1
|
Bryant JM, Doniparthi A, Weygand J, Cruz-Chamorro R, Oraiqat IM, Andreozzi J, Graham J, Redler G, Latifi K, Feygelman V, Rosenberg SA, Yu HHM, Oliver DE. Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers (Basel) 2023; 15:5200. [PMID: 37958374 PMCID: PMC10649155 DOI: 10.3390/cancers15215200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent visualization of central nervous system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy (MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel system permits adaptive treatment planning based on anatomical changes to ensure accurate dose delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily CT guidance have typically had limited benefit. In this narrative review, we investigate the application of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next, we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of treating CNS malignancies and special limitations MRL systems face.
Collapse
Affiliation(s)
- John Michael Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ajay Doniparthi
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA;
| | - Joseph Weygand
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ruben Cruz-Chamorro
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ibrahim M. Oraiqat
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jacqueline Andreozzi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jasmine Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Daniel E. Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| |
Collapse
|
2
|
Bryant JM, Weygand J, Keit E, Cruz-Chamorro R, Sandoval ML, Oraiqat IM, Andreozzi J, Redler G, Latifi K, Feygelman V, Rosenberg SA. Stereotactic Magnetic Resonance-Guided Adaptive and Non-Adaptive Radiotherapy on Combination MR-Linear Accelerators: Current Practice and Future Directions. Cancers (Basel) 2023; 15:2081. [PMID: 37046741 PMCID: PMC10093051 DOI: 10.3390/cancers15072081] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is an effective radiation therapy technique that has allowed for shorter treatment courses, as compared to conventionally dosed radiation therapy. As its name implies, SBRT relies on daily image guidance to ensure that each fraction targets a tumor, instead of healthy tissue. Magnetic resonance imaging (MRI) offers improved soft-tissue visualization, allowing for better tumor and normal tissue delineation. MR-guided RT (MRgRT) has traditionally been defined by the use of offline MRI to aid in defining the RT volumes during the initial planning stages in order to ensure accurate tumor targeting while sparing critical normal tissues. However, the ViewRay MRIdian and Elekta Unity have improved upon and revolutionized the MRgRT by creating a combined MRI and linear accelerator (MRL), allowing MRgRT to incorporate online MRI in RT. MRL-based MR-guided SBRT (MRgSBRT) represents a novel solution to deliver higher doses to larger volumes of gross disease, regardless of the proximity of at-risk organs due to the (1) superior soft-tissue visualization for patient positioning, (2) real-time continuous intrafraction assessment of internal structures, and (3) daily online adaptive replanning. Stereotactic MR-guided adaptive radiation therapy (SMART) has enabled the safe delivery of ablative doses to tumors adjacent to radiosensitive tissues throughout the body. Although it is still a relatively new RT technique, SMART has demonstrated significant opportunities to improve disease control and reduce toxicity. In this review, we included the current clinical applications and the active prospective trials related to SMART. We highlighted the most impactful clinical studies at various tumor sites. In addition, we explored how MRL-based multiparametric MRI could potentially synergize with SMART to significantly change the current treatment paradigm and to improve personalized cancer care.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA; (J.M.B.)
| |
Collapse
|
3
|
Li Y, Sun W, Liu H, Ding S, Wang B, Huang X, Song T. Development of a GPU-superposition Monte Carlo code for fast dose calculation in magnetic fields. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac7194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/19/2022] [Indexed: 12/23/2022]
Abstract
Abstract
Objective. To develop and validate a graphics processing unit (GPU) based superposition Monte Carlo (SMC) code for efficient and accurate dose calculation in magnetic fields. Approach. A series of mono-energy photons ranging from 25 keV to 7.7 MeV were simulated with EGSnrc in a water phantom to generate particle tracks database. SMC physics was extended with charged particle transport in magnetic fields and subsequently programmed on GPU as gSMC. Optimized simulation scheme was designed by combining variance reduction techniques to relieve the thread divergence issue in general GPU-MC codes and improve the calculation efficiency. The gSMC code’s dose calculation accuracy and efficiency were assessed through both phantoms and patient cases. Main results. gSMC accurately calculated the dose in various phantoms for both B = 0 T and B = 1.5 T, and it matched EGSnrc well with a root mean square error of less than 1.0% for the entire depth dose region. Patient cases validation also showed a high dose agreement with EGSnrc with 3D gamma passing rate (2%/2 mm) large than 97% for all tested tumor sites. Combined with photon splitting and particle track repeating techniques, gSMC resolved the thread divergence issue and showed an efficiency gain of 186–304 relative to EGSnrc with 10 CPU threads. Significance. A GPU-superposition Monte Carlo code called gSMC was developed and validated for dose calculation in magnetic fields. The developed code’s high calculation accuracy and efficiency make it suitable for dose calculation tasks in online adaptive radiotherapy with MR-LINAC.
Collapse
|