1
|
Sant VR, Radhachandran A, Ivezic V, Lee DT, Livhits MJ, Wu JX, Masamed R, Arnold CW, Yeh MW, Speier W. From Bench-to-Bedside: How Artificial Intelligence is Changing Thyroid Nodule Diagnostics, a Systematic Review. J Clin Endocrinol Metab 2024; 109:1684-1693. [PMID: 38679750 PMCID: PMC11180510 DOI: 10.1210/clinem/dgae277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
CONTEXT Use of artificial intelligence (AI) to predict clinical outcomes in thyroid nodule diagnostics has grown exponentially over the past decade. The greatest challenge is in understanding the best model to apply to one's own patient population, and how to operationalize such a model in practice. EVIDENCE ACQUISITION A literature search of PubMed and IEEE Xplore was conducted for English-language publications between January 1, 2015 and January 1, 2023, studying diagnostic tests on suspected thyroid nodules that used AI. We excluded articles without prospective or external validation, nonprimary literature, duplicates, focused on nonnodular thyroid conditions, not using AI, and those incidentally using AI in support of an experimental diagnostic outside standard clinical practice. Quality was graded by Oxford level of evidence. EVIDENCE SYNTHESIS A total of 61 studies were identified; all performed external validation, 16 studies were prospective, and 33 compared a model to physician prediction of ground truth. Statistical validation was reported in 50 papers. A diagnostic pipeline was abstracted, yielding 5 high-level outcomes: (1) nodule localization, (2) ultrasound (US) risk score, (3) molecular status, (4) malignancy, and (5) long-term prognosis. Seven prospective studies validated a single commercial AI; strengths included automating nodule feature assessment from US and assisting the physician in predicting malignancy risk, while weaknesses included automated margin prediction and interobserver variability. CONCLUSION Models predominantly used US images to predict malignancy. Of 4 Food and Drug Administration-approved products, only S-Detect was extensively validated. Implementing an AI model locally requires data sanitization and revalidation to ensure appropriate clinical performance.
Collapse
Affiliation(s)
- Vivek R Sant
- Division of Endocrine Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ashwath Radhachandran
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| | - Vedrana Ivezic
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| | - Denise T Lee
- Department of Surgery, Icahn School of Medicine at Mount Sinai Hospital, New York, NY 10029, USA
| | - Masha J Livhits
- Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - James X Wu
- Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - Rinat Masamed
- Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Corey W Arnold
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| | - Michael W Yeh
- Section of Endocrine Surgery, UCLA David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | - William Speier
- Biomedical Artificial Intelligence Research Lab, UCLA Department of Bioengineering, Los Angeles, CA 90024, USA
| |
Collapse
|
2
|
Wang Z, Wang X, Wang T, Qiu J, Lu W. Localization and Risk Stratification of Thyroid Nodules in Ultrasound Images Through Deep Learning. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:882-887. [PMID: 38494413 DOI: 10.1016/j.ultrasmedbio.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/03/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVE Deep learning algorithms have commonly been used for the differential diagnosis between benign and malignant thyroid nodules. The aim of the study described here was to develop an integrated system that combines a deep learning model and a clinical standard Thyroid Imaging Reporting and Data System (TI-RADS) for the simultaneous segmentation and risk stratification of thyroid nodules. METHODS Three hundred four ultrasound images from two independent sites with TI-RADS 4 thyroid nodules were collected. The edge connection and Criminisi algorithm were used to remove manually induced markers in ultrasound images. An integrated system based on TI-RADS and a mask region-based convolution neural network (Mask R-CNN) was proposed to stratify subclasses of TI-RADS 4 thyroid nodules and to segment thyroid nodules in the ultrasound images. Accuracy and the precision-recall curve were used to evaluate stratification performance, and the Dice similarity coefficient (DSC) between the segmentation of Mask R-CNN and the radiologist's contour was used to evaluate the segmentation performance of the model. RESULTS The combined approach could significantly enhance the performance of the proposed integrated system. Overall stratification accuracy of TI-RADS 4 thyroid nodules, mean average precision and mean DSC of the proposed model in the independent test set was 90.79%, 0.8579 and 0.83, respectively. Specifically, stratification accuracy values for TI-RADS 4a, 4b and 4c thyroid nodules were 95.83%, 84.21% and 77.78%, respectively. CONCLUSION An integrated system combining TI-RADS and a deep learning model was developed. The system can provide clinicians with not only diagnostic assistance from TI-RADS but also accurate segmentation of thyroid nodules, which improves the applicability of the system in clinical practice.
