between 1 and2 keV / μ m $2 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm surrounding the target. Dynamic collimation resulted in larger dose-average LET changes: increasing the dose-average LET between 1 and3 keV / μ m $3 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ within 10 mm of a pyramidal target while reducing the dose-average LET outside this margin by as much as10 keV / μ m $10 \,{\rm keV}/\mathrm{\umu }\mathrm{m}$ . Biological dose distributions are improved with energy-specific collimation in reducing the lateral penumbra. CONCLUSION The presence of energy-specific collimation in PBS can lead to dose-average LET changes relative to an uncollimated delivery. In some clinical situations, the placement and application of energy-specific collimation may require additional planning considerations based on its reduction to the lateral penumbra and increase in high-dose conformity. Future applications may embody these unique dosimetric characteristics to redirect high-LET portions of a collimated proton beamlet from healthy tissues while enhancing the dose-average LET distribution within target.
Collapse
Affiliation(s)
- Blake R. Smith
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| | - Daniel E. Hyer
- Department of Radiation OncologyUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
2
|
Tjelta J, Ytre-Hauge K, Lyngholm E, Handeland A, Henjum H, Stokkevåg C. Dose exposure to an adult present in the treatment room during pediatric pencil beam scanning proton therapy. Acta Oncol 2023; 62:1531-1535. [PMID: 37676843 DOI: 10.1080/0284186x.2023.2254924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Johannes Tjelta
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | | | - Erlend Lyngholm
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Andreas Handeland
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Helge Henjum
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| | - Camilla Stokkevåg
- Department of Oncology and Medical Physics, Haukeland University Hospital, Bergen, Norway
- Department of Physics and Technology, University of Bergen, Bergen, Norway
| |
Collapse
|
3
|
Nelson NP, Culberson WS, Hyer DE, Geoghegan TJ, Patwardhan KA, Smith BR, Flynn RT, Gutiérrez AN, Boland T, Hill PM. Integration and dosimetric validation of a dynamic collimation system for pencil beam scanning proton therapy. Biomed Phys Eng Express 2023; 9:10.1088/2057-1976/ad02ff. [PMID: 37832529 PMCID: PMC11128250 DOI: 10.1088/2057-1976/ad02ff] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 10/15/2023]
Abstract
Objective.To integrate a Dynamic Collimation System (DCS) into a pencil beam scanning (PBS) proton therapy system and validate its dosimetric impact.Approach.Uncollimated and collimated treatment fields were developed for clinically relevant targets using an in-house treatment plan optimizer and an experimentally validated Monte Carlo model of the DCS and IBA dedicated nozzle (DN) system. The dose reduction induced by the DCS was quantified by calculating the mean dose in 10- and 30-mm two-dimensional rinds surrounding the target. A select number of plans were then used to experimentally validate the mechanical integration of the DCS and beam scanning controller system through measurements with the MatriXX-PT ionization chamber array and EBT3 film. Absolute doses were verified at the central axis at various depths using the IBA MatriXX-PT and PPC05 ionization chamber.Main results.Simulations demonstrated a maximum mean dose reduction of 12% for the 10 mm rind region and 45% for the 30 mm rind region when utilizing the DCS. Excellent agreement was observed between Monte Carlo simulations, EBT3 film, and MatriXX-PT measurements, with gamma pass rates exceeding 94.9% for all tested plans at the 3%/2 mm criterion. Absolute central axis doses showed an average verification difference of 1.4% between Monte Carlo and MatriXX-PT/PPC05 measurements.Significance.We have successfully dosimetrically validated the delivery of dynamically collimated proton therapy for clinically relevant delivery patterns and dose distributions with the DCS. Monte Carlo simulations were employed to assess dose reductions and treatment planning considerations associated with the DCS.
