1
|
Hrbacek J, Kacperek A, Beenakker JWM, Mortimer L, Denker A, Mazal A, Shih HA, Dendale R, Slopsema R, Heufelder J, Mishra KK. PTCOG Ocular Statement: Expert Summary of Current Practices and Future Developments in Ocular Proton Therapy. Int J Radiat Oncol Biol Phys 2024; 120:1307-1325. [PMID: 38971383 DOI: 10.1016/j.ijrobp.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 07/08/2024]
Abstract
Although rare cancers, ocular tumors are a threat to vision, quality of life, and potentially life expectancy of a patient. Ocular proton therapy (OPT) is a powerful tool for successfully treating this disease. The Particle Therapy Co-Operative Ocular Group) formulated an Evidence and Expert-Based Executive Summary of Current Practices and Future Developments in OPT: comparative dosimetric and clinical analysis with the different OPT systems is essential to set up planning guidelines, implement best practices, and establish benchmarks for eye preservation, vision, and quality of life measures. Contemporary prospective trials in select subsets of patients (eg, tumors near the optic disc and/or macula) may allow for dosimetric and clinical analysis between different radiation modalities and beamline systems to evaluate differences in radiation delivery and penumbra, and resultant tumor control, normal tissue complication rates, and overall clinical cost-effectiveness. To date, the combination of multimodal imaging (fundus photography, ultrasound, etc), ophthalmologist assessment, and clip surgery with radiation planning have been keys to successful treatment. Increased use of three-dimensional imaging (computed tomography/magnetic resonance imaging) is anticipated although its spatial resolution might be a limiting factor (eg, detection of flat diffuse tumor parts). Commercially produced ocular treatment-planning systems are under development and their future use is expected to expand across OPT centers. Future continuity of OPT will depend on the following: (1) maintaining and upgrading existing older dedicated low-energy facilities, (2) maintaining shared, degraded beamlines at large proton therapy centers, and (3) developing adapted gantry beams of sufficient quality to maintain the clinical benefits of sharp beam conformity. Option (1) potentially offers the sharpest beams, minimizing impact on healthy tissues, whereas (2) and (3) potentially offer the advantage of substantial long-term technical support and development as well as the introduction of new approaches. Significant patient throughputs and close cooperation between medical physics, ophthalmology, and radiation therapy, underpinned by mutual understanding, is crucial for a successful OPT service.
Collapse
Affiliation(s)
- Jan Hrbacek
- Center for Proton Therapy, Paul Scherrer Institute, Villigen, Switzerland.
| | | | - Jan-Willem M Beenakker
- Department of Ophthalmology, Leiden University Medical Center, Leiden, Netherlands; Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, Netherlands; Department of Radiation Oncology, Leiden University Medical Center, Leiden, Netherlands; HollandPTC, Delft, Netherlands
| | - Linda Mortimer
- Medical Physics Department, The Clatterbridge Cancer Centre NHS Foundation Trust, Birkenhead, United Kingdom
| | - Andrea Denker
- Helmholtz-Zentrum Berlin für Materialien und Energie, Proton Therapy (BE-APT), Berlin, Germany
| | - Alejandro Mazal
- Medical Physics Service, Centro de Protonterapia Quironsalud, Madrid, Spain
| | - Helen A Shih
- Harvard Medical School, Boston, Massachusetts; Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Remi Dendale
- Institut Curie Protontherapy Center, Orsay, France
| | - Roelf Slopsema
- Department of Radiation Oncology, Emory Proton Therapy Center, Atlanta, Georgia
| | - Jens Heufelder
- Department of Ophthalmology, Charité - Universitätsmedizin Berlin, BerlinProtonen am HZB, Berlin, Germany
| | - Kavita K Mishra
- Proton Ocular Radiation Therapy Program, Department of Radiation Oncology, Osher Center for Integrative Health, Osher Foundation Endowed Chair in Clinical Programs in Integrative Health, University of California San Francisco, San Francisco, California
| |
Collapse
|
2
|
Björkman D, Via R, Lomax A, De Prado M, Baroni G, Weber DC, Hrbacek J. The effect of intra- and inter-fractional motion on target coverage and margins in proton therapy for uveal melanoma. Phys Med Biol 2024; 69:215038. [PMID: 39357536 DOI: 10.1088/1361-6560/ad8297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/02/2024] [Indexed: 10/04/2024]
Abstract