Collapse
Affiliation(s)
- Zhipeng Wang
- Department of Radiology, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China; School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Xiuzhu Wang
- Department of Obstetrics, Tai'an City Central Hospital, Tai'an, China
| | - Ting Wang
- Department of Ultrasound, Zoucheng Maternity and Child Healthcare Hospital, Jining, China
| | - Jianfeng Qiu
- Department of Radiology, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China; School of Radiology, Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an, China
| | - Weizhao Lu
- Department of Radiology, Second Affiliated Hospital of Shandong First Medical University, Tai'an, China.
| |
Collapse
|
3
|
Xie H, Zhang Y, Dong L, Lv H, Li X, Zhao C, Tian Y, Xie L, Wu W, Yang Q, Liu L, Sun D, Qiu L, Shen L, Zhang Y. Deep learning driven diagnosis of malignant soft tissue tumors based on dual-modal ultrasound images and clinical indexes. Front Oncol 2024; 14:1361694. [PMID: 38846984 PMCID: PMC11153704 DOI: 10.3389/fonc.2024.1361694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background Soft tissue tumors (STTs) are benign or malignant superficial neoplasms arising from soft tissues throughout the body with versatile pathological types. Although Ultrasonography (US) is one of the most common imaging tools to diagnose malignant STTs, it still has several drawbacks in STT diagnosis that need improving. Objectives The study aims to establish this deep learning (DL) driven Artificial intelligence (AI) system for predicting malignant STTs based on US images and clinical indexes of the patients. Methods We retrospectively enrolled 271 malignant and 462 benign masses to build the AI system using 5-fold validation. A prospective dataset of 44 malignant masses and 101 benign masses was used to validate the accuracy of system. A multi-data fusion convolutional neural network, named ultrasound clinical soft tissue tumor net (UC-STTNet), was developed to combine gray scale and color Doppler US images and clinic features for malignant STTs diagnosis. Six radiologists (R1-R6) with three experience levels were invited for reader study. Results The AI system achieved an area under receiver operating curve (AUC) value of 0.89 in the retrospective dataset. The diagnostic performance of the AI system was higher than that of one of the senior radiologists (AUC of AI vs R2: 0.89 vs. 0.84, p=0.022) and all of the intermediate and junior radiologists (AUC of AI vs R3, R4, R5, R6: 0.89 vs 0.75, 0.81, 0.80, 0.63; p <0.01). The AI system also achieved an AUC of 0.85 in the prospective dataset. With the assistance of the system, the diagnostic performances and inter-observer agreement of the radiologists was improved (AUC of R3, R5, R6: 0.75 to 0.83, 0.80 to 0.85, 0.63 to 0.69; p<0.01). Conclusion The AI system could be a useful tool in diagnosing malignant STTs, and could also help radiologists improve diagnostic performance.
Collapse
Affiliation(s)
- Haiqin Xie
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Yudi Zhang
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Licong Dong
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Heng Lv
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Xuechen Li
- National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University, Shenzhen, China
| | - Chenyang Zhao
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Yun Tian
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Lu Xie
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Wangjie Wu
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Qi Yang
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Li Liu
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Desheng Sun
- Shenzhen Hospital, Peking University, Shenzhen, China
| | - Li Qiu
- West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linlin Shen
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, Guangdong, China
| | - Yusen Zhang
- Shenzhen Hospital, Peking University, Shenzhen, China
| |
Collapse
|
4
|
Chen JH, Zhang YQ, Zhu TT, Zhang Q, Zhao AX, Huang Y. Applying machine-learning models to differentiate benign and malignant thyroid nodules classified as C-TIRADS 4 based on 2D-ultrasound combined with five contrast-enhanced ultrasound key frames. Front Endocrinol (Lausanne) 2024; 15:1299686. [PMID: 38633756 PMCID: PMC11021584 DOI: 10.3389/fendo.2024.1299686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 03/21/2024] [Indexed: 04/19/2024] Open
