1
|
Hasler SW, Bernchou U, Behrens CP, Vogelius IR, Bisgaard ALH, Jokivuolle M, Bertelsen AS, Schytte T, Brink C, Mahmood F. Impact of geometric correction on echo-planar imaging-based apparent diffusion coefficient maps for abdominal radiotherapy. Biomed Phys Eng Express 2024; 10:065010. [PMID: 39214123 DOI: 10.1088/2057-1976/ad7597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Objective. The apparent diffusion coefficient (ADC) extracted from diffusion-weighted magnetic resonance imaging (DWI) is a potential biomarker in radiotherapy (RT). DWI is often implemented with an echo-planar imaging (EPI) read-out due to speed, but unfortunately low geometric accuracy follows. This study aimed to investigate the influence of geometric distortions on the ADCs extracted from the gross tumor volume (GTV) and on the shape of the GTV in abdominal EPI-DWI.Approach. Twenty-one patients had EPI-DWI scans on a 1.5 T MRI sim before treatment and on a 1.5 T MRI-Linac at one of the first treatment fractions. Off-resonance correction with and without eddy current correction were applied to ADC maps. The clinical GTVs were deformed based on the same (but inverted) corrections to assess the local-regional geometric influence of distortions. Mean surface distance (MSD), Hausdorff distance (HD), and Dice similarity coefficient (DSC) were calculated to compare the original and distorted GTVs, and ADC values were calculated based on a mono-exponential model. Phantom measurements were performed to validate the applied correction method.Main results. The median (range) ADC change within the GTV after full distortion correction was 1.3% (0.02%-6.9%) for MRI-Sim and 1.5% (0.1%-6.4%) for MRI-Linac. The additional effect of the eddy current correction was small in both systems. The median (range) MSD, HD, and DSC comparing the original and off-resonance distorted GTVs for all patients were 0.43 mm (0.11-0.94 mm), 4.00 mm (1.00-7.81 mm) and 0.93 (0.82-0.99), respectively.Significance. Overall effect of distortion correction was small in terms of derived ADC values, indicating that distortion correction is unimportant for prediction of outcomes based on ADC. However, large local geometric changes occurred after off-resonance distortion correction for some patients, suggesting that if the spatial information from ADC maps is to be used for dose painting strategies, corrections should be applied.
Collapse
Affiliation(s)
- Signe Winther Hasler
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Uffe Bernchou
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Claus Preibisch Behrens
- Department of Oncology, Herlev and Gentofte Hospital, Herlev, Denmark
- Department of Health Technology, Technical University of Denmark, Roskilde, Denmark
| | - Ivan Richter Vogelius
- Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Anne L H Bisgaard
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Minea Jokivuolle
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | | | - Tine Schytte
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
- Department of Oncology, Odense University Hospital, Odense, Denmark
| | - Carsten Brink
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| | - Faisal Mahmood
- Laboratory of Radiation Physics, Department of Oncology, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
2
|
Wallimann P, Piccirelli M, Nowakowska S, Armstrong T, Mayinger M, Boss A, Bink A, Guckenberger M, Tanadini-Lang S, Andratschke N, Pouymayou B. Validation of echo planar imaging based diffusion-weighted magnetic resonance imaging on a 0.35 T MR-Linac. Phys Imaging Radiat Oncol 2024; 30:100579. [PMID: 38707628 PMCID: PMC11068927 DOI: 10.1016/j.phro.2024.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/08/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Background and Purpose The feasibility of acquiring diffusion-weighted imaging (DWI) images on an MR-Linac for quantitative response assessment during radiotherapy was explored. DWI data obtained with a Spin Echo Echo Planar Imaging sequence adapted for a 0.35 T MR-Linac were examined and compared with DWI data from a conventional 3 T scanner. Materials and Methods Apparent diffusion coefficient (ADC) measurements and a distortion correction technique were investigated using DWI-calibrated phantoms and in the brains of seven volunteers. All DWI utilized two phase-encoding directions for distortion correction and off-resonance field estimation. ADC maps in the brain were analyzed for automatically segmented normal tissues. Results Phantom ADC measurements on the MR-Linac were within a 3 % margin of those recorded by the 3 T scanner. The maximum distortion observed in the phantom was 2.0 mm prior to correction and 1.1 mm post-correction on the MR-Linac, compared to 6.0 mm before correction and 3.6 mm after correction at 3 T. In vivo, the average ADC values for gray and white matter exhibited variations of 14 % and 4 %, respectively, for different selections of b-values on the MR-Linac. Distortions in brain images before correction, estimated through the off-resonance field, reached 2.7 mm on the MR-Linac and 12 mm at 3 T. Conclusion Accurate ADC measurements are achievable on a 0.35 T MR-Linac, both in phantom and in vivo. The selection of b-values significantly influences ADC values in vivo. DWI on the MR-Linac demonstrated lower distortion levels, with a maximum distortion reduced to 1.1 mm after correction.
