1
|
Zhu YF, Liu ML, Zheng WT, Fu F, Xue ES, Fan XQ, Zhang HP, Lian GT, Ye Q. Predictive Model of CK7 Expression in Patients With Clear Cell Renal Cell Carcinoma by Combined Multimodal Ultrasound Diagnostic Techniques: A Retrospective Study. ULTRASOUND IN MEDICINE & BIOLOGY 2024; 50:520-527. [PMID: 38281886 DOI: 10.1016/j.ultrasmedbio.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/18/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
OBJECTIVE The aim of the work described here was to develop and validate a predictive model for cytokeratin 7 (CK7) expression in clear cell renal cell carcinoma (ccRCC) patients by combining multimodal ultrasound diagnostic techniques. METHODS This retrospective study enrolled 157 surgically confirmed ccRCC patients. All patients underwent pre-operative multimodal ultrasound diagnostic examinations, including B-mode ultrasound (US), color Doppler flow imaging (CDFI) and contrast-enhanced ultrasound (CEUS). The patients were randomly divided into a training group (103 cases) and a testing group (54 cases). Univariate and multivariate logistic regression analyses were performed in the training group to identify independent indicators associated with CK7 positivity. These indicators were included in the predictive model. Receiver operating characteristic (ROC) curves and calibration curves were used to evaluate the model's discriminative ability and accuracy. Decision curve analysis (DCA) and nomogram visualization were used to assess the clinical utility of the predictive model. RESULTS Univariate logistic regression analysis revealed that US and CDFI observations were not correlated with CK7 expression and could not predict it. Multivariate logistic regression analysis identified age (odds ratio [OR] = 0.953, 95% confidence interval [CI]: 0.909-0.999), wash-in pattern (OR = 0.180, 95% CI: 0.063-0.513) and enhancement homogeneity (OR = 11.610, 95% CI: 1.394-96.675) as independent factors related to CK7 positivity in ccRCC. Incorporating these variables into the predictive model resulted in areas under the receiver operating characteristic curve of 0.812 (95% CI: 0.711-0.913) for the training group and 0.792 (95% CI: 0.667-0.924) for the testing group. The calibration curve and DCA revealed that the model had good accuracy and clinical utility of the model. CONCLUSION The combination of multimodal ultrasound diagnostic techniques in constructing a predictive model for CK7 expression in ccRCC patients has significant predictive value.
Collapse
Affiliation(s)
- Yi-Fan Zhu
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Mao-Lin Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, Fujian Province, China
| | - Wen-Ting Zheng
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Fen Fu
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - En-Sheng Xue
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiao-Qing Fan
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Hui-Ping Zhang
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Guang-Tian Lian
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Qin Ye
- Department of Ultrasound/Fujian Provincial Institute of Ultrasonic Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
2
|
Oh D, Lee D, Heo J, Kweon J, Yong U, Jang J, Ahn YJ, Kim C. Contrast Agent-Free 3D Renal Ultrafast Doppler Imaging Reveals Vascular Dysfunction in Acute and Diabetic Kidney Diseases. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303966. [PMID: 37847902 PMCID: PMC10754092 DOI: 10.1002/advs.202303966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/19/2023] [Indexed: 10/19/2023]
Abstract
To combat the irreversible decline in renal function associated with kidney disease, it is essential to establish non-invasive biomarkers for assessing renal microcirculation. However, the limited resolution and/or vascular sensitivity of existing diagnostic imaging techniques hinders the visualization of complex cortical vessels. Here, a 3D renal ultrafast Doppler (UFD) imaging system that uses a high ultrasound frequency (18 MHz) and ultrahigh frame rate (1 KHz per slice) to scan the entire volume of a rat's kidney in vivo is demonstrated. The system, which can visualize the full 3D renal vascular branching pyramid at a resolution of 167 µm without any contrast agent, is used to chronically and noninvasively monitor kidneys with acute kidney injury (AKI, 3 days) and diabetic kidney disease (DKD, 8 weeks). Multiparametric UFD analyses (e.g., vessel volume occupancy (VVO), fractional moving blood volume (FMBV), vessel number density (VND), and vessel tortuosity (VT)) describe rapid vascular rarefaction from AKI and long-term vascular degeneration from DKD, while the renal pathogeneses are validated by in vitro blood serum testing and stained histopathology. This work demonstrates the potential of 3D renal UFD to offer valuable insights into assessing kidney perfusion levels for future research in diabetes and kidney transplantation.
