1
|
Zhong H, Pursley JM, Rong Y. Deformable dose accumulation is required for adaptive radiotherapy practice. J Appl Clin Med Phys 2024; 25:e14457. [PMID: 39031438 DOI: 10.1002/acm2.14457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Affiliation(s)
- Hualiang Zhong
- Department of Radiation Oncology, Medical College of Wisconsin, MILWAUKEE, Wisconsin, USA
| | - Jennifer M Pursley
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yi Rong
- Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA
| |
Collapse
|
2
|
Pöttgen C, Hoffmann C, Gauler T, Guberina M, Guberina N, Ringbaek T, Santiago Garcia A, Krafft U, Hadaschik B, Khouya A, Stuschke M. Fractionation versus Adaptation for Compensation of Target Volume Changes during Online Adaptive Radiotherapy for Bladder Cancer: Answers from a Prospective Registry. Cancers (Basel) 2023; 15:4933. [PMID: 37894299 PMCID: PMC10605897 DOI: 10.3390/cancers15204933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Online adaptive radiotherapy (ART) allows adaptation of the dose distribution to the anatomy captured by with pre-adaptation imaging. ART is time-consuming, and thus intra-fractional deformations can occur. This prospective registry study analyzed the effects of intra-fraction deformations of clinical target volume (CTV) on the equivalent uniform dose (EUDCTV) of focal bladder cancer radiotherapy. Using margins of 5-10 mm around CTV on pre-adaptation imaging, intra-fraction CTV-deformations found in a second imaging study reduced the 10th percentile of EUDCTV values per fraction from 101.1% to 63.2% of the prescribed dose. Dose accumulation across fractions of a series was determined with deformable-image registration and worst-case dose accumulation that maximizes the correlation of cold spots. A strong fractionation effect was demonstrated-the EUDCTV was above 95% and 92.5% as determined by the two abovementioned accumulation methods, respectively, for all series of dose fractions. A comparison of both methods showed that the fractionation effect caused the EUDCTV of a series to be insensitive to EUDCTV-declines per dose fraction, and this could be explained by the small size and spatial variations of cold spots. Therefore, ART for each dose fraction is unnecessary, and selective ART for fractions with large inter-fractional deformations alone is sufficient for maintaining a high EUDCTV for a radiotherapy series.
Collapse
Affiliation(s)
- Christoph Pöttgen
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Christian Hoffmann
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Thomas Gauler
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Maja Guberina
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Nika Guberina
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Toke Ringbaek
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Alina Santiago Garcia
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Ulrich Krafft
- Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany (B.H.)
| | - Boris Hadaschik
- Department of Urology, University of Duisburg-Essen, 45147 Essen, Germany (B.H.)
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Aymane Khouya
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
| | - Martin Stuschke
- Department of Radiotherapy, University of Duisburg-Essen, Hufelandstr. 55, 45147 Essen, Germany
- German Cancer Consortium (DKTK), Partner Site University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
3
|
Dong Y, Hu P, Li X, Liu W, Yan B, Yang F, Ford JC, Portelance L, Yang Y. Dosimetry impact of distinct gating strategies in cine MR image-guided breath-hold pancreatic cancer radiotherapy. J Appl Clin Med Phys 2023; 24:e14078. [PMID: 37335543 PMCID: PMC10562039 DOI: 10.1002/acm2.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/12/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023] Open
Abstract
PURPOSE To investigate the dosimetry effects of different gating strategies in cine magnetic resonance imaging (MRI)-guided breath-hold pancreatic cancer radiotherapy. METHODS Two cine MRI-based gating strategies were investigated: a tumor contour-based gating strategy at a gating threshold of 0-5% and a tumor displacement-based gating strategy at a gating threshold of 3-5 mm. The cine MRI videos were obtained from 17 pancreatic cancer patients who received MRI-guided radiation therapy. We calculated the tumor displacement in each cine MR frame that satisfied the gating threshold and obtained the proportion of frames with different displacements. We generated IMRT and VMAT plans using a 33 Gy prescription, and motion plans were generated by adding up all isocenter-shift plans corresponding to different tumor displacements. The dose parameters of GTV, PTV, and organs at risk (OAR) were compared between the original and motion plans. RESULTS In both gating strategies, the difference was significant in PTV coverage but not in GTV coverage between the original and motion plans. OAR dose parameters deteriorate with increasing gating threshold. The beam duty cycle increased from 19.5±14.3% (median 18.0%) to 60.8±15.6% (61.1%) for gating thresholds from 0% to 5% in tumor contour-based gating and from 51.7±11.5% (49.7%) to 67.3±12.4% (67.1%) for gating thresholds from 3 to 5 mm in tumor displacement-based gating. CONCLUSION In tumor contour-based gating strategy, the dose delivery accuracy deteriorates while the dose delivery efficiency improves with increasing gating thresholds. To ensure treatment efficiency, the gating threshold might be no less than 3%. A threshold up to 5% may be acceptable in terms of the GTV coverage. The displacement-based gating strategy may serve as a potential alternative to the tumor contour based gating strategy, in which the gating threshold of approximately 4 mm might be a good choice for reasonably balancing the dose delivery accuracy and efficiency.