Abstract
Objectives To apply machine learning to extract radiomics features from thyroid two-dimensional ultrasound (2D-US) combined with contrast-enhanced ultrasound (CEUS) images to classify and predict benign and malignant thyroid nodules, classified according to the Chinese version of the thyroid imaging reporting and data system (C-TIRADS) as category 4. Materials and methods This retrospective study included 313 pathologically diagnosed thyroid nodules (203 malignant and 110 benign). Two 2D-US images and five CEUS key frames ("2nd second after the arrival time" frame, "time to peak" frame, "2nd second after peak" frame, "first-flash" frame, and "second-flash" frame) were selected to manually label the region of interest using the "Labelme" tool. A total of 7 images of each nodule and their annotates were imported into the Darwin Research Platform for radiomics analysis. The datasets were randomly split into training and test cohorts in a 9:1 ratio. Six classifiers, namely, support vector machine, logistic regression, decision tree, random forest (RF), gradient boosting decision tree and extreme gradient boosting, were used to construct and test the models. Performance was evaluated using a receiver operating characteristic curve analysis. The area under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), and F1-score were calculated. One junior radiologist and one senior radiologist reviewed the 2D-US image and CEUS videos of each nodule and made a diagnosis. We then compared their AUC and ACC with those of our best model. Results The AUC of the diagnosis of US, CEUS and US combined CEUS by junior radiologist and senior radiologist were 0.755, 0.750, 0.784, 0.800, 0.873, 0.890, respectively. The RF classifier performed better than the other five, with an AUC of 1 for the training cohort and 0.94 (95% confidence interval 0.88-1) for the test cohort. The sensitivity, specificity, accuracy, PPV, NPV, and F1-score of the RF model in the test cohort were 0.82, 0.93, 0.90, 0.85, 0.92, and 0.84, respectively. The RF model with 2D-US combined with CEUS key frames achieved equivalent performance as the senior radiologist (AUC: 0.94 vs. 0.92, P = 0.798; ACC: 0.90 vs. 0.92) and outperformed the junior radiologist (AUC: 0.94 vs. 0.80, P = 0.039, ACC: 0.90 vs. 0.81) in the test cohort. Conclusions Our model, based on 2D-US and CEUS key frames radiomics features, had good diagnostic efficacy for thyroid nodules, which are classified as C-TIRADS 4. It shows promising potential in assisting less experienced junior radiologists.
Collapse
Affiliation(s)
| | | | | | | | | | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Xing G, Miao Z, Zheng Y, Zhao M. A multi-task model for reliable classification of thyroid nodules in ultrasound images. Biomed Eng Lett 2024; 14:187-197. [PMID: 38374911 PMCID: PMC10874359 DOI: 10.1007/s13534-023-00325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 02/21/2024] Open
Abstract
Thyroid nodules are common, and patients with potential malignant lesions are usually diagnosed using ultrasound imaging to determine further treatment options. This study aims to propose a computer-aided diagnosis method for benign and malignant classification of thyroid nodules in ultrasound images. We propose a novel multi-task framework that combines the advantages of dense connectivity, Squeeze-and-Excitation (SE) connectivity, and Atrous Spatial Pyramid Pooling (ASPP) layer to enhance feature extraction. The Dense connectivity is used to optimize feature reuse, the SE connectivity to optimize feature weights, the ASPP layer to fuse feature information, and a multi-task learning framework to adjust the attention of the network. We evaluate our model using a 10-fold cross-validation approach based on our established Thyroid dataset. We assess the performance of our method using six average metrics: accuracy, sensitivity, specificity, positive predictive value, negative predictive value, and AUC, which are 93.49, 95.54, 91.52, 91.63, 95.47, and 96.84%, respectively. Our proposed method outperforms other classification networks in all metrics, achieving optimal performance. We propose a multi-task model, DSMA-Net, for distinguishing thyroid nodules in ultrasound images. This method can further enhance the diagnostic ability of doctors for suspected cancer patients and holds promise for clinical applications.
