1
|
Wang TW, Hong JS, Huang JW, Liao CY, Lu CF, Wu YT. Systematic review and meta-analysis of deep learning applications in computed tomography lung cancer segmentation. Radiother Oncol 2024; 197:110344. [PMID: 38806113 DOI: 10.1016/j.radonc.2024.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Accurate segmentation of lung tumors on chest computed tomography (CT) scans is crucial for effective diagnosis and treatment planning. Deep Learning (DL) has emerged as a promising tool in medical imaging, particularly for lung cancer segmentation. However, its efficacy across different clinical settings and tumor stages remains variable. METHODS We conducted a comprehensive search of PubMed, Embase, and Web of Science until November 7, 2023. We assessed the quality of these studies by using the Checklist for Artificial Intelligence in Medical Imaging and the Quality Assessment of Diagnostic Accuracy Studies-2 tools. This analysis included data from various clinical settings and stages of lung cancer. Key performance metrics, such as the Dice similarity coefficient, were pooled, and factors affecting algorithm performance, such as clinical setting, algorithm type, and image processing techniques, were examined. RESULTS Our analysis of 37 studies revealed a pooled Dice score of 79 % (95 % CI: 76 %-83 %), indicating moderate accuracy. Radiotherapy studies had a slightly lower score of 78 % (95 % CI: 74 %-82 %). A temporal increase was noted, with recent studies (post-2022) showing improvement from 75 % (95 % CI: 70 %-81 %). to 82 % (95 % CI: 81 %-84 %). Key factors affecting performance included algorithm type, resolution adjustment, and image cropping. QUADAS-2 assessments identified ambiguous risks in 78 % of studies due to data interval omissions and concerns about generalizability in 8 % due to nodule size exclusions, and CLAIM criteria highlighted areas for improvement, with an average score of 27.24 out of 42. CONCLUSION This meta-analysis demonstrates DL algorithms' promising but varied efficacy in lung cancer segmentation, particularly higher efficacy noted in early stages. The results highlight the critical need for continued development of tailored DL models to improve segmentation accuracy across diverse clinical settings, especially in advanced cancer stages with greater challenges. As recent studies demonstrate, ongoing advancements in algorithmic approaches are crucial for future applications.
Collapse
Affiliation(s)
- Ting-Wei Wang
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Sheng Hong
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan; National Yang Ming Chiao Tung University, Brain Research Center, Taiwan.
| |
Collapse
|
2
|
Shi C, Shao Y, Shan F, Shen J, Huang X, Chen C, Lu Y, Zhan Y, Shi N, Wu J, Wang K, Gao Y, Shi Y, Song F. Development and validation of a deep learning model for multicategory pneumonia classification on chest computed tomography: a multicenter and multireader study. Quant Imaging Med Surg 2023; 13:8641-8656. [PMID: 38106268 PMCID: PMC10722067 DOI: 10.21037/qims-23-1097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023]
Abstract
Background Accurate diagnosis of pneumonia is vital for effective disease management and mortality reduction, but it can be easily confused with other conditions on chest computed tomography (CT) due to an overlap in imaging features. We aimed to develop and validate a deep learning (DL) model based on chest CT for accurate classification of viral pneumonia (VP), bacterial pneumonia (BP), fungal pneumonia (FP), pulmonary tuberculosis (PTB), and no pneumonia (NP) conditions. Methods In total, 1,776 cases from five hospitals in different regions were retrospectively collected from September 2019 to June 2023. All cases were enrolled according to inclusion and exclusion criteria, and ultimately 1,611 cases were used to develop the DL model with 5-fold cross-validation, with 165 cases being used as the external test set. Five radiologists blindly reviewed the images from the internal and external test sets first without and then with DL model assistance. Precision, recall, F1-score, weighted F1-average, and area under the curve (AUC) were used to evaluate the model performance. Results The F1-scores of the DL model on the internal and external test sets were, respectively, 0.947 [95% confidence interval (CI): 0.936-0.958] and 0.933 (95% CI: 0.916-0.950) for VP, 0.511 (95% CI: 0.487-0.536) and 0.591 (95% CI: 0.557-0.624) for BP, 0.842 (95% CI: 0.824-0.860) and 0.848 (95% CI: 0.824-0.873) for FP, 0.843 (95% CI: 0.826-0.861) and 0.795 (95% CI: 0.767-0.822) for PTB, and 0.975 (95% CI: 0.968-0.983) and 0.976 (95% CI: 0.965-0.986) for NP, with a weighted F1-average of 0.883 (95% CI: 0.867-0.898) and 0.846 (95% CI: 0.822-0.871), respectively. The model performed well and showed comparable performance in both the internal and external test