Introduction.This study aims to assess the effective lateral margin requirements for target coverage in ocular proton therapy (OPT), considering the unique challenges posed by eye motion and hypofractionation. It specifically addresses the previously unaccounted-for uncertainty contribution of intra-fractional motion, in conjunction with setup uncertainties, on dosimetric determination of lateral margin requirements.Method.The methodology integrates dose calculations from the in-house developed treatment planning system OCULARIS with measured intra-fractional motion, patient models from EyePlan and Monte Carlo (MC) sampling of setup uncertainties. The study is conducted on 16 uveal melanoma patients previously treated in the OPTIS2 treatment room at the Paul Scherrer Institute (PSI).Result.The retrospective simulation analysis highlights a significant impact of non-systematic factors on lateral margin requirements in OPT. Simulations indicate that reducing the 2.5 mm clinical lateral margin, represented by a 2.1 mm margin in this work, would have resulted in inadequate target coverage for two patients, revealing a greater impact of non-systematic factors on lateral margin requirements.Conclusions.This work characterizes intra-fractional motion in 16 OPT patients and identifies limitations of clinical margin selection protocols for OPT applications. A novel framework was introduced to assess margin sufficiency for target coverage. The findings suggest that prior research underestimated non-systematic factors and overestimated systematic contributions to lateral margin components. This re-evaluation highlights the critical need to prioritize the management of non-systematic uncertainty contributions in OPT.
Collapse
Affiliation(s)
- Daniel Björkman
- Center for Proton Therapy (CPT), Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Riccardo Via
- Center for Proton Therapy (CPT), Paul Scherrer Institute, Villigen, Switzerland
| | - Antony Lomax
- Center for Proton Therapy (CPT), Paul Scherrer Institute, Villigen, Switzerland
- Department of Physics, Eidgenössische Technische Hochschule (ETH), Zürich, Switzerland
| | - Maria De Prado
- Center for Proton Therapy (CPT), Paul Scherrer Institute, Villigen, Switzerland
| | - Guido Baroni
- Department of Electronics Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - D C Weber
- Center for Proton Therapy (CPT), Paul Scherrer Institute, Villigen, Switzerland
- Department of Radiation Oncology, University Hospital of Zürich, Zurich, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jan Hrbacek
- Center for Proton Therapy (CPT), Paul Scherrer Institute, Villigen, Switzerland
| |
Collapse
|
3
|
Klaassen L, Haasjes C, Hol M, Cambraia Lopes P, Spruijt K, van de Steeg-Henzen C, Vu K, Bakker P, Rasch C, Verbist B, Beenakker JW. Geometrical accuracy of magnetic resonance imaging for ocular proton therapy planning. Phys Imaging Radiat Oncol 2024; 31:100598. [PMID: 38993288 PMCID: PMC11234150 DOI: 10.1016/j.phro.2024.100598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/13/2024] Open
Abstract
Background & purpose Magnetic resonance imaging (MRI) is increasingly used in treatment preparation of ocular proton therapy, but its spatial accuracy might be limited by geometric distortions due to susceptibility artefacts. A correct geometry of the MR images is paramount since it defines where the dose will be delivered. In this study, we assessed the geometrical accuracy of ocular MRI. Materials & methods A dedicated ocular 3 T MRI protocol, with localized shimming and increased gradients, was compared to computed tomography (CT) and X-ray images in a phantom and in 15 uveal melanoma patients. The MRI protocol contained three-dimensional T2-weighted and T1-weighted sequences with an isotropic reconstruction resolution of 0.3-0.4 mm. Tantalum clips were identified by three observers and clip-clip distances were compared between T2-weighted and T1-weighted MRI, CT and X-ray images for the phantom and between MRI and X-ray images for the patients. Results Interobserver variability was below 0.35 mm for the phantom and 0.30(T1)/0.61(T2) mm in patients. Mean absolute differences between MRI and reference were below 0.27 ± 0.16 mm and 0.32 ± 0.23 mm for the phantom and in patients, respectively. In patients, clip-clip distances were slightly larger on MRI than on X-ray images (mean difference T1: 0.11 ± 0.38 mm, T2: 0.10 ± 0.44 mm). Differences did not increase at larger distances and did not correlate to interobserver variability. Conclusions A dedicated ocular MRI protocol can produce images of the eye with a geometrical accuracy below half the MRI acquisition voxel (<0.4 mm). Therefore, these images can be used for ocular proton therapy planning, both in the current model-based workflow and in proposed three-dimensional MR-based workflows.