Collapse
Affiliation(s)
- Guangxin Xing
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Zhengqing Miao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Yelong Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| | - Meirong Zhao
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
6
|
Xu J, Xu HL, Cao YN, Huang Y, Gao S, Wu QJ, Gong TT. The performance of deep learning on thyroid nodule imaging predicts thyroid cancer: A systematic review and meta-analysis of epidemiological studies with independent external test sets. Diabetes Metab Syndr 2023; 17:102891. [PMID: 37907027 DOI: 10.1016/j.dsx.2023.102891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/06/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND AND AIMS It is still controversial whether deep learning (DL) systems add accuracy to thyroid nodule imaging classification based on the recent available evidence. We conducted this study to analyze the current evidence of DL in thyroid nodule imaging diagnosis in both internal and external test sets. METHODS Until the end of December 2022, PubMed, IEEE, Embase, Web of Science, and the Cochrane Library were searched. We included primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. This systematic review was registered on PROSPERO (CRD42022362892). RESULTS We evaluated evidence from 17 primary epidemiological studies using externally validated DL techniques in image-based thyroid nodule appraisal. Fourteen studies were deemed eligible for meta-analysis. The pooled sensitivity, specificity, and area under the curve (AUC) of these DL algorithms were 0.89 (95% confidence interval 0.87-0.90), 0.84 (0.82-0.86), and 0.93 (0.91-0.95), respectively. For the internal validation set, the pooled sensitivity, specificity, and AUC were 0.91 (0.89-0.93), 0.88 (0.85-0.91), and 0.96 (0.93-0.97), respectively. In the external validation set, the pooled sensitivity, specificity, and AUC were 0.87 (0.85-0.89), 0.81 (0.77-0.83), and 0.91 (0.88-0.93), respectively. Notably, in subgroup analyses, DL algorithms still demonstrated exceptional diagnostic validity. CONCLUSIONS Current evidence suggests DL-based imaging shows diagnostic performances comparable to clinicians for differentiating thyroid nodules in both the internal and external test sets.
Collapse
Affiliation(s)
- Jin Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - He-Li Xu
- Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi-Ning Cao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ying Huang
- Department of Ultrasound, Shengjing Hospital of China Medical University, Shenyang, China
| | - Song Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qi-Jun Wu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China; Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang, China; Key Laboratory of Reproductive and Genetic Medicine (China Medical University), National Health Commission, Shenyang, China.
| | - Ting-Ting Gong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Gomes Ataide EJ, Jabaraj MS, Schenke S, Petersen M, Haghghi S, Wuestemann J, Illanes A, Friebe M, Kreissl MC. Thyroid Nodule Detection and Region Estimation in Ultrasound Images: A Comparison between Physicians and an Automated Decision Support System Approach. Diagnostics (Basel) 2023; 13:2873. [PMID: 37761240 PMCID: PMC10529523 DOI: 10.3390/diagnostics13182873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Thyroid nodules are very common. In most cases, they are benign, but they can be malignant in a low percentage of cases. The accurate assessment of these nodules is critical to choosing the next diagnostic steps and potential treatment. Ultrasound (US) imaging, the primary modality for assessing these nodules, can lack objectivity due to varying expertise among physicians. This leads to observer variability, potentially affecting patient outcomes. PURPOSE This study aims to assess the potential of a Decision Support System (DSS) in reducing these variabilities for thyroid nodule detection and region estimation using US images, particularly in lesser experienced physicians. METHODS Three physicians with varying levels of experience evaluated thyroid nodules on US images, focusing on nodule detection and estimating cystic and solid regions. The outcomes were compared to those obtained from a DSS for comparison. Metrics such as classification match percentage and variance percentage were used to quantify differences. RESULTS Notable disparities exist between physician evaluations and the DSS assessments: the overall classification match percentage was just 19.2%. Individually, Physicians 1, 2, and 3 had match percentages of 57.6%, 42.3%, and 46.1% with the DSS, respectively. Variances in assessments highlight the subjectivity and observer variability based on physician experience levels. CONCLUSIONS The evident variability among physician evaluations underscores the need for supplementary decision-making tools. Given its consistency, the CAD offers potential as a reliable "second opinion" tool, minimizing human-induced variabilities in the critical diagnostic process of thyroid nodules using US images. Future integration of such systems could bolster diagnostic precision and improve patient outcomes.
Collapse
Affiliation(s)
- Elmer Jeto Gomes Ataide
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany; (S.S.); (M.C.K.)
| | | | - Simone Schenke
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany; (S.S.); (M.C.K.)
- Department of Nuclear Medicine, Klinikum Bayreuth, 95445 Bayreuth, Germany
| | - Manuela Petersen
- Department of General, Visceral, Vascular and Transplant Surgery, University Hospital Magdeburg, 39120 Magdeburg, Germany
| | - Sarvar Haghghi
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany; (S.S.); (M.C.K.)
- Department of Nuclear Medicine, University Hospital Frankfurt, 60590 Frankfurt, Germany
| | - Jan Wuestemann
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany; (S.S.); (M.C.K.)
| | | | - Michael Friebe
- Surag Medical GmbH, 39118 Magdeburg, Germany
- Department of Biocybernetics and Biomedical Engineering, AGH University of Science and Technology, 30-059 Krakow, Poland
- Center for Innovation, Business Development and Entrepreneurship (CIBE), FOM University of Applied Science, 45127 Essen, Germany
| | - Michael C. Kreissl
- Division of Nuclear Medicine, Department of Radiology and Nuclear Medicine, University Hospital Magdeburg, 39120 Magdeburg, Germany; (S.S.); (M.C.K.)