Collapse
Affiliation(s)
- Donghyeon Oh
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Donghyun Lee
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinseok Heo
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jooyoung Kweon
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Uijung Yong
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Jinah Jang
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Yong Joo Ahn
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| | - Chulhong Kim
- Departments of Electrical EngineeringConvergence IT EngineeringMedical Science and EngineeringMechanical Engineeringand Medical Device Innovation CenterPohang University of Science and Technology (POSTECH)Cheongam‐ro 77, Nam‐guPohangGyeongbuk37673Republic of Korea
| |
Collapse
|
3
|
Huang LJ, Jiao JF, He Q, Luo JW, Guo Y. Ultrafast power Doppler imaging for ischemic encephalopathy: A case report. World J Clin Cases 2023; 11:7640-7646. [DOI: 10.12998/wjcc.v11.i31.7640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND Severely elevated intracranial pressure due to various reasons, such as decreased cerebral perfusion, can lead to devastating neurological outcomes, such as brain herniation. Decompression craniectomy is a life-saving procedure that is commonly performed for such a critical situation, but the changes in cerebral microvessels after brain herniation and decompression are unclear. Ultrafast power Doppler imaging (uPDI) is a new microvascular imaging technology that utilizes high frame rate plane/diverging wave transmission and advanced clutter filters. uPDI significantly improves Doppler sensitivity and can detect microvessels, which are usually invisible using traditional ultrasound Doppler imaging.
CASE SUMMARY In this report, uPDI was used for the first time to observe the brain blood flow of a hypoperfusion area in a 4-year-old girl who underwent decompression craniectomy due to refractory intracranial hypertension (ICP) after malignant brain tumor surgery. B-mode imaging was used to verify the increased densities of the cerebral cortex and basal ganglia that were observed by computed tomography.
CONCLUSION uPDI showed the local blood supplies and anatomical structures of the patient after decompressive craniectomy. uPDI is potentially a more intuitive and noninvasive method for evaluating the effects of severe ICP on cerebral microvessels.
Collapse
Affiliation(s)
- Li-Jie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jian-Feng Jiao
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 102218, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jian-Wen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yi Guo
- Department of Neurosurgery, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing 102218, China
| |
Collapse
|
4
|
Søgaard SB, Andersen SB, Taghavi I, Schou M, Christoffersen C, Jacobsen JCB, Kjer HM, Gundlach C, McDermott A, Jensen JA, Nielsen MB, Sørensen CM. Super-Resolution Ultrasound Imaging of Renal Vascular Alterations in Zucker Diabetic Fatty Rats during the Development of Diabetic Kidney Disease. Diagnostics (Basel) 2023; 13:3197. [PMID: 37892017 PMCID: PMC10605617 DOI: 10.3390/diagnostics13203197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Individuals with diabetes at risk of developing diabetic kidney disease (DKD) are challenging to identify using currently available clinical methods. Prognostic accuracy and initiation of treatment could be improved by a quantification of the renal microvascular rarefaction and the increased vascular tortuosity during the development of DKD. Super-resolution ultrasound (SRUS) imaging is an in vivo technique capable of visualizing blood vessels at sizes below 75 µm. This preclinical study aimed to investigate the alterations in renal blood vessels' density and tortuosity in a type 2 diabetes rat model, Zucker diabetic fatty (ZDF) rats, as a prediction of DKD. Lean age-matched Zucker rats were used as controls. A total of 36 rats were studied, subdivided into ages of 12, 22, and 40 weeks. Measured albuminuria indicated the early stage of DKD, and the SRUS was compared with the ex vivo micro-computed tomography (µCT) of the same kidneys. Assessed using the SRUS imaging, a significantly decreased cortical vascular density was detected in the ZDF rats from 22 weeks of age compared to the healthy controls, concomitant with a significantly increased albuminuria. Already by week 12, a trend towards a decreased cortical vascular density was found prior to the increased albuminuria. The quantified vascular density in µCT corresponded with the in vivo SRUS imaging, presenting a consistently lower vascular density in the ZDF rats. Regarding vessel tortuosity, an overall trend towards an increased tortuosity was present in the ZDF rats. SRUS shows promise for becoming an additional tool for monitoring and prognosing DKD. In the future, large-scale animal studies and human trials are needed for confirmation.