Collapse
Affiliation(s)
- Lisa Klaassen
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
| | - Corné Haasjes
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
| | - Martijn Hol
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | | | | | - Christal van de Steeg-Henzen
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Khanh Vu
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
| | - Pauline Bakker
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Coen Rasch
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Berit Verbist
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- HollandPTC, Delft, the Netherlands
| | - Jan-Willem Beenakker
- Leiden University Medical Center, Department of Ophthalmology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, Leiden, the Netherlands
| |
Collapse
|
4
|
Fleury E, Pignol JP, Kiliç E, Milder M, van Rij C, Naus N, Yavuzyigitoglu S, den Toom W, Zolnay A, Spruijt K, van Vulpen M, Trnková P, Hoogeman M. Comparison of stereotactic radiotherapy and protons for uveal melanoma patients. Phys Imaging Radiat Oncol 2024; 31:100605. [PMID: 39050744 PMCID: PMC11268348 DOI: 10.1016/j.phro.2024.100605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
Background and purpose Uveal melanoma (UM) is the most common primary ocular malignancy. We compared fractionated stereotactic radiotherapy (SRT) with proton therapy, including toxicity risks for UM patients. Materials and methods For a total of 66 UM patients from a single center, SRT dose distributions were compared to protons using the same planning CT. Fourteen dose-volume parameters were compared in 2-Gy equivalent dose per fraction (EQD2). Four toxicity profiles were evaluated: maculopathy, optic-neuropathy, visual acuity impairment (Profile I); neovascular glaucoma (Profile II); radiation-induced retinopathy (Profile III); and dry-eye syndrome (Profile IV). For Profile III, retina Mercator maps were generated to visualize the geographical location of dose differences. Results In 9/66 cases, (14 %) proton plans were superior for all dose-volume parameters. Higher T stages benefited more from protons in Profile I, especially tumors located within 3 mm or less from the optic nerve. In Profile II, only 9/66 cases resulted in a better proton plan. In Profile III, better retina volume sparing was always achievable with protons, with a larger gain for T3 tumors. In Profile IV, protons always reduced the risk of toxicity with a median RBE-weighted EQD2 reduction of 15.3 Gy. Conclusions This study reports the first side-by-side imaging-based planning comparison between protons and SRT for UM patients. Globally, while protons appear almost always better regarding the risk of optic-neuropathy, retinopathy and dry-eye syndrome, for other toxicity like neovascular glaucoma, a plan comparison is warranted. Choice would depend on the prioritization of risks.