- STIMULATE Research Campus, 39106 Magdeburg, Germany
- Center for Advanced Medical Engineering (CAME), Otto-von-Guericke University Magdeburg, 39106 Magdeburg, Germany
| |
Collapse
|
8
|
Toro-Tobon D, Loor-Torres R, Duran M, Fan JW, Singh Ospina N, Wu Y, Brito JP. Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions. Thyroid 2023; 33:903-917. [PMID: 37279303 PMCID: PMC10440669 DOI: 10.1089/thy.2023.0132] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Background: The use of artificial intelligence (AI) in health care has grown exponentially with the promise of facilitating biomedical research and enhancing diagnosis, treatment, monitoring, disease prevention, and health care delivery. We aim to examine the current state, limitations, and future directions of AI in thyroidology. Summary: AI has been explored in thyroidology since the 1990s, and currently, there is an increasing interest in applying AI to improve the care of patients with thyroid nodules (TNODs), thyroid cancer, and functional or autoimmune thyroid disease. These applications aim to automate processes, improve the accuracy and consistency of diagnosis, personalize treatment, decrease the burden for health care professionals, improve access to specialized care in areas lacking expertise, deepen the understanding of subtle pathophysiologic patterns, and accelerate the learning curve of less experienced clinicians. There are promising results for many of these applications. Yet, most are in the validation or early clinical evaluation stages. Only a few are currently adopted for risk stratification of TNODs by ultrasound and determination of the malignant nature of indeterminate TNODs by molecular testing. Challenges of the currently available AI applications include the lack of prospective and multicenter validations and utility studies, small and low diversity of training data sets, differences in data sources, lack of explainability, unclear clinical impact, inadequate stakeholder engagement, and inability to use outside of the research setting, which might limit the value of their future adoption. Conclusions: AI has the potential to improve many aspects of thyroidology; however, addressing the limitations affecting the suitability of AI interventions in thyroidology is a prerequisite to ensure that AI provides added value for patients with thyroid disease.
Collapse
Affiliation(s)
- David Toro-Tobon
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ricardo Loor-Torres
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayra Duran
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jungwei W. Fan
- Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Naykky Singh Ospina
- Division of Endocrinology, Department of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Juan P. Brito
- Division of Endocrinology, Diabetes, Metabolism and Nutrition, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Gao Z, Chen Y, Sun P, Liu H, Lu Y. Clinical knowledge embedded method based on multi-task learning for thyroid nodule classification with ultrasound images. Phys Med Biol 2023; 68. [PMID: 36652723 DOI: 10.1088/1361-6560/acb481] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023]
Abstract
Objective. Thyroid nodules are common glandular abnormality that need to be diagnosed as benign or malignant to determine further treatments. Clinically, ultrasonography is the main diagnostic method, but it is highly subjective with severe variability. Recently, many deep-learning-based methods have been proposed to alleviate subjectivity and achieve good results yet, these methods often neglect important guidance from clinical knowledge. Our objective is to utilize such guidance for accurate and reliable thyroid nodule classification.Approach. In this study, a multi-task learning model embedded with clinical knowledge of ACR Thyroid Imaging, Reporting and Data System guideline is proposed. The clinical features defined in the guideline have strong correlations with malignancy and they were modeled as tasks alongside the pathological type. Multi-task learning was utilized to exploit the correlations to improve diagnostic performance. To alleviate the impact of noisy labels on clinical features, a loss-weighting strategy was proposed. Five-fold cross-validation was applied to an internal training set of size 4989, and an external test set of size 243 was used for evaluation.Main results. The proposed multi-task learning model achieved an average AUC of 0.901 and an ensemble AUC of 0.917 on the test set, which significantly outperformed the single-task baseline models.Significance. The results indicated that multi-task learning of clinical features can effectively classify thyroid nodules and reveal the possibility of using clinical indicators as auxiliary tasks to improve performance when diagnosing other diseases.