Collapse
Affiliation(s)
- Yuyan Dong
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
| | - Panpan Hu
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Xiaoyang Li
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Wei Liu
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Bing Yan
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| | - Fei Yang
- The Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | | | | | - Yidong Yang
- Department of Engineering and Applied PhysicsUniversity of Science and Technology of ChinaHefeiAnhuiChina
- Department of Radiation Oncologythe First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
4
|
Murr M, Brock KK, Fusella M, Hardcastle N, Hussein M, Jameson MG, Wahlstedt I, Yuen J, McClelland JR, Vasquez Osorio E. Applicability and usage of dose mapping/accumulation in radiotherapy. Radiother Oncol 2023; 182:109527. [PMID: 36773825 DOI: 10.1016/j.radonc.2023.109527] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023]
Abstract
Dose mapping/accumulation (DMA) is a topic in radiotherapy (RT) for years, but has not yet found its widespread way into clinical RT routine. During the ESTRO Physics workshop 2021 on "commissioning and quality assurance of deformable image registration (DIR) for current and future RT applications", we built a working group on DMA from which we present the results of our discussions in this article. Our aim in this manuscript is to shed light on the current situation of DMA in RT and to highlight the issues that hinder consciously integrating it into clinical RT routine. As a first outcome of our discussions, we present a scheme where representative RT use cases are positioned, considering expected anatomical variations and the impact of dose mapping uncertainties on patient safety, which we have named the DMA landscape (DMAL). This tool is useful for future reference when DMA applications get closer to clinical day-to-day use. Secondly, we discussed current challenges, lightly touching on first-order effects (related to the impact of DIR uncertainties in dose mapping), and focusing in detail on second-order effects often dismissed in the current literature (as resampling and interpolation, quality assurance considerations, and radiobiological issues). Finally, we developed recommendations, and guidelines for vendors and users. Our main point include: Strive for context-driven DIR (by considering their impact on clinical decisions/judgements) rather than perfect DIR; be conscious of the limitations of the implemented DIR algorithm; and consider when dose mapping (with properly quantified uncertainties) is a better alternative than no mapping.
Collapse
Affiliation(s)
- Martina Murr
- Section for Biomedical Physics, Department of Radiation Oncology, University of Tübingen, Germany.
| | - Kristy K Brock
- Department of Imaging Physics and Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, USA
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Nicholas Hardcastle
- Physical Sciences, Peter MacCallum Cancer Centre & Sir Peter MacCallum Department of Oncology, University of Melbourne, Australia
| | - Mohammad Hussein
- Metrology for Medical Physics Centre, National Physical Laboratory, Teddington, United Kingdom
| | - Michael G Jameson
- GenesisCare New South Wales, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Australia
| | - Isak Wahlstedt
- Department of Health Technology, Technical University of Denmark, Anker Engelunds Vej 1, Bygning 101A, 2800 Kongens Lyngby, Denmark; Department of Oncology, Centre for Cancer and Organ Diseases, Copenhagen University Hospital - Rigshospitalet (RH), Blegdamsvej 9, 2100 Copenhagen, Denmark; Department of Oncology, Copenhagen University Hospital - Herlev and Gentofte (HGH), Borgmester Ib Juuls Vej 7, 2730 Herlev, Denmark
| | - Johnson Yuen
- St George Hospital Cancer Care Centre, Kogarah, NSW 2217, Australia; South Western Clinical School, University of New South Wales, Sydney, Australia; Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
| | - Jamie R McClelland
- Centre for Medical Image Computing and Wellcome/EPSRC Centre for Interventional and Surgical Sciences, Dept of Medical Physics and Biomedical Engineering, UCL, United Kingdom
| | - Eliana Vasquez Osorio
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M20 4BX Manchester, United Kingdom
| |
Collapse
|
5
|
Dossun C, Niederst C, Noel G, Meyer P. Evaluation of DIR algorithm performance in real patients for radiotherapy treatments: A systematic review of operator-dependent strategies. Phys Med 2022; 101:137-157. [PMID: 36007403 DOI: 10.1016/j.ejmp.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/15/2022] Open
Abstract