Collapse
Affiliation(s)
- Emmanuelle Fleury
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Delft, The Netherlands
| | | | - Emine Kiliç
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
- Erasmus Medical Center, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Maaike Milder
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Caroline van Rij
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Nicole Naus
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
| | | | - Wilhelm den Toom
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | - Andras Zolnay
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
| | | | | | - Petra Trnková
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - Mischa Hoogeman
- Erasmus Medical Center Cancer Institute, University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands
- HollandPTC, Delft, The Netherlands
| |
Collapse
|
5
|
Wulff J, Koska B, Ahmad Khalil D, Richter R, Maximilian Bäcker C, Bäumer C, Foerster A, Bechrakis NE, Timmermann B. Uncertainties in ocular proton planning and their impact on required margins. Phys Med 2024; 121:103358. [PMID: 38643558 DOI: 10.1016/j.ejmp.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 03/11/2024] [Accepted: 04/16/2024] [Indexed: 04/23/2024] Open
Abstract
PURPOSE To review required margins in ocular proton therapy (OPT) based on an uncertainty estimation and to compare them with widely used values. Further, uncertainties when using registered funduscopy images in the 3D model is investigated. METHODS An uncertainty budget in planning and delivery was defined to determine required aperture and range margins. Setup uncertainties were considered for a cohort of treated patients and tested in a worst-case estimation. Other uncertainties were based on a best-guess and knowledge of institutional specifics, e.g. range reproducibility. Margins for funduscopy registration were defined resulting from scaling, rotation and translation of the image. Image formation for a wide-field fundus camera was reviewed and compared to the projection employed in treatment planning systems. RESULTS Values for aperture and range with margins of 2.5 mm as reported in literature could be determined. Aperture margins appear appropriate for setup uncertainties below 0.5 mm, but depend on lateral penumbra. Range margins depend on depth and associated density uncertainty in tissue. Registration of funduscopy images may require margins of >2 mm, increasing towards the equator. Difference in the projection may lead to discrepancies of several mm. CONCLUSIONS The commonly used 2.5 mm aperture margin was validated as an appropriate choice, while range margins could be reduced for lower ranges. Margins may however not include uncertainties in contouring and possible microscopic spread. If a target base is contoured on registered funduscopy images care must be taken as they are subject to larger uncertainties. Multimodal imaging approach in OPT remains advisable.
Collapse
Affiliation(s)
- Jörg Wulff
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany.
| | - Benjamin Koska
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany
| | - Dalia Ahmad Khalil
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Ronald Richter
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany
| | - Claus Maximilian Bäcker
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; German Cancer Consortium (DKTK), Essen, Germany; Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Andreas Foerster
- University Hospital Essen, Essen, Germany; Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Nikolaos E Bechrakis
- University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), Essen, Germany; University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), Essen, Germany; Department of Particle Therapy, Essen, Germany; German Cancer Consortium (DKTK), Essen, Germany
| |
Collapse
|
6
|
Knäusl B, Langgartner L, Stock M, Janson M, Furutani KM, Beltran CJ, Georg D, Resch AF. Requirements for dose calculation on an active scanned proton beamline for small, shallow fields. Phys Med 2023; 113:102659. [PMID: 37598612 DOI: 10.1016/j.ejmp.2023.102659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/18/2023] [Accepted: 08/05/2023] [Indexed: 08/22/2023] Open
Abstract
INTRODUCTION A growing interest in using proton pencil beam scanning in combination with collimators for the treatment of small, shallow targets, such as ocular melanoma or pre-clinical research emerged recently. This study aims at demonstrating that the dose of a synchrotron-based PBS system with a dedicated small, shallow field nozzle can be accurately predicted by a commercial treatment planning system (TPS) following appropriate tuning of both, nozzle and TPS. MATERIALS A removable extension to the clinical nozzle was developed to modify the beam shape passively. Five circular apertures with diameters between 5 to 34mm, mounted 72cm downstream of a range shifter were used. For each collimator treatment plans with spread-out Bragg peaks (SOBP) with a modulation of 3 to 30mm were measured and calculated with GATE/Geant4 and the research TPS RayStation (RS11B-R). The dose grid, multiple coulomb scattering and block discretization resolution were varied to find the optimal balance between accuracy and performance. RESULTS For SOBPs deeper than 10mm, the dose in the target agreed within 1% between RS11B-R, GATE/Geant4 and measurements for aperture diameters between 8 to 34mm, but deviated up to 5% for smaller apertures. A plastic taper was introduced reducing scatter contributions to the patient (from the pipe) and improving the dose calculation accuracy of the TPS to a 5% level in the entrance region for large apertures. CONCLUSION The commercial TPS and GATE/Geant4 can accurately calculate the dose for shallow, small proton fields using a collimator and pencil beam scanning.