Collapse
Affiliation(s)
- Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | | | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Jens Christian Brings Jacobsen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Amy McDermott
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (S.B.A.); (C.C.); (J.C.B.J.); (A.M.)
| |
Collapse
|
5
|
Zhang H, Huang L, Yang Y, Qiu L, He Q, Liu J, Qian L, Luo J. Evaluation of Early Diabetic Kidney Disease Using Ultrasound Localization Microscopy: A Feasibility Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2023; 42:2277-2292. [PMID: 37146242 DOI: 10.1002/jum.16249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/12/2023] [Accepted: 04/19/2023] [Indexed: 05/07/2023]
Abstract
OBJECTIVE The purpose of this study is to detect the hemodynamic changes of microvessels in the early stage of diabetic kidney disease (DKD) and to test the feasibility of ultrasound localization microscopy (ULM) in early diagnosis of DKD. METHODS In this study, streptozotocin (STZ) induced DKD rat model was used. Normal rats served as the control group. Conventional ultrasound, contrast-enhanced ultrasound (CEUS), and ULM data were collected and analyzed. The kidney cortex was divided into four segments, which are 0.25-0.5 mm (Segment 1), 0.5-0.75 mm (Segment 2), 0.75-1 mm (Segment 3), and 1-1.25 mm (Segment 4) away from the renal capsule, respectively. The mean blood flow velocities of arteries and veins in each segment were separately calculated, and also the velocity gradients and overall mean velocities of arteries and veins. Mann-Whitney U test was used for comparison of the data. RESULTS Quantitative results of microvessel velocity obtained by ULM show that the arterial velocity of Segments 2, 3, and 4, and the overall mean arterial velocity of the four segments in the DKD group are significantly lower than those in the normal group. The venous velocity of Segment 3 and the overall mean venous velocity of the four segments in the DKD group are higher than those in the normal group. The arterial velocity gradient in the DKD group is lower than that in the normal group. CONCLUSION ULM can visualize and quantify the blood flow and may be used for early diagnosis of DKD.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lijie Huang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Yi Yang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Lanyan Qiu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Qiong He
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Jinping Liu
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Linxue Qian
- Department of Ultrasound, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jianwen Luo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Huang L, Wang Y, Wang R, Wei X, He Q, Zheng C, Peng H, Luo J. High-Quality Ultrafast Power Doppler Imaging Based on Spatial Angular Coherence Factor. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:378-392. [PMID: 37028058 DOI: 10.1109/tuffc.2023.3253257] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The morphological and hemodynamic changes of microvessels are demonstrated to be related to the diseased conditions in tissues. Ultrafast power Doppler imaging (uPDI) is a novel modality with a significantly increased Doppler sensitivity, benefiting from the ultrahigh frame rate plane-wave imaging (PWI) and advanced clutter filtering. However, unfocused plane-wave transmission often leads to a low imaging quality, which degrades the subsequent microvascular visualization in power Doppler imaging. Coherence factor (CF)-based adaptive beamformers have been widely studied in conventional B-mode imaging. In this study, we propose a spatial and angular coherence factor (SACF) beamformer for improved uPDI (SACF-uPDI) by calculating the spatial CF across apertures and the angular CF across transmit angles, respectively. To identify the superiority of SACF-uPDI, simulations, in vivo contrast-enhanced rat kidney, and in vivo contrast-free human neonatal brain studies were conducted. Results demonstrate that SACF-uPDI can effectively enhance contrast and resolution and suppress background noise simultaneously, compared with conventional uPDI methods based on delay-and-sum (DAS) (DAS-uPDI) and CF (CF-uPDI). In the simulations, SACF-uPDI can improve the lateral and axial resolutions compared with those of DAS-uPDI, from 176 to [Formula: see text] of lateral resolution, and from 111 to [Formula: see text] of axial resolution. In the in vivo contrast-enhanced experiments, SACF achieves 15.14- and 5.6-dB higher contrast-to-noise ratio (CNR), 15.25- and 3.68-dB lower noise power, and 240- and 15- [Formula: see text] narrower full-width at half-maximum (FWHM) than DAS-uPDI and CF-uPDI, respectively. In the in vivo contrast-free experiments, SACF achieves 6.11- and 1.09-dB higher CNR, 11.93- and 4.01-dB lower noise power, and 528- and 160- [Formula: see text] narrower FWHM than DAS-uPDI and CF-uPDI, respectively. In conclusion, the proposed SACF-uPDI method can efficiently improve the microvascular imaging quality and has the potential to facilitate clinical applications.