Collapse
Affiliation(s)
- Nicholas P Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Theodore J Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Kaustubh A Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Alonso N Gutiérrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 331765, United States of America
| | | | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin—Madison, 600 Highland Avenue, Madison, WI, 53792, United States of America
| |
Collapse
|
4
|
Nelson NP, Culberson WS, Hyer DE, Geoghegan TJ, Patwardhan KA, Smith BR, Flynn RT, Yu J, Gutiérrez AN, Hill PM. Dosimetric delivery validation of dynamically collimated pencil beam scanning proton therapy. Phys Med Biol 2023; 68:055003. [PMID: 36706460 PMCID: PMC9940016 DOI: 10.1088/1361-6560/acb6cd] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/27/2023] [Indexed: 01/28/2023]
Abstract
Objective. Pencil beam scanning (PBS) proton therapy target dose conformity can be improved with energy layer-specific collimation. One such collimator is the dynamic collimation system (DCS), which consists of four nickel trimmer blades that intercept the scanning beam as it approaches the lateral extent of the target. While the dosimetric benefits of the DCS have been demonstrated through computational treatment planning studies, there has yet to be experimental verification of these benefits for composite multi-energy layer fields. The objective of this work is to dosimetrically characterize and experimentally validate the delivery of dynamically collimated proton therapy with the DCS equipped to a clinical PBS system.Approach. Optimized single field, uniform dose treatment plans for 3 × 3 × 3 cm3target volumes were generated using Monte Carlo dose calculations with depths ranging from 5 to 15 cm, trimmer-to-surface distances ranging from 5 to 18.15 cm, with and without a 4 cm thick polyethylene range shifter. Treatment plans were then delivered to a water phantom using a prototype DCS and an IBA dedicated nozzle system and measured with a Zebra multilayer ionization chamber, a MatriXX PT ionization chamber array, and Gafchromic™ EBT3 film.Main results. For measurements made within the SOBPs, average 2D gamma pass rates exceeded 98.5% for the MatriXX PT and 96.5% for film at the 2%/2 mm criterion across all measured uncollimated and collimated plans, respectively. For verification of the penumbra width reduction with collimation, film agreed with Monte Carlo with differences within 0.3 mm on average compared to 0.9 mm for the MatriXX PT.Significance. We have experimentally verified the delivery of DCS-collimated fields using a clinical PBS system and commonly available dosimeters and have also identified potential weaknesses for dosimeters subject to steep dose gradients.
Collapse
Affiliation(s)
- Nicholas P Nelson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America,Author to whom any correspondence should be addressed
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin—Madison, 1111 Highland Avenue, Madison, WI, 53705, United States of America
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Theodore J Geoghegan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Kaustubh A Patwardhan
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Blake R Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Ryan T Flynn
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, 200 Hawkins Drive, Iowa City, IA, 52242, United States of America
| | - Jen Yu
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, United States of America
| | - Alonso N Gutiérrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176, United States of America
| | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin—Madison, 600 Highland Avenue, Madison, WI, 53792, United States of America
| |
Collapse
|
5
|
A novel optimization algorithm for enabling dynamically collimated proton arc therapy. Sci Rep 2022; 12:21731. [PMID: 36526670 PMCID: PMC9758145 DOI: 10.1038/s41598-022-25774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The advent of energy-specific collimation in pencil beam scanning (PBS) proton therapy has led to an improved lateral dose conformity for a variety of treatment sites, resulting in better healthy tissue sparing. Arc PBS delivery has also been proposed to enhance high-dose conformity about the intended target, reduce skin toxicity, and improve plan robustness. The goal of this work was to determine if the combination of proton arc and energy-specific collimation can generate better dose distributions as a logical next step to maximize the dosimetric advantages of proton therapy. Plans were optimized using a novel DyNamically collimated proton Arc (DNA) genetic optimization algorithm that was designed specifically for the application of proton arc therapy. A treatment planning comparison study was performed by generating an uncollimated two-field intensity modulated proton therapy and partial arc treatments and then replanning these treatments using energy-specific collimation as delivered by a dynamic collimation system, which is a novel collimation technology for PBS. As such, we refer to this novel treatment paradigm as Dynamically Collimated Proton Arc Therapy (DC-PAT). Arc deliveries achieved a superior target conformity and improved organ at risk (OAR) sparing relative to their two-field counterparts at the cost of an increase to the low-dose, high-volume region of the healthy brain. The incorporation of DC-PAT using the DNA optimizer was shown to further improve the tumor dose conformity. When compared to the uncollimated proton arc treatments, the mean dose to the 10mm of surrounding healthy tissue was reduced by 11.4% with the addition of collimation without meaningfully affecting the maximum skin dose (less than 1% change) relative to a multi-field treatment. In this case study, DC-PAT could better spare specific OARs while maintaining better target coverage compared to uncollimated proton arc treatments. While this work presents a proof-of-concept integration of two emerging technologies, the results are promising and suggest that the addition of these two techniques can lead to superior treatment plans warranting further development.