Collapse
Affiliation(s)
- B Knäusl
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria.
| | - L Langgartner
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - M Stock
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria; Karl Landsteiner University of Health Sciences, Krems, Austria
| | - M Janson
- RaySearch Laboratories, Stockholm, Sweden
| | - K M Furutani
- Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL, United States of America
| | - C J Beltran
- Mayo Clinic, Department of Radiation Oncology, Jacksonville, FL, United States of America
| | - D Georg
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - A F Resch
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria; MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| |
Collapse
|
7
|
Saini J, Maes D, Regmi R, Fung A, Bloch C, Schwarz M, Stacey A, Chen J, Rengan R, Halasz L. Improved lateral penumbra for proton ocular treatments on a general-purpose spot scanning beamline. Phys Med 2023; 107:102551. [PMID: 36867911 DOI: 10.1016/j.ejmp.2023.102551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/31/2023] [Accepted: 02/18/2023] [Indexed: 03/05/2023] Open
Abstract
PURPOSE An ocular applicator that fits a commercial proton snout with an upstream range shifter to allow for treatments with sharp lateral penumbra is described. MATERIALS AND METHODS The validation of the ocular applicator consisted of a comparison of range, depth doses (Bragg peaks and spread out Bragg peaks), point doses, and 2-D lateral profiles. Measurements were made for three field sizes, 1.5, 2, and 3 cm, resulting in 15 beams. Distal and lateral penumbras were simulated in the treatment planning system for seven range-modulation combinations for beams typical of ocular treatments and a field size of 1.5 cm, and penumbra values were compared to published literature. RESULTS All the range errors were within 0.5 mm. The maximum averaged local dose differences for Bragg peaks and SOBPs were 2.6% and 1.1%, respectively. All the 30 measured point doses were within +/-3% of the calculated. The measured lateral profiles, analyzed through gamma index analysis and compared to the simulated, had pass rates greater than 96% for all the planes. The lateral penumbra increased linearly with depth, from 1.4 mm at 1 cm depth to 2.5 mm at 4 cm depth. The distal penumbra ranged from 3.6 to 4.4 mm and increased linearly with the range. The treatment time for a single 10 Gy (RBE) fractional dose ranged from 30 to 120 s, depending on the shape and size of the target. CONCLUSIONS The ocular applicator's modified design allows lateral penumbra similar to dedicated ocular beamlines while enabling planners to use modern treatment tools such as Monte Carlo and full CT-based planning with increased flexibility in beam placement.
Collapse
Affiliation(s)
- Jatinder Saini
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA.
| | - Dominic Maes
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| | - Rajesh Regmi
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| | - Angela Fung
- Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| | - Charles Bloch
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| | - Marco Schwarz
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| | - Andrew Stacey
- Department of Ophthalmology, University of Washington School of Medicine, 750 Republican St, Seattle, WA 98109, USA
| | - Jonathan Chen
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| | - Lia Halasz
- Department of Radiation Oncology, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195, USA; Fred Hutchinson Cancer Center, 1570 N 115th St., Seattle, WA 98133, USA
| |
Collapse
|
8
|
Trofimov AV, Aronow ME, Gragoudas ES, Keane FK, Kim IK, Shih HA, Bhagwat MS. A Systematic Comparison of Dose Distributions Delivered in 125I Plaque Brachytherapy and Proton Radiation Therapy for Ocular Melanoma. Int J Radiat Oncol Biol Phys 2023; 115:501-510. [PMID: 35878716 DOI: 10.1016/j.ijrobp.2022.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 07/06/2022] [Accepted: 07/13/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE To characterize dose distributions with 125I plaque brachytherapy compared with proton radiation therapy for ocular melanoma for relevant clinical scenarios, based on tumor base diameter (d), apical height (h), and location. METHODS AND MATERIALS Plaque and proton treatment plans were created for 4 groups of cases: (1) REF: 39 instances of reference midsize circular-base tumor (d = 12 mm, h = 5 mm), in locations varying by retinal clock hours and distance to fovea, optic disc, and corneal limbus; (2) SUP: 25 superiorly located; (3) TEMP: 25 temporal; and (4) NAS: 25 nasally located tumors that were a fixed distance from the fovea but varying in d (6-18 mm) and h (3-11 mm). For both modalities, 111 unique scenarios were characterized in terms of the distance to points of interest, doses delivered to fovea, optic disc, optic nerve at 3 mm posterior to the disc (ON@3mm), lens, and retina. Comparative statistical evaluation was performed with the Mann-Whitney U test. RESULTS Superior dose distributions favored plaque for sparing of (1) fovea in large (d + h ≥ 21 mm) NAS tumors; (2) ON@3mm in REF cases located ≤4 disc diameters from disc, and in NAS overall. Protons achieved superior dose sparing of (1) fovea and optic disc in REF, SUP, and TEMP; (2) ON@3mm in REF >4 disc diameters from disc, and in SUP and TEMP; and (3) the lens center overall and lens periphery in REF ≤6 mm from the corneal limbus, and in TEMP with h = 3 mm. Although protons could completely spare sections of the retina, plaque dose was more target conformal in the high-dose range (50% and 90% of prescription dose). CONCLUSIONS Although comparison between plaque and proton therapy is not straightforward because of the disparity in dose rate, prescriptions, applicators, and delivery techniques, it is possible to identify distinctions between dose distributions, which could help inform decisions by providers and patients.
