3
|
Pan S, Chang CW, Wang T, Wynne J, Hu M, Lei Y, Liu T, Patel P, Roper J, Yang X. Abdomen CT multi-organ segmentation using token-based MLP-Mixer. Med Phys 2023; 50:3027-3038. [PMID: 36463516 PMCID: PMC10175083 DOI: 10.1002/mp.16135] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Manual contouring is very labor-intensive, time-consuming, and subject to intra- and inter-observer variability. An automated deep learning approach to fast and accurate contouring and segmentation is desirable during radiotherapy treatment planning. PURPOSE This work investigates an efficient deep-learning-based segmentation algorithm in abdomen computed tomography (CT) to facilitate radiation treatment planning. METHODS In this work, we propose a novel deep-learning model utilizing U-shaped multi-layer perceptron mixer (MLP-Mixer) and convolutional neural network (CNN) for multi-organ segmentation in abdomen CT images. The proposed model has a similar structure to V-net, while a proposed MLP-Convolutional block replaces each convolutional block. The MLP-Convolutional block consists of three components: an early convolutional block for local features extraction and feature resampling, a token-based MLP-Mixer layer for capturing global features with high efficiency, and a token projector for pixel-level detail recovery. We evaluate our proposed network using: (1) an institutional dataset with 60 patient cases and (2) a public dataset (BCTV) with 30 patient cases. The network performance was quantitatively evaluated in three domains: (1) volume similarity between the ground truth contours and the network predictions using the Dice score coefficient (DSC), sensitivity, and precision; (2) surface similarity using Hausdorff distance (HD), mean surface distance (MSD) and residual mean square distance (RMS); and (3) the computational complexity reported by the number of network parameters, training time, and inference time. The performance of the proposed network is compared with other state-of-the-art networks. RESULTS In the institutional dataset, the proposed network achieved the following volume similarity measures when averaged over all organs: DSC = 0.912, sensitivity = 0.917, precision = 0.917, average surface similarities were HD = 11.95 mm, MSD = 1.90 mm, RMS = 3.86 mm. The proposed network achieved DSC = 0.786 and HD = 9.04 mm on the public dataset. The network also shows statistically significant improvement, which is evaluated by a two-tailed Wilcoxon Mann-Whitney U test, on right lung (MSD where the maximum p-value is 0.001), spinal cord (sensitivity, precision, HD, RMSD where p-value ranges from 0.001 to 0.039), and stomach (DSC where the maximum p-value is 0.01) over all other competing networks. On the public dataset, the network report statistically significant improvement, which is shown by the Wilcoxon Mann-Whitney test, on pancreas (HD where the maximum p-value is 0.006), left (HD where the maximum p-value is 0.022) and right adrenal glands (DSC where the maximum p-value is 0.026). In both datasets, the proposed method can generate contours in less than 5 s. Overall, the proposed MLP-Vnet demonstrates comparable or better performance than competing methods with much lower memory complexity and higher speed. CONCLUSIONS The proposed MLP-Vnet demonstrates superior segmentation performance, in terms of accuracy and efficiency, relative to state-of-the-art methods. This reliable and efficient method demonstrates potential to streamline clinical workflows in abdominal radiotherapy, which may be especially important for online adaptive treatments.
Collapse
Affiliation(s)
- Shaoyan Pan
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| | - Chih-Wei Chang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Tonghe Wang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Jacob Wynne
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Mingzhe Hu
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| | - Yang Lei
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Tian Liu
- Department of Radiation Oncology, Mount Sinai Medical Center, New York, NY, 10029, USA
| | - Pretesh Patel
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Justin Roper
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Xiaofeng Yang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
5
|
Palm V, Norajitra T, von Stackelberg O, Heussel CP, Skornitzke S, Weinheimer O, Kopytova T, Klein A, Almeida SD, Baumgartner M, Bounias D, Scherer J, Kades K, Gao H, Jäger P, Nolden M, Tong E, Eckl K, Nattenmüller J, Nonnenmacher T, Naas O, Reuter J, Bischoff A, Kroschke J, Rengier F, Schlamp K, Debic M, Kauczor HU, Maier-Hein K, Wielpütz MO. AI-Supported Comprehensive Detection and Quantification of Biomarkers of Subclinical Widespread Diseases at Chest CT for Preventive Medicine. Healthcare (Basel) 2022; 10:2166. [PMID: 36360507 PMCID: PMC9690402 DOI: 10.3390/healthcare10112166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 08/12/2023] Open
Abstract
Automated image analysis plays an increasing role in radiology in detecting and quantifying image features outside of the perception of human eyes. Common AI-based approaches address a single medical problem, although patients often present with multiple interacting, frequently subclinical medical conditions. A holistic imaging diagnostics tool based on artificial intelligence (AI) has the potential of providing an overview of multi-system comorbidities within a single workflow. An interdisciplinary, multicentric team of medical experts and computer scientists designed a pipeline, comprising AI-based tools for the automated detection, quantification and characterization of the most common pulmonary, metabolic, cardiovascular and musculoskeletal comorbidities in chest computed tomography (CT). To provide a comprehensive evaluation of each patient, a multidimensional workflow was established with algorithms operating synchronously on a decentralized Joined Imaging Platform (JIP). The results of each patient are transferred to a dedicated database and summarized as a structured report with reference to available reference values and annotated sample images of detected pathologies. Hence, this tool allows for the comprehensive, large-scale analysis of imaging-biomarkers of comorbidities in chest CT, first in science and then in clinical routine. Moreover, this tool accommodates the quantitative analysis and classification of each pathology, providing integral diagnostic and prognostic value, and subsequently leading to improved preventive patient care and further possibilities for future studies.
Collapse
Affiliation(s)
- Viktoria Palm
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Tobias Norajitra
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Oyunbileg von Stackelberg
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Claus P. Heussel
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Stephan Skornitzke
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Taisiya Kopytova
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Andre Klein
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Silvia D. Almeida
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Michael Baumgartner
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Dimitrios Bounias
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Jonas Scherer
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Klaus Kades
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Hanno Gao
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Paul Jäger
- Interactive Machine Learning Research Group, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
| | - Marco Nolden
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Elizabeth Tong
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Kira Eckl
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Johanna Nattenmüller
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology, Medical Center, Faculty of Medicine Freiburg, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Tobias Nonnenmacher
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Omar Naas
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Julia Reuter
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Arved Bischoff
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Jonas Kroschke
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Fabian Rengier
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Kai Schlamp
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Manuel Debic
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| | - Klaus Maier-Hein
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Division of Medical Imaging Computing, German Cancer Research Center Heidelberg, Im Neuenheimer Feld 223, 69120 Heidelberg, Germany
- Pattern Analysis and Learning Group, Department of Radiation Oncology, University Hospital of Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Mark O. Wielpütz
- Department of Diagnostic and Interventional Radiology, Subdivision of Pulmonary Imaging, University Hospital of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Im Neuenheimer Feld 156, 69120 Heidelberg, Germany
- Department of Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at the University Hospital of Heidelberg, Röntgenstr. 1, 69126 Heidelberg, Germany
| |
Collapse
|