Collapse
|
7
|
Andersen SB, Sørensen CM, Jensen JA, Nielsen MB. Microvascular Imaging with Super-Resolution Ultrasound. ULTRASCHALL IN DER MEDIZIN (STUTTGART, GERMANY : 1980) 2022; 43:543-547. [PMID: 36470255 DOI: 10.1055/a-1937-6868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
8
|
Zhang G, Yu J, Lei YM, Hu JR, Hu HM, Harput S, Guo ZZ, Cui XW, Ye HR. Ultrasound super-resolution imaging for the differential diagnosis of thyroid nodules: A pilot study. Front Oncol 2022; 12:978164. [PMID: 36387122 PMCID: PMC9647016 DOI: 10.3389/fonc.2022.978164] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/12/2022] [Indexed: 08/24/2023] Open
Abstract
Objective Ultrasound imaging provides a fast and safe examination of thyroid nodules. Recently, the introduction of super-resolution imaging technique shows the capability of breaking the Ultrasound diffraction limit in imaging the micro-vessels. The aim of this study was to evaluate its feasibility and value for the differentiation of thyroid nodules. Methods In this study, B-mode, contrast-enhanced ultrasound, and color Doppler flow imaging examinations were performed on thyroid nodules in 24 patients. Super-resolution imaging was performed to visualize the microvasculature with finer details. Microvascular flow rate (MFR) and micro-vessel density (MVD) within thyroid nodules were computed. The MFR and MVD were used to differentiate the benign and malignant thyroid nodules with pathological results as a gold standard. Results Super-resolution imaging (SRI) technique can be successfully applied on human thyroid nodules to visualize the microvasculature with finer details and obtain the useful clinical information MVD and MFR to help differential diagnosis. The results suggested that the mean value of the MFR within benign thyroid nodule was 16.76 ± 6.82 mm/s whereas that within malignant thyroid was 9.86 ± 4.54 mm/s. The mean value of the MVD within benign thyroid was 0.78 while the value for malignant thyroid region was 0.59. MFR and MVD within the benign thyroid nodules were significantly higher than those within the malignant thyroid nodules respectively (p < 0.01). Conclusions This study demonstrates the feasibility of ultrasound super-resolution imaging to show micro-vessels of human thyroid nodules via a clinical ultrasound platform. The important imaging markers, such as MVD and MFR, can be derived from SRI to provide more useful clinical information. It has the potential to be a new tool for aiding differential diagnosis of thyroid nodules.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Jing Yu
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Yu-Meng Lei
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Jun-Rui Hu
- Department of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast, United Kingdom
| | - Hai-Man Hu
- Department of Electrical and Electronic Engineering, Hubei University of Technology, Wuhan, China
| | - Sevan Harput
- Department of Electrical and Electronic Engineering, London South Bank University, London, United Kingdom
| | - Zhen-Zhong Guo
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of science and technology, Wuhan, China
| | - Xin-Wu Cui
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua-Rong Ye
- Department of Medical Ultrasound, China Resources & Wisco General Hospital, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Søgaard SB, Andersen SB, Taghavi I, Hoyos CAV, Christoffersen C, Hansen KL, Jensen JA, Nielsen MB, Sørensen CM. Super-Resolution Ultrasound Imaging Provides Quantification of the Renal Cortical and Medullary Vasculature in Obese Zucker Rats: A Pilot Study. Diagnostics (Basel) 2022; 12:diagnostics12071626. [PMID: 35885531 PMCID: PMC9318608 DOI: 10.3390/diagnostics12071626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Obesity is a risk factor of chronic kidney disease (CKD), leading to alterations in the renal vascular structure. This study tested if renal vascular density and tortuosity was quantifiable in vivo in obese rats using microbubble-based super-resolution ultrasound imaging. The kidneys of two 11-week-old and two 20-week-old male obese Zucker rats were compared with age-matched male lean Zucker rats. The super-resolution ultrasound images were manually divided into inner medulla, outer medulla, and cortex, and each area was subdivided into arteries and veins. We quantified vascular density and tortuosity, number of detected microbubbles, and generated tracks. For comparison, we assessed glomerular filtration rate, albumin/creatinine ratio, and renal histology to evaluate CKD. The number of detected microbubbles and generated tracks varied between animals and significantly affected quantification of vessel density. In areas with a comparable number of tracks, density increased in the obese animals, concomitant with a decrease in glomerular filtration rate and an increase in albumin/creatinine ratio, but without any pathology in the histological staining. The results indicate that super-resolution ultrasound imaging can be used to quantify structural alterations in the renal vasculature. Techniques to generate more comparable number of microbubble tracks and confirmation of the findings in larger-scale studies are needed.