Collapse
Affiliation(s)
- Alexei V Trofimov
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.
| | - Mary E Aronow
- Ocular Melanoma Center, Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Evangelos S Gragoudas
- Ocular Melanoma Center, Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Florence K Keane
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ivana K Kim
- Ocular Melanoma Center, Retina Service, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Mandar S Bhagwat
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Wulff J, Koska B, Heufelder J, Janson M, Bäcker CM, Siregar H, Behrends C, Bäumer C, Foerster A, Bechrakis NE, Timmermann B. Commissioning and validation of a novel commercial TPS for ocular proton therapy. Med Phys 2023; 50:365-379. [PMID: 36195575 DOI: 10.1002/mp.16006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/08/2022] [Accepted: 09/21/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Until today, the majority of ocular proton treatments worldwide were planned with the EYEPLAN treatment planning system (TPS). Recently, the commercial, computed tomography (CT)-based TPS for ocular proton therapy RayOcular was released, which follows the general concepts of model-based treatment planning approach in conjunction with a pencil-beam-type dose algorithm (PBA). PURPOSE To validate RayOcular with respect to two main features: accurate geometrical representation of the eye model and accuracy of its dose calculation algorithm in combination with an Ion Beam Applications (IBA) eye treatment delivery system. METHODS Different 3D-printed eye-ball-phantoms were fabricated to test the geometrical representation of the corresponding CT-based model, both in orthogonal 2D images for X-ray image overlay and in fundus view overlaid with a funduscopy. For the latter, the phantom was equipped with a lens matching refraction of the human eye. Funduscopy was acquired in a Zeiss Claus 500 camera. Tantalum clips and fiducials attached to the phantoms were localized in the TPS model, and residual deviations to the actual position in X-ray images for various orientations of the phantom were determined, after the nominal eye orientation was corrected in RayOcular to obtain a best overall fit. In the fundus view, deviations between known and displayed distances were measured. Dose calculation accuracy of the PBA on a 0.2 mm grid was investigated by comparing between measured lateral and depth-dose profiles in water for various combinations of range, modulation, and field-size. Ultimately, the modeling of dose distributions behind wedges was tested. A 1D gamma-test was applied, and the lateral and distal penumbra were further compared. RESULTS Average residuals between model clips and visible clips/fiducials in orthogonal X-ray images were within 0.3 mm, including different orientations of the phantom. The differences between measured distances on the registered funduscopy image in the RayOcular fundus view and the known ground-truth were within 1 mm up to 10.5 mm distance from the posterior pole. No clear benefit projection of either polar mode or camera mode could be identified, the latter mimicking camera properties. Measured dose distributions were reproduced with gamma-test pass-rates of >95% with 2%/0.3 mm for depth and lateral profiles in the middle of spread-out Bragg-peaks. Distal falloff and lateral penumbra were within 0.2 mm for fields without a wedge. For shallow depths, the agreement was worse, reaching pass-rates down to 80% with 5%/0.3 mm when comparing lateral profiles in air. This is caused by low-energy protons from a scatter source in the IBA system not modeled by RayOcular. Dose distributions modified by wedges were reproduced, matching the wedge-induced broadening of the lateral penumbra to within 0.4 mm for the investigated cases and showing the excess dose within the field due to wedge scatter. CONCLUSION RayOcular was validated for its use with an IBA single scattering delivery nozzle. Geometric modeling of the eye and representation of 2D projections fulfill clinical requirements. The PBA dose calculation reproduces measured distributions and allows explicit handling of wedges, overcoming approximations of simpler dose calculation algorithms used in other systems.