Collapse
Affiliation(s)
- Zixiong Gao
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Province Key Laboratory Computational Science, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yufan Chen
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Pengtao Sun
- The Department of Ultrasonography, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China.,The Second School of Clinical Medicine, Southern Medical University, Guangzhou, People's Republic of China
| | - Yao Lu
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou, People's Republic of China.,Guangdong Province Key Laboratory Computational Science, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
10
|
Lee JH, Kim YG, Ahn Y, Park S, Kong HJ, Choi JY, Kim K, Nam IC, Lee MC, Masuoka H, Miyauchi A, Kim S, Kim YA, Choe EK, Chai YJ. Investigation of optimal convolutional neural network conditions for thyroid ultrasound image analysis. Sci Rep 2023; 13:1360. [PMID: 36693894 PMCID: PMC9873643 DOI: 10.1038/s41598-023-28001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023] Open
Abstract
Neural network models have been used to analyze thyroid ultrasound (US) images and stratify malignancy risk of the thyroid nodules. We investigated the optimal neural network condition for thyroid US image analysis. We compared scratch and transfer learning models, performed stress tests in 10% increments, and compared the performance of three threshold values. All validation results indicated superiority of the transfer learning model over the scratch model. Stress test indicated that training the algorithm using 3902 images (70%) resulted in a performance which was similar to the full dataset (5575). Threshold 0.3 yielded high sensitivity (1% false negative) and low specificity (72% false positive), while 0.7 gave low sensitivity (22% false negative) and high specificity (23% false positive). Here we showed that transfer learning was more effective than scratch learning in terms of area under curve, sensitivity, specificity and negative/positive predictive value, that about 3900 images were minimally required to demonstrate an acceptable performance, and that algorithm performance can be customized according to the population characteristics by adjusting threshold value.
Collapse
Affiliation(s)
- Joon-Hyop Lee
- Department of Surgery, Gachon University College of Medicine, Gil Medical Center, Inchon, Korea
| | - Young-Gon Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Youngbin Ahn
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Seyeon Park
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Hyoun-Joong Kong
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - June Young Choi
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam-si, Gyeonggi-do, Korea
| | - Kwangsoon Kim
- Department of Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Inn-Chul Nam
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Myung-Chul Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Science, Seoul, Korea
| | | | | | - Sungwan Kim
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea
| | - Young A Kim
- Department of Pathology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Eun Kyung Choe
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea. .,Department of Surgery, Seoul National University Hospital Healthcare System Gangnam Center, Seoul, Korea.
| | - Young Jun Chai
- Transdisciplinary Department of Medicine and Advanced Technology, Seoul National University Hospital, Seoul, Korea. .,Department of Surgery, Seoul Metropolitan Government, Seoul National University Boramae Medical Center, 20 Boramaep-ro 5-gil, Dongjak-gu, Seoul, 07061, Korea.
| |
Collapse
|
11
|
Boers T, Braak SJ, Rikken NET, Versluis M, Manohar S. Ultrasound imaging in thyroid nodule diagnosis, therapy, and follow-up: Current status and future trends. JOURNAL OF CLINICAL ULTRASOUND : JCU 2023. [PMID: 36655705 DOI: 10.1002/jcu.23430] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Ultrasound, the primary imaging modality in thyroid nodule management, suffers from drawbacks including: high inter- and intra-observer variability, limited field-of-view and limited functional imaging. Developments in ultrasound technologies are taking place to overcome these limitations, including three-dimensional-Doppler, -elastography, -nodule characteristics-extraction, and novel machine-learning algorithms. For thyroid ablative treatments and biopsies, perioperative use of three-dimensional ultrasound opens a new field of research. This review provides an overview of the current and future applications of ultrasound, and discusses the potential of new developments and trends that may improve the diagnosis, therapy, and follow-up of thyroid nodules.