Collapse
|
6
|
Smith BR, M S NPN, M S TJG, M S KAP, Hill PM, Yu J, Gutiérrez AN, Md BGA, Hyer DE. The dosimetric enhancement of GRID profiles using an external collimator in pencil beam scanning proton therapy. Med Phys 2022; 49:2684-2698. [PMID: 35120278 PMCID: PMC9007854 DOI: 10.1002/mp.15523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/22/2021] [Accepted: 01/23/2022] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The radiobiological benefits afforded by spatially fractionated (GRID) radiation therapy pairs well with the dosimetric advantages of proton therapy. Inspired by the emergence of energy-layer specific collimators in pencil beam scanning (PBS), this work investigates how the spot spacing and collimation can be optimized to maximize the therapeutic gains of a GRID treatment while demonstrating the integration of a dynamic collimation system (DCS) within a commercial beam line to deliver GRID treatments and experimentally benchmark Monte Carlo calculation methods. METHODS GRID profiles were experimentally benchmarked using a clinical DCS prototype that was mounted to the nozzle of the IBA Dedicated Nozzle system. Integral depth dose (IDD) curves and lateral profiles were measured for uncollimated and GRID-collimated beamlets. A library of collimated GRID dose distributions were simulated by placing beamlets within a specified uniform grid and weighting the beamlets to achieve a volume-averaged tumor cell survival equivalent to an open field delivery. The healthy tissue sparing afforded by the GRID distribution was then estimated across a range of spot spacings and collimation widths, which were later optimized based on the radiosensitivity of the tumor cell line and the nominal spot size of the PBS system. This was accomplished by using validated models of the IBA Universal and Dedicated nozzles. RESULTS Excellent agreement was observed between the measured and simulated profiles. The IDDs matched above 98.7% when analyzed using a 1%/1 mm gamma criteria with some minor deviation observed near the Bragg peak for higher beamlet energies. Lateral profile distributions predicted using Monte Carlo methods agreed well with the measured profiles; a gamma passing rate of 95% or higher was observed for all in-depth profiles examined using a 3%/2 mm criteria. Additional collimation was shown to improve PBS GRID treatments by sharpening the lateral penumbra of the beamlets but creates a tradeoff between enhancing the valley-to-peak ratio of the GRID delivery and the dose-volume effect. The optimal collimation width and spot spacing changed as a function of the tumor cell radiosensitivity, dose, and spot size. In general, a spot spacing below 2.0 cm with a collimation less than 1.0 cm provided a superior dose distribution among the specific cases studied. CONCLUSIONS The ability to customize a GRID dose distribution using different collimation sizes and spot spacings is a useful advantage, especially to maximize the overall therapeutic benefit. In this regard, the capabilities of the DCS, and perhaps alternative dynamic collimators, can be used to enhance GRID treatments. Physical dose models calculated using Monte Carlo methods were experimentally benchmarked in water and were found to accurately predict the respective dose distributions of uncollimated and DCS-collimated GRID profiles. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Blake R Smith
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, 52242 Iowa
| | - Nicholas P Nelson M S
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705
| | | | | | - Patrick M Hill
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI, 53792
| | - Jen Yu
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176
| | - Alonso N Gutiérrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, 8900 N. Kendall Drive, Miami, FL, 33176
| | - Bryan G Allen Md
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, 52242 Iowa
| | - Daniel E Hyer
- Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, 52242 Iowa
| |
Collapse
|