Collapse
Affiliation(s)
- Jörg Wulff
- West German Proton Therapy Centre (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,West German Cancer Centre (WTZ), Essen, Germany
| | - Benjamin Koska
- West German Proton Therapy Centre (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,West German Cancer Centre (WTZ), Essen, Germany
| | - Jens Heufelder
- Department of Ophthalmology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Charité-Universitätsmedizin Berlin, BerlinProtonen am Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany
| | | | - Claus Maximilian Bäcker
- West German Proton Therapy Centre (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany
| | - Hilda Siregar
- West German Proton Therapy Centre (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany
| | - Carina Behrends
- West German Proton Therapy Centre (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Christian Bäumer
- West German Proton Therapy Centre (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,West German Cancer Centre (WTZ), Essen, Germany.,Department of Physics, TU Dortmund University, Dortmund, Germany.,German Cancer Consortium (DKTK), Essen, Germany
| | - Andreas Foerster
- University Hospital Essen, Essen, Germany.,Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Nikolaos E Bechrakis
- University Hospital Essen, Essen, Germany.,Department of Ophthalmology, University Hospital Essen, Essen, Germany
| | - Beate Timmermann
- West German Proton Therapy Centre (WPE), Essen, Germany.,University Hospital Essen, Essen, Germany.,West German Cancer Centre (WTZ), Essen, Germany.,German Cancer Consortium (DKTK), Essen, Germany.,Department of Particle Therapy, University Hospital Essen, Essen, Germany
| |
Collapse
|
10
|
Klaassen L, Jaarsma-Coes MG, Verbist BM, Vu TK, Marinkovic M, Rasch CR, Luyten GP, Beenakker JWM. Automatic Three-Dimensional Magnetic Resonance-based measurements of tumour prominence and basal diameter for treatment planning of uveal melanoma. Phys Imaging Radiat Oncol 2022; 24:102-110. [PMID: 36386446 PMCID: PMC9649381 DOI: 10.1016/j.phro.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/07/2022] Open
Abstract
Background and Purpose Three-dimensional (3D) Magnetic Resonance Imaging (MRI) is increasingly used to complement conventional two-dimensional ultrasound in the assessment of tumour dimension measurement of uveal melanoma. However, the lack of definitions of the 3D measurements of these tumour dimensions hinders further adaptation of MRI in ocular radiotherapy planning. In this study, we composed 3D MR-based definitions of tumour prominence and basal diameter and compared them to conventional ultrasound. Materials and methods Tumours were delineated on 3DT2 and contrast-enhanced 3DT1 (T1gd) MRI for 25 patients. 3D definitions of tumour prominence and diameter were composed and evaluated automatically on the T1gd and T2 contours. Automatic T1gd measurements were compared to manual MRI measurements, to automatic T2 measurements and to manual ultrasound measurements. Results Prominence measurements were similar for all modalities (median absolute difference 0.3 mm). Automatic T1gd diameter measurements were generally larger than manual MRI, automatic T2 and manual ultrasound measurements (median absolute differences of 0.5, 1.6 and 1.1 mm respectively), mainly due to difficulty defining the axis of the largest diameter. Largest differences between ultrasound and MRI for both prominence and diameter were found in anteriorly located tumours (up to 1.6 and 4.5 mm respectively), for which the tumour extent could not entirely be visualized with ultrasound. Conclusions The proposed 3D definitions for tumour prominence and diameter agreed well with ultrasound measurements for tumours for which the extent was visible on ultrasound. 3D MRI measurements generally provided larger diameter measurements than ultrasound. In anteriorly located tumours, the MRI measurements were considered more accurate than conventional ultrasound.