Collapse
Affiliation(s)
- Stinne Byrholdt Søgaard
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| | - Sofie Bech Andersen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | | | - Christina Christoffersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
- Department of Clinical Biochemistry, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Kristoffer Lindskov Hansen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, Rigshospitalet, 2100 Copenhagen, Denmark; (S.B.A.); (K.L.H.); (M.B.N.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (C.C.); (C.M.S.)
| |
Collapse
|
10
|
Wu LL, Zhang Y, Li XZ, Du XL, Gao Y, Wang JX, Wang XL, Chen Q, Li YH, Zhu GQ, Tan X. Impact of Selective Renal Afferent Denervation on Oxidative Stress and Vascular Remodeling in Spontaneously Hypertensive Rats. Antioxidants (Basel) 2022; 11:1003. [PMID: 35624870 PMCID: PMC9137540 DOI: 10.3390/antiox11051003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Oxidative stress and sustained sympathetic over-activity contribute to the pathogenesis of hypertension. Catheter-based renal denervation has been used as a strategy for treatment of resistant hypertension, which interrupts both afferent and efferent renal fibers. However, it is unknown whether selective renal afferent denervation (RAD) may play beneficial roles in attenuating oxidative stress and sympathetic activity in hypertension. This study investigated the impact of selective RAD on hypertension and vascular remodeling. Nine-week-old normotensive Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were subjected to selective renal afferent denervation (RAD) with 33 mM of capsaicin for 15 min. Treatment with the vehicle of capsaicin was used as a control. The selective denervation was confirmed by the reduced calcitonin gene-related peptide expression and the undamaged renal sympathetic nerve activity response to the stimulation of adipose white tissue. Selective RAD reduced plasma norepinephrine levels, improved heart rate variability (HRV) and attenuated hypertension in SHR.It reduced NADPH oxidase (NOX) expression and activity, and superoxide production in the hypothalamic paraventricular nucleus (PVN), aorta and mesenteric artery of SHR. Moreover, the selective RAD attenuated the vascular remodeling of the aorta and mesenteric artery of SHR. These results indicate that selective removal of renal afferents attenuates sympathetic activity, oxidative stress, vascular remodeling and hypertension in SHR. The attenuated superoxide signaling in the PVN is involved in the attenuation of sympathetic activity in SHR, and the reduced sympathetic activity at least partially contributes to the attenuation of vascular oxidative stress and remodeling in the arteries of hypertensive rats.
Collapse
Affiliation(s)
- Lu-Lu Wu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Yue Zhang
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Xiu-Zhen Li
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Xin-Li Du
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Ying Gao
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| | - Jing-Xiao Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Xiao-Li Wang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing 211166, China; (Q.C.); (Y.-H.L.)
| | - Guo-Qing Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center of Translational Medicine for Cardiovascular Disease, and Department of Physiology, Nanjing Medical University, Nanjing 211166, China; (L.-L.W.); (J.-X.W.); (X.-L.W.)
| | - Xiao Tan
- Emergency Department, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 211166, China; (Y.Z.); (X.-Z.L.); (X.-L.D.); (Y.G.)