Collapse
Affiliation(s)
- Tim Boers
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Sicco J Braak
- Department of Radiology, Ziekenhuisgroep Twente, Hengelo, the Netherlands
| | - Nicole E T Rikken
- Department of Endocrinology, Ziekenhuisgroep Twente, Hengelo, the Netherlands
| | - Michel Versluis
- Physics of Fluids Group, TechMed Centre, University of Twente, Enschede, the Netherlands
| | - Srirang Manohar
- Multi-Modality Medical Imaging Group, TechMed Centre, University of Twente, Enschede, the Netherlands
| |
Collapse
|
12
|
Deng P, Han X, Wei X, Chang L. Automatic classification of thyroid nodules in ultrasound images using a multi-task attention network guided by clinical knowledge. Comput Biol Med 2022; 150:106172. [PMID: 36242812 DOI: 10.1016/j.compbiomed.2022.106172] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
Abstract
Thyroid cancer has been the most prevalent cancer in the recent three decades. Ultrasonography is one of the mainly used methods for diagnosing thyroid nodules. Several computer-aided diagnostic methods were proposed to aid radiologists in analyzing ultrasound images of the thyroid gland. Most methods, however, only determine the benignity or malignancy of the thyroid nodule and do not explain the decision-making process of them, which cannot gain the trustworthiness of clinicians because they are not consistent with the physician's diagnostic process. In our work, we design a multi-task branching attention network in which each of the descriptors of the ACR TI-RADS lexicon is first classified. All respective scores are calculated to get the risk stratification of the nodule. Ultimately, based on the risk stratification, the benignity or malignancy of the nodule is determined. This work provides an automated method that incorporates the ACR TI-RADS characterization of thyroid nodules for detecting the level of risk and the benignity or malignancy of thyroid nodules. Thus the work establishes the trustworthiness of clinicians in deep learning models and improves physician efficiency and diagnostic rates to some extent compared to previous studies. For the diagnosis of thyroid nodules, evaluation indices including accuracy, sensitivity, and specificity were 93.55%, 93.86%, and 93.14%, respectively. The experiments show that our approach obtains comparable performance to most advanced methods in diagnosing ultrasound images of the thyroid nodules and is supported by explanations in clinical terms using the ACR TI-RADS lexicon.
Collapse
Affiliation(s)
- Pengju Deng
- College of Big Data, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xiaohong Han
- College of Big Data, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Xi Wei
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Luchen Chang
- Department of Diagnostic and Therapeutic Ultrasonography, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
13
|
Han Z, Huang Y, Wang H, Chu Z. Multimodal ultrasound imaging: A method to improve the accuracy of diagnosing thyroid TI-RADS 4 nodules. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1345-1352. [PMID: 36169185 DOI: 10.1002/jcu.23352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Thyroid nodule is a common and frequently occurring disease in the neck in recent years, and ultrasound has become the preferred imaging diagnosis method for thyroid nodule due to its advantages of noninvasive, nonradiation, real-time, and repeatable. The thyroid imaging, reporting and data system (TI-RADS) classification standard scores suspicious nodules that are difficult to determine benign and malignant as grade 4, and further pathological puncture is recommended clinically, which may lead to a large number of unnecessary biopsies and operations. Including conventional ultrasound, ACR TI-RADS, shear wave elastography, super microvascular imaging, contrast enhanced ultrasound, "firefly," artificial intelligence, and multimodal ultrasound imaging used in combination. In order to identify the most clinically significant malignant tumors when reducing invasive operations. This article reviews the application and research progress of multimodal ultrasound imaging in the diagnosis of TI-RADS 4 thyroid nodules.
Collapse
Affiliation(s)
- Zhengyang Han
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Yuanjing Huang
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Honghu Wang
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Zhaoyang Chu
- Department of Ultrasound, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
14
|
Sorrenti S, Dolcetti V, Radzina M, Bellini MI, Frezza F, Munir K, Grani G, Durante C, D’Andrea V, David E, Calò PG, Lori E, Cantisani V. Artificial Intelligence for Thyroid Nodule Characterization: Where Are We Standing? Cancers (Basel) 2022; 14:cancers14143357. [PMID: 35884418 PMCID: PMC9315681 DOI: 10.3390/cancers14143357] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 07/08/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In the present review, an up-to-date summary of the state of the art of artificial intelligence (AI) implementation for thyroid nodule characterization and cancer is provided. The opinion on the real effectiveness of AI systems remains controversial. Taking into consideration the largest and most scientifically valid studies, it is possible to state that AI provides results that are comparable or inferior to expert ultrasound specialists and radiologists. Promising data approve AI as a support tool and simultaneously highlight the need for a radiologist supervisory framework for AI provided results. Therefore, current solutions might be more suitable for educational purposes. Abstract Machine learning (ML) is an interdisciplinary sector in the subset of artificial intelligence (AI) that creates systems to set up logical connections using algorithms, and thus offers predictions for complex data analysis. In the present review, an up-to-date summary of the current state of the art regarding ML and AI implementation for thyroid nodule ultrasound characterization and cancer is provided, highlighting controversies over AI application as well as possible benefits of ML, such as, for example, training purposes. There is evidence that AI increases diagnostic accuracy and significantly limits inter-observer variability by using standardized mathematical algorithms. It could also be of aid in practice settings with limited sub-specialty expertise, offering a second opinion by means of radiomics and computer-assisted diagnosis. The introduction of AI represents a revolutionary event in thyroid nodule evaluation, but key issues for further implementation include integration with radiologist expertise, impact on workflow and efficiency, and performance monitoring.