Collapse
Affiliation(s)
- Lisa Klaassen
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Myriam G. Jaarsma-Coes
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Berit M. Verbist
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Holland Particle Therapy Center, PO Box 110, 2600 AC Delft, the Netherlands
| | - T.H. Khanh Vu
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Marina Marinkovic
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Coen R.N. Rasch
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Holland Particle Therapy Center, PO Box 110, 2600 AC Delft, the Netherlands
| | - Gregorius P.M. Luyten
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
| | - Jan-Willem M. Beenakker
- Leiden University Medical Center, Department of Ophthalmology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiology, PO Box 9600, 2300 RC Leiden, the Netherlands
- Leiden University Medical Center, Department of Radiation Oncology, PO Box 9600, 2300 RC Leiden, the Netherlands
| |
Collapse
|
11
|
Fleury E, Trnková P, van Rij C, Rodrigues M, Klaver Y, Spruijt K, Naus N, Zolnay A, Pignol JP, Kiliç E, Hoogeman MS. Improving Organs-at-Risk Sparing for Choroidal Melanoma Patients: A CT-based Two-Beam Strategy in Ocular Proton Therapy with a Dedicated Eyeline. Radiother Oncol 2022; 171:173-181. [PMID: 35487435 DOI: 10.1016/j.radonc.2022.04.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/15/2023]
Abstract
PURPOSE To investigate the potential clinical benefit of a two-beam arrangement technique using three-dimensional (3D) imaging of uveal melanoma (UM) patients treated with proton therapy and a dedicated eyeline. MATERIAL/METHODS Retrospective CT-based treatment plans of 39 UM patients performed using a single beam (SB) were compared to plans with two beams (TB) optimized for better trade-offs in organs-at-risk sparing. The RBE-weighted prescribed dose was 60 Gy (DRBE, GTV = 60 Gy) in four fractions, assuming an RBE of 1.1. Dosimetric findings were analyzed for three patient groups based on tumor-optic nerve distance and UM staging (group GrA: ≤ 3 mm, T1 T2 UM; GrB: ≤ 3 mm, T3 UM; GrC: > 3 mm, T1 T2 T3 UM). Finally, two schedules were compared on biologically effective dose (BED): both beams being delivered either the same day (TB) or on alternate days (TBalter). RESULTS All strategies resulted in dosimetrically acceptable plans. A dose reduction to the anterior structures was achieved in 23/39 cases with the two-beam plans. D25% was significantly lowered compared to SB plans by 12.4 and 15.4 Gy RBE-weighted median dose in GrA and GrB, respectively. D2% was reduced by 18.6 and 6.0 Gy RBE-weighted median dose in GrA and GrB, respectively. A cost to the optic nerve was observed with a median difference up to 3.8 Gy RBE-weighted dose in GrB. BED differences were statistically significant for all considered parameters in favor of two beams delivered the same day. CONCLUSION A two-beam strategy appears beneficial for posterior tumors abutting the optic nerve. This strategy might have a positive impact on the risk of ocular complications.
Collapse
Affiliation(s)
- Emmanuelle Fleury
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, The Netherlands; Holland Proton Therapy Center, Delft, The Netherlands.
| | - Petra Trnková
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, The Netherlands; Medical University of Vienna, Department of Radiation Oncology, Vienna, Austria
| | - Caroline van Rij
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, The Netherlands; Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
| | | | - Yvonne Klaver
- Holland Proton Therapy Center, Delft, The Netherlands
| | - Kees Spruijt
- Holland Proton Therapy Center, Delft, The Netherlands
| | - Nicole Naus
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands
| | - Andras Zolnay
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, The Netherlands
| | | | - Emine Kiliç
- Erasmus Medical Center, Department of Ophthalmology, Rotterdam, The Netherlands; Erasmus Medical Center, Department of Clinical Genetics, Rotterdam, The Netherlands
| | - Mischa S Hoogeman
- Erasmus Medical Center, Cancer Institute, Department of Radiotherapy, Rotterdam, The Netherlands; Holland Proton Therapy Center, Delft, The Netherlands
| |
Collapse
|