Yang S, Wang Y, Ai D, Geng H, Zhang D, Xiao D, Song H, Li M, Yang J. Augmented Reality Navigation System for Biliary Interventional Procedures With Dynamic Respiratory Motion Correction.
IEEE Trans Biomed Eng 2024;
71:700-711. [PMID:
38241137 DOI:
10.1109/tbme.2023.3316290]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
OBJECTIVE
Biliary interventional procedures require physicians to track the interventional instrument tip (Tip) precisely with X-ray image. However, Tip positioning relies heavily on the physicians' experience due to the limitations of X-ray imaging and the respiratory interference, which leads to biliary damage, prolonged operation time, and increased X-ray radiation.
METHODS
We construct an augmented reality (AR) navigation system for biliary interventional procedures. It includes system calibration, respiratory motion correction and fusion navigation. Firstly, the magnetic and 3D computed tomography (CT) coordinates are aligned through system calibration. Secondly, a respiratory motion correction method based on manifold regularization is proposed to correct the misalignment of the two coordinates caused by respiratory motion. Thirdly, the virtual biliary, liver and Tip from CT are overlapped to the corresponding position of the patient for dynamic virtual-real fusion.
RESULTS
Our system is respectively evaluated and achieved an average alignment error of 0.75 ± 0.17 mm and 2.79 ± 0.46 mm on phantoms and patients. The navigation experiments conducted on phantoms achieve an average Tip positioning error of 0.98 ± 0.15 mm and an average fusion error of 1.67 ± 0.34 mm after correction.
CONCLUSION
Our system can automatically register the Tip to the corresponding location in CT, and dynamically overlap the 3D virtual model onto patients to provide accurate and intuitive AR navigation.
SIGNIFICANCE
This study demonstrates the clinical potential of our system by assisting physicians during biliary interventional procedures. Our system enables dynamic visualization of virtual model on patients, reducing the reliance on contrast agents and X-ray usage.
Collapse