sets. The F1-score of the DL model was higher than that of radiologists, and with DL model assistance, radiologists achieved a higher F1-score. On the external test set, the F1-score of the DL model (F1-score 0.848; 95% CI: 0.824-0.873) was higher than that of the radiologists (F1-score 0.541; 95% CI: 0.507-0.575) as was its precision for the other three pneumonia conditions (all P values <0.001). With DL model assistance, the F1-score for FP (F1-score 0.541; 95% CI: 0.507-0.575) was higher than that achieved without assistance (F1-score 0.778; 95% CI: 0.750-0.807) as was its precision for the other three pneumonia conditions (all P values <0.001). Conclusions The DL approach can effectively classify pneumonia and can help improve radiologists' performance, supporting the full integration of DL results into the routine workflow of clinicians.
Collapse
Affiliation(s)
- Chunzi Shi
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
- Qingdao Institute, School of Life Medicine, Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Qingdao, China
| | - Ying Shao
- R&D Department, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Fei Shan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xueni Huang
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Medical Imaging Department, First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Chuan Chen
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yang Lu
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yi Zhan
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Nannan Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Jili Wu
- Department of Radiology, Fourth People’s Hospital of Taiyuan, Taiyuan, China
| | - Keying Wang
- Department of Radiology, Jinshan Hospital, Fudan University, Shanghai, China
| | - Yaozong Gao
- R&D Department, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Yuxin Shi
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fengxiang Song
- Department of Radiology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Guedes Pinto E, Penha D, Ravara S, Monaghan C, Hochhegger B, Marchiori E, Taborda-Barata L, Irion K. Factors influencing the outcome of volumetry tools for pulmonary nodule analysis: a systematic review and attempted meta-analysis. Insights Imaging 2023; 14:152. [PMID: 37741928 PMCID: PMC10517915 DOI: 10.1186/s13244-023-01480-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/08/2023] [Indexed: 09/25/2023] Open
Abstract
Health systems worldwide are implementing lung cancer screening programmes to identify early-stage lung cancer and maximise patient survival. Volumetry is recommended for follow-up of pulmonary nodules and outperforms other measurement methods. However, volumetry is known to be influenced by multiple factors. The objectives of this systematic review (PROSPERO CRD42022370233) are to summarise the current knowledge regarding factors that influence volumetry tools used in the analysis of pulmonary nodules, assess for significant clinical impact, identify gaps in current knowledge and suggest future research. Five databases (Medline, Scopus, Journals@Ovid, Embase and Emcare) were searched on the 21st of September, 2022, and 137 original research studies were included, explicitly testing the potential impact of influencing factors on the outcome of volumetry tools. The summary of these studies is tabulated, and a narrative review is provided. A subset of studies (n = 16) reporting clinical significance were selected, and their results were combined, if appropriate, using meta-analysis. Factors with clinical significance include the segmentation algorithm, quality of the segmentation, slice thickness, the level of inspiration for solid nodules, and the reconstruction algorithm and kernel in subsolid nodules. Although there is a large body of evidence in this field, it is unclear how to apply the results from these studies in clinical practice as most studies do not test for clinical relevance. The meta-analysis did not improve our understanding due to the small number and heterogeneity of studies testing for clinical significance. CRITICAL RELEVANCE STATEMENT: Many studies have investigated the influencing factors of pulmonary nodule volumetry, but only 11% of these questioned their clinical relevance in their management. The heterogeneity among these studies presents a challenge in consolidating results and clinical application of the evidence. KEY POINTS: • Factors influencing the volumetry of pulmonary nodules have been extensively investigated. • Just 11% of studies test clinical significance (wrongly diagnosing growth). • Nodule size interacts with most other influencing factors (especially for smaller nodules). • Heterogeneity among studies makes comparison and consolidation of results challenging. • Future research should focus on clinical applicability, screening, and updated technology.
