1
|
Li S, Zhou Z, Wu S, Wu W. A Review of Quantitative Ultrasound-Based Approaches to Thermometry and Ablation Zone Identification Over the Past Decade. ULTRASONIC IMAGING 2022; 44:213-228. [PMID: 35993226 DOI: 10.1177/01617346221120069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Percutaneous thermal therapy is an important clinical treatment method for some solid tumors. It is critical to use effective image visualization techniques to monitor the therapy process in real time because precise control of the therapeutic zone directly affects the prognosis of tumor treatment. Ultrasound is used in thermal therapy monitoring because of its real-time, non-invasive, non-ionizing radiation, and low-cost characteristics. This paper presents a review of nine quantitative ultrasound-based methods for thermal therapy monitoring and their advances over the last decade since 2011. These methods were analyzed and compared with respect to two applications: ultrasonic thermometry and ablation zone identification. The advantages and limitations of these methods were compared and discussed, and future developments were suggested.
Collapse
Affiliation(s)
- Sinan Li
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Zhuhuang Zhou
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shuicai Wu
- Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Weiwei Wu
- College of Biomedical Engineering, Capital Medical University, Beijing, China
| |
Collapse
|
2
|
Takeuchi M, Sakai T, Andocs G, Takanaka T, Taka M, Yamashita K, Kawahara M, Nojiri T, Tanaka A, Norishima A, Omoto Y, Omura M, Nagaoka R, Takao K, Hasegawa H. Statistical Analysis of Ultrasonic Scattered Echoes Enables the Non-invasive Measurement of Temperature Elevations inside Tumor Tissue during Oncological Hyperthermia. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:3301-3309. [PMID: 34446333 DOI: 10.1016/j.ultrasmedbio.2021.07.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/21/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Non-invasive monitoring of temperature elevations inside tumor tissue is imperative for the oncological thermotherapy known as hyperthermia. In the present study, two cancer patients, one with a developing right renal cell carcinoma and the other with pseudomyxoma peritonei, underwent hyperthermia. The two patients were irradiated with radiofrequency current for 40 min during hyperthermia. We report the results of our clinical trial study in which the temperature increases inside the tumor tissues of patients with right renal cell carcinoma and pseudomyxoma peritonei induced by radiofrequency current irradiation for 40 min could be detected by statistical analysis of ultrasonic scattered echoes. The Nakagami shape parameter m varies depending on the temperature of the medium. We calculated the Nakagami shape parameter m by statistical analysis of the ultrasonic echoes scattered from the tumor tissues. The temperature elevations inside the tumor tissues were expressed as increases in brightness on 2-D hot-scale maps of the specific parameter αmod, indicating the absolute values of the percentage changes in m values. In the αmod map for each tumor tissue, the brightness clearly increased with treatment time. In quantitative analysis, the mean values of αmod were calculated. The mean value of αmod for the right renal cell carcinoma increased to 1.35 dB with increasing treatment time, and the mean value of αmod for pseudomyxoma peritonei increased to 1.74 with treatment time. The increase in both αmod brightness and the mean value of αmod implied temperature elevations inside the tumor tissues induced by the radiofrequency current; thus, the acoustic method is promising for monitoring temperature elevations inside tumor tissues during hyperthermia.
Collapse
Affiliation(s)
- Michio Takeuchi
- Tateyama Kagaku Co., Ltd., Toyama, Toyama, Japan; Life Science Research Center, University of Toyama, Toyama, Toyama, Japan
| | | | - Gabor Andocs
- Tateyama Machine Co., Ltd., Toyama, Toyama, Japan; Department of Radiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | | | - Masashi Taka
- Kouseiren Takaoka Hospital, Takaoka, Toyama, Japan
| | | | | | | | - Asaka Tanaka
- Kouseiren Takaoka Hospital, Takaoka, Toyama, Japan
| | | | - Yoshitaka Omoto
- Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Masaaki Omura
- Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Ryo Nagaoka
- Faculty of Engineering, University of Toyama, Toyama, Toyama, Japan
| | - Keizo Takao
- Life Science Research Center, University of Toyama, Toyama, Toyama, Japan; Department of Behavioral Physiology, Faculty of Medicine, University of Toyama, Toyama, Toyama, Japan
| | | |
Collapse
|
3
|
Yamaguchi T. Basic concept and clinical applications of quantitative ultrasound (QUS) technologies. J Med Ultrason (2001) 2021; 48:391-402. [PMID: 34669072 PMCID: PMC8578064 DOI: 10.1007/s10396-021-01139-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023]
Abstract
In the field of clinical ultrasound, the full digitalization of diagnostic equipment in the 2000s enabled the technological development of quantitative ultrasound (QUS), followed by multiple diagnostic technologies that have been put into practical use in recent years. In QUS, tissue characteristics are quantified and parameters are calculated by analyzing the radiofrequency (RF) echo signals returning to the transducer. However, the physical properties (and pathological level structure) of the biological tissues responsible for the imaging features and QUS parameters have not been sufficiently verified as there are various conditions for observing living tissue with ultrasound and inevitable discrepancies between theoretical and actual measurements. A major issue of QUS in clinical application is that the evaluation results depend on the acquisition conditions of the RF echo signal as the source of the image information, and also vary according to the model of the diagnostic device. In this paper, typical examples of QUS techniques for evaluating attenuation, speed of sound, amplitude envelope characteristics, and backscatter coefficient in living tissues are introduced. Exemplary basic research and clinical applications related to these technologies, and initiatives currently being undertaken to establish the QUS method as a true tissue characterization technology, are also discussed.
Collapse
Affiliation(s)
- Tadashi Yamaguchi
- grid.136304.30000 0004 0370 1101Center for Frontier Medical Engineering, Chiba University, 1-33 Yayoicho, Inage, Chiba 2638522 Japan
| |
Collapse
|