Collapse
Affiliation(s)
- Philipp Wallimann
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marco Piccirelli
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Sylwia Nowakowska
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tess Armstrong
- ViewRay Inc., 2 Thermo Fisher Way, Oakwood Village, OH 44146, USA
| | - Michael Mayinger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Boss
- Institute for Diagnostic and Interventional Radiology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andrea Bink
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Bertrand Pouymayou
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Mittauer KE, Tolakanahalli R, Kotecha R, Chuong MD, Mehta MP, Gutierrez AN, Bassiri N. Commissioning Intracranial Stereotactic Radiosurgery for a Magnetic Resonance-Guided Radiation Therapy (MRgRT) System: MR-RT Localization and Dosimetric End-to-End Validation. Int J Radiat Oncol Biol Phys 2024; 118:512-524. [PMID: 37793574 DOI: 10.1016/j.ijrobp.2023.08.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 08/04/2023] [Accepted: 08/13/2023] [Indexed: 10/06/2023]
Abstract
PURPOSE This is the first reporting of the MRIdian A3iTM intracranial package (BrainTxTM) and benchmarks the end-to-end localization and dosimetric accuracy for commissioning an magnetic resonace (MR)-guided stereotactic radiosurgery program. We characterized the localization accuracy between MR and radiation (RT) isocenter through an end-to-end hidden target test, relative dose profile intercomparison, and absolute dose validation. METHODS AND MATERIALS BrainTx consists of a dedicated head coil, integrated mask immobilization system, and high-resolution MR sequences. Coil and baseplate attenuation was quantified. An in-house phantom (Cranial phantOm foR magNetic rEsonance Localization of a stereotactIc radiosUrgery doSimeter, CORNELIUS) was developed from a mannequin head filled with silicone gel, film, and MR BB with pinprick. A hidden target test evaluated MR-RT localization of the 1×1×1 mm3 TrueFISP MR and relative dose accuracy in film for a 1 cm diameter (International Electrotechnical Commission (IEC)-X/IEC-Y) and 1.5 cm diameter (IEC-Y/IEC-Z) spherical target. Two clinical cases (irregular-shaped target and target abutting brainstem) were mapped to the CORNELIUS phantom for feasibility assessment. A 2-dimensional (2D)-gamma compared calculated and measured dose for spherical and clinical targets with 1 mm/1% and 2 mm/2% criteria, respectively. A small-field chamber (A26MR) measured end-to-end absolute dose for a 1 cm diameter target. RESULTS Coil and baseplate attenuation were 0.7% and 2.7%, respectively. The displacement of MR to RT localization as defined through the pinprick was 0.49 mm (IEC-X), 0.27 mm (IEC-Y), and 0.51 mm (IEC-Z) (root mean square 0.76 mm). The reproducibility across IEC-Y demonstrated high fidelity (<0.02 mm). Gamma pass rates were 97.1% and 95.4% for 1 cm and 1.5 cm targets, respectively. Dose profiles for an irregular-shaped target and abutting organ-at-risk-target demonstrated pass rates of 99.0% and 92.9%, respectively. The absolute end-to-end dose difference was <1%. CONCLUSIONS All localization and dosimetric evaluation demonstrated submillimeter accuracy, per the TG-142, TG-101, MPPG 9.a. criteria for SRS/SRT systems, indicating acceptable delivery capabilities with a 1 mm setup margin.
Collapse
Affiliation(s)
- Kathryn E Mittauer
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida.
| | - Ranjini Tolakanahalli
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Michael D Chuong
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Alonso N Gutierrez
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Nema Bassiri
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida; Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
4
|
Marage L, Walker PM, Boudet J, Fau P, Debuire P, Clausse E, Petitfils A, Aubignac L, Rapacchi S, Bessieres I. Characterisation of a split gradient coil design induced systemic imaging artefact on 0.35 T MR-linac systems. Phys Med Biol 2022; 68. [PMID: 36579811 DOI: 10.1088/1361-6560/aca876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
Objective. The aim of this work was to highlight and characterize a systemic 'star-like' artefact inherent to the low field 0.35 T MRIdian MR-linac system, a magnetic resonance guided radiotherapy device. This artefact is induced by the original split gradients coils design. This design causes a surjection of the intensity gradient inZ(or head-feet) direction. This artefact appears on every sequence with phase encoding in the head-feet direction.Approach. Basic gradient echo sequence and clinical mandatory bSSFP sequence were used. Three setups using manufacturer provided QA phantoms were designed: two including the linearity control grid used for the characterisation and a third including two homogeneity control spheres dedicated to the artefact management in a more clinical like situation. The presence of the artefact was checked in four different MRidian sites. The tested parameters based on the literature were: phase encoding orientation, slab selectivity, excitation bandwidth (BWRF), acceleration factor (R) and phase/slab oversampling (PO/SO).Main results. The position of this artefact is constant and reproducible over the tested MRIdian sites. The typical singularity saturated dot or star is visible even with the 3D slab-selection enabled. A management is proposed by decreasing the BWRF, theRin head-feet direction and increasing the PO/SO. The oversampling can be optimized using a formula to anticipate the location of artefact in the field of view.Significance. The star-like artefact has been well characterised. A manageable solution comes at the cost of acquisition time. Observed in clinical cases, the artefact may degrade the images used for the RT planning and repositioning during the treatment unless corrected.
Collapse
Affiliation(s)
- Louis Marage
- Service de physique médicale, Centre Georges-François Leclerc, Dijon, France
| | | | - Julien Boudet
- Service de physique médicale, Centre Georges-François Leclerc, Dijon, France
| | - Pierre Fau
- Service de Radiothérapie, Institut Paoli-Calmettes, Marseille, France
| | - Pierre Debuire
- Département de radiophysique, CRLC Val-d'Aurelle-Paul-Lamarque, Montpellier, France
| | - Emmanuelle Clausse
- Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Service de Radiothérapie Oncologique, Paris, France
| | - Aurélie Petitfils
- Service de physique médicale, Centre Georges-François Leclerc, Dijon, France
| | - Léone Aubignac
- Service de physique médicale, Centre Georges-François Leclerc, Dijon, France
| | | | - Igor Bessieres
- Service de physique médicale, Centre Georges-François Leclerc, Dijon, France
| |
Collapse
|