Collapse
Affiliation(s)
- Erique Guedes Pinto
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal.
| | - Diana Penha
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | - Sofia Ravara
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Colin Monaghan
- Liverpool Heart and Chest Hospital NHS Foundation Trust, Thomas Dr, Liverpool, L14 3PE, UK
| | | | - Edson Marchiori
- Faculdade de Medicina, Universidade Federal Do Rio de Janeiro, Bloco K - Av. Carlos Chagas Filho, 373 - 2º Andar, Sala 49 - Cidade Universitária da Universidade Federal Do Rio de Janeiro, Rio de Janeiro - RJ, 21044-020, Brasil
- Faculdade de Medicina, Universidade Federal Fluminense, Av. Marquês Do Paraná, 303 - Centro, Niterói - RJ, 24220-000, Brasil
| | - Luís Taborda-Barata
- R. Marquês de Ávila E Bolama, Universidade da Beira Interior Faculdade de Ciências da Saúde, 6201-001, Covilhã, Portugal
| | - Klaus Irion
- Manchester University NHS Foundation Trust, Manchester Royal Infirmary, Oxford Rd, Manchester, M13 9WL, UK
| |
Collapse
|
4
|
Zhi L, Jiang W, Zhang S, Zhou T. Deep neural network pulmonary nodule segmentation methods for CT images: Literature review and experimental comparisons. Comput Biol Med 2023; 164:107321. [PMID: 37595518 DOI: 10.1016/j.compbiomed.2023.107321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/08/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Automatic and accurate segmentation of pulmonary nodules in CT images can help physicians perform more accurate quantitative analysis, diagnose diseases, and improve patient survival. In recent years, with the development of deep learning technology, pulmonary nodule segmentation methods based on deep neural networks have gradually replaced traditional segmentation methods. This paper reviews the recent pulmonary nodule segmentation algorithms based on deep neural networks. First, the heterogeneity of pulmonary nodules, the interpretability of segmentation results, and external environmental factors are discussed, and then the open-source 2D and 3D models in medical segmentation tasks in recent years are applied to the Lung Image Database Consortium and Image Database Resource Initiative (LIDC) and Lung Nodule Analysis 16 (Luna16) datasets for comparison, and the visual diagnostic features marked by radiologists are evaluated one by one. According to the analysis of the experimental data, the following conclusions are drawn: (1) In the pulmonary nodule segmentation task, the performance of the 2D segmentation models DSC is generally better than that of the 3D segmentation models. (2) 'Subtlety', 'Sphericity', 'Margin', 'Texture', and 'Size' have more influence on pulmonary nodule segmentation, while 'Lobulation', 'Spiculation', and 'Benign and Malignant' features have less influence on pulmonary nodule segmentation. (3) Higher accuracy in pulmonary nodule segmentation can be achieved based on better-quality CT images. (4) Good contextual information acquisition and attention mechanism design positively affect pulmonary nodule segmentation.
Collapse
Affiliation(s)
- Lijia Zhi
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Medical Imaging Center, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, 750000, China; The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, Yinchuan, 750021, China.
| | - Wujun Jiang
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China.
| | - Shaomin Zhang
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; Medical Imaging Center, Ningxia Hui Autonomous Region People's Hospital, Yinchuan, 750000, China; The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, Yinchuan, 750021, China.
| | - Tao Zhou
- School of Computer Science and Engineering, North Minzu University, Yinchuan, 750021, China; The Key Laboratory of Images & Graphics Intelligent Processing of State Ethnic Affairs Commission, Yinchuan, 750021, China.
| |
Collapse
|