PURPOSE The performance of deformable medical image registration (DIR) algorithms has become a major concern. METHODS We aimed to obtain updated information on DIR algorithm performance quantification through a literature review of articles published between 2010 and 2022. We focused only on studies using operator-based methods to treat real patients. The PubMed, Google Scholar and Embase databases were searched following PRISMA guidelines. RESULTS One hundred and seven articles were identified. The mean number of patients and registrations per publication was 20 and 63, respectively. We found 23 different geometric metrics appearing at least twice, and the dosimetric impact of DIR was quantified in 32 articles. Forty-eight different at-risk organs were described, and target volumes were studied in 43 publications. Prostate, head-and-neck and thoracic locations represented more than ¾ of the studied locations. We summarized the type of DIR and the images used, and other key elements. Intra/interobserver variability, threshold values and the correlation between metrics were also discussed. CONCLUSIONS This literature review covers the past decade and should facilitate the implementation of DIR algorithms in clinical practice by providing practical and pertinent information to quantify their performance on real patients.
Collapse
Affiliation(s)
- C Dossun
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France
| | - C Niederst
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France
| | - G Noel
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France
| | - P Meyer
- Department of Radiotherapy, Institut de Cancerologie Strasbourg Europe (ICANS), Strasbourg, France; ICUBE, CNRS UMR 7357, Team IMAGES, Strasbourg, France.
| |
Collapse
|
6
|
Hu P, Li X, Liu W, Yan B, Xue X, Yang F, Ford JC, Portelance L, Yang Y. Dosimetry impact of gating latency in cine magnetic resonance image guided breath-hold pancreatic cancer radiotherapy. Phys Med Biol 2022; 67. [PMID: 35144247 DOI: 10.1088/1361-6560/ac53e0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/10/2022] [Indexed: 12/31/2022]
Abstract
Objective.We investigated dosimetry effect of gating latency in cine magnetic resonance image (cine MRI) guided breath-hold pancreatic cancer radiotherapy.Approach.The gating latency was calculated based on cine MRI obtained from 17 patients who received MRI guided radiotherapy. Because of the cine MRI-related latency, beam overshoot occurs when beam remains on while the tracking target already moves out of the target boundary. The number of beam on/off events was calculated from the cine MRI data. We generated both IMRT and VMAT plans for all 17 patients using 33 Gy prescription, and created motion plans by applying isocenter shift that corresponds to motion-induced tumor displacement. The GTV and PTV coverage and dose to nearby critical structures were compared between the motion and original plan to evaluate the dosimetry change caused by cine MRI latency.Main results.The time ratio of cine MRI imaging latency over the treatment duration is 6.6 ± 3.1%, the mean and median percentage of beam-on events <4 s are 67.0 ± 14.3% and 66.6%. When a gating boundary of 4 mm and a target-out threshold of 5% is used, there is no significant difference for GTV V33Gy between the motion and original plan (p = 0.861 and 0.397 for IMRT and VMAT planning techniques, respectively). However, the PTV V33Gy and stomach Dmax for the motion plans are significantly lower; duodenum V12.5 Gy and V18Gy are significantly higher when compared with the original plans, for both IMRT and VMAT planning techniques.Significance.The cine MRI gating latency can significantly decrease the dose delivered to the PTV, and increase the dose to the nearby critical structures. However, no significant difference is observed for the GTV coverage. The dosimetry impact can be mitigated by implementing additional beam-on control techniques which reduces unnecessary beam on events and/or by using faster cine MRI sequences which reduces the latency period.
Collapse
Affiliation(s)
- Panpan Hu
- Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xiaoyang Li
- Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Wei Liu
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Bing Yan
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China
| | - Xudong Xue
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Fei Yang
- Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| | - John Chetley Ford
- Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| | - Lorraine Portelance
- Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| | - Yidong Yang
- Department of Engineering and Applied Physics, School of Physical Sciences, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, People's Republic of China.,Department of Radiation Oncology, The Miller School of Medicine, University of Miami, Miami, United States of America
| |
Collapse
|