Collapse
Affiliation(s)
- Salvatore Sorrenti
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (S.S.); (V.D.); (E.L.)
| | - Vincenzo Dolcetti
- Department of Radiological, Anatomo-Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (V.D.); (V.C.)
| | - Maija Radzina
- Radiology Research Laboratory, Riga Stradins University, LV-1007 Riga, Latvia;
- Medical Faculty, University of Latvia, Diagnostic Radiology Institute, Paula Stradina Clinical University Hospital, LV-1007 Riga, Latvia
| | - Maria Irene Bellini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (S.S.); (V.D.); (E.L.)
- Correspondence:
| | - Fabrizio Frezza
- Department of Information Engineering, Electronics and Telecommunications, “Sapienza” University of Rome, 00184 Rome, Italy; (F.F.); (K.M.)
- Consorzio Nazionale Interuniversitario per le Telecomunicazioni (CNIT), Viale G.P. Usberti 181/A Sede Scientifica di Ingegneria-Palazzina 3, 43124 Parma, Italy
| | - Khushboo Munir
- Department of Information Engineering, Electronics and Telecommunications, “Sapienza” University of Rome, 00184 Rome, Italy; (F.F.); (K.M.)
| | - Giorgio Grani
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.G.); (C.D.); (E.D.)
| | - Cosimo Durante
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.G.); (C.D.); (E.D.)
| | - Vito D’Andrea
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (S.S.); (V.D.); (E.L.)
| | - Emanuele David
- Department of Translational and Precision Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.G.); (C.D.); (E.D.)
| | - Pietro Giorgio Calò
- Department of Surgical Sciences, “Policlinico Universitario Duilio Casula”, University of Cagliari, 09042 Monserrato, Italy;
| | - Eleonora Lori
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (S.S.); (V.D.); (E.L.)
| | - Vito Cantisani
- Department of Radiological, Anatomo-Pathological Sciences, “Sapienza” University of Rome, 00161 Rome, Italy; (V.D.); (V.C.)
| |
Collapse
|
15
|
Yu R, Tian Y, Gao J, Liu Z, Wei X, Jiang H, Huang Y, Li X. Feature discretization-based deep clustering for thyroid ultrasound image feature extraction. Comput Biol Med 2022; 146:105600. [DOI: 10.1016/j.compbiomed.2022.105600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 02/08/2023]
|
16
|
Kim YJ, Choi Y, Hur SJ, Park KS, Kim HJ, Seo MK, Kyong Lee M, Jung SL, Kwon Jung C. Deep convolutional neural network for classification of thyroid nodules on ultrasound: comparison of the diagnostic performance with that of radiologists. Eur J Radiol 2022; 152:110335. [DOI: 10.1016/j.ejrad.2022.110335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022]
|
17
|
Li LR, Du B, Liu HQ, Chen C. Artificial Intelligence for Personalized Medicine in Thyroid Cancer: Current Status and Future Perspectives. Front Oncol 2021; 10:604051. [PMID: 33634025 PMCID: PMC7899964 DOI: 10.3389/fonc.2020.604051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancers (TC) have increasingly been detected following advances in diagnostic methods. Risk stratification guided by refined information becomes a crucial step toward the goal of personalized medicine. The diagnosis of TC mainly relies on imaging analysis, but visual examination may not reveal much information and not enable comprehensive analysis. Artificial intelligence (AI) is a technology used to extract and quantify key image information by simulating complex human functions. This latent, precise information contributes to stratify TC on the distinct risk and drives tailored management to transit from the surface (population-based) to a point (individual-based). In this review, we started with several challenges regarding personalized care in TC, for example, inconsistent rating ability of ultrasound physicians, uncertainty in cytopathological diagnosis, difficulty in discriminating follicular neoplasms, and inaccurate prognostication. We then analyzed and summarized the advances of AI to extract and analyze morphological, textural, and molecular features to reveal the ground truth of TC. Consequently, their combination with AI technology will make individual medical strategies possible.
Collapse
Affiliation(s)
- Ling-Rui Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bo Du
- School of Computer Science, Wuhan University, Wuhan, China.,Institute of Artificial Intelligence, Wuhan University, Wuhan, China
| | - Han-Qing Liu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|