| |
Collapse
|
11
|
Huang L, Zhang J, Wei X, Jing L, He Q, Xie X, Wang G, Luo J. Improved Ultrafast Power Doppler Imaging by Using Spatiotemporal Non-Local Means Filtering. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:1610-1624. [PMID: 35271440 DOI: 10.1109/tuffc.2022.3158611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The change of microvasculature is associated with the occurrence and development of many diseases. Ultrafast power Doppler imaging (uPDI) is an emerging technology for the visualization of microvessels due to the development of ultrafast plane wave (PW) imaging and advanced clutter filters. However, the low signal-to-noise ratio (SNR) caused by unfocused transmit of PW imaging deteriorates the subsequent imaging of microvasculature. Nonlocal means (NLM) filtering has been demonstrated to be effective in the denoising of both natural and medical images, including ultrasound power Doppler images. However, the feasibility and performance of applying an NLM filter on the ultrasound radio frequency (RF) data have not been investigated so far. In this study, we propose to apply an NLM filter on the spatiotemporal domain of clutter filtered blood flow RF data (St-NLM) to improve the quality of uPDI. Experiments were conducted to compare the proposed method with three different methods (under various similarity window sizes), including conventional uPDI without NLM filtering (Non-NLM), NLM filtering on the obtained power Doppler images (PD-NLM), and NLM filtering on the spatial domain of clutter filtered blood flow RF data (S-NLM). Phantom experiments, in vivo contrast-enhanced human spinal cord tumor experiments, and in vivo contrast-free human liver experiments were performed to demonstrate the superiority of the proposed St-NLM method over the other three methods. Qualitative and quantitative results show that the proposed St-NLM method can effectively suppress the background noise, improve the contrast between vessels and background, and preserve the details of small vessels at the same time. In the human liver study, the proposed St-NLM method achieves 31.05-, 24.49-, and 11.15-dB higher contrast-to-noise ratios (CNRs) and 36.86-, 36.86-, and 15.22-dB lower noise powers than Non-NLM, PD-NLM, and S-NLM, respectively. In the human spinal cord tumor, the full-width at half-maximums (FWHMs) of vessel cross Section are 76, 201, and [Formula: see text] for St-NLM, Non-NLM, and S-NLM, respectively. The proposed St-NLM method can enhance the microvascular visualization in uPDI and has the potential for the diagnosis of many microvessel-change-related diseases.
Collapse
|
12
|
Andersen SB, Taghavi I, Søgaard SB, Hoyos CAV, Nielsen MB, Jensen JA, Sørensen CM. Super-Resolution Ultrasound Imaging Can Quantify Alterations in Microbubble Velocities in the Renal Vasculature of Rats. Diagnostics (Basel) 2022; 12:1111. [PMID: 35626267 PMCID: PMC9140053 DOI: 10.3390/diagnostics12051111] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/04/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Super-resolution ultrasound imaging, based on the localization and tracking of single intravascular microbubbles, makes it possible to map vessels below 100 µm. Microbubble velocities can be estimated as a surrogate for blood velocity, but their clinical potential is unclear. We investigated if a decrease in microbubble velocity in the arterial and venous beds of the renal cortex, outer medulla, and inner medulla was detectable after intravenous administration of the α1-adrenoceptor antagonist prazosin. The left kidneys of seven rats were scanned with super-resolution ultrasound for 10 min before, during, and after prazosin administration using a bk5000 ultrasound scanner and hockey-stick probe. The super-resolution images were manually segmented, separating cortex, outer medulla, and inner medulla. Microbubble tracks from arteries/arterioles were separated from vein/venule tracks using the arterial blood flow direction. The mean microbubble velocities from each scan were compared. This showed a significant prazosin-induced velocity decrease only in the cortical arteries/arterioles (from 1.59 ± 0.38 to 1.14 ± 0.31 to 1.18 ± 0.33 mm/s, p = 0.013) and outer medulla descending vasa recta (from 0.70 ± 0.05 to 0.66 ± 0.04 to 0.69 ± 0.06 mm/s, p = 0.026). Conclusively, super-resolution ultrasound imaging makes it possible to detect and differentiate microbubble velocity responses to prazosin simultaneously in the renal cortical and medullary vascular beds.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
| | | | - Michael Bachmann Nielsen
- Department of Diagnostic Radiology, University Hospital Rigshospitalet, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark; (I.T.); (J.A.J.)
| | - Charlotte Mehlin Sørensen
- Department of Biomedical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (S.B.S.); (C.M.S.)
| |
Collapse
|