1
|
Liu X, Xie Y, Liu C, Cheng J, Diao S, Tan S, Liang X. Diffusion probabilistic priors for zero-shot low-dose CT image denoising. Med Phys 2025; 52:329-345. [PMID: 39413369 DOI: 10.1002/mp.17431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/17/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
BACKGROUND Denoising low-dose computed tomography (CT) images is a critical task in medical image computing. Supervised deep learning-based approaches have made significant advancements in this area in recent years. However, these methods typically require pairs of low-dose and normal-dose CT images for training, which are challenging to obtain in clinical settings. Existing unsupervised deep learning-based methods often require training with a large number of low-dose CT images or rely on specially designed data acquisition processes to obtain training data. PURPOSE To address these limitations, we propose a novel unsupervised method that only utilizes normal-dose CT images during training, enabling zero-shot denoising of low-dose CT images. METHODS Our method leverages the diffusion model, a powerful generative model. We begin by training a cascaded unconditional diffusion model capable of generating high-quality normal-dose CT images from low-resolution to high-resolution. The cascaded architecture makes the training of high-resolution diffusion models more feasible. Subsequently, we introduce low-dose CT images into the reverse process of the diffusion model as likelihood, combined with the priors provided by the diffusion model and iteratively solve multiple maximum a posteriori (MAP) problems to achieve denoising. Additionally, we propose methods to adaptively adjust the coefficients that balance the likelihood and prior in MAP estimations, allowing for adaptation to different noise levels in low-dose CT images. RESULTS We test our method on low-dose CT datasets of different regions with varying dose levels. The results demonstrate that our method outperforms the state-of-the-art unsupervised method and surpasses several supervised deep learning-based methods. Our method achieves PSNR of 45.02 and 35.35 dB on the abdomen CT dataset and the chest CT dataset, respectively, surpassing the best unsupervised algorithm Noise2Sim in the comparative methods by 0.39 and 0.85 dB, respectively. CONCLUSIONS We propose a novel low-dose CT image denoising method based on diffusion model. Our proposed method only requires normal-dose CT images as training data, greatly alleviating the data scarcity issue faced by most deep learning-based methods. At the same time, as an unsupervised algorithm, our method achieves very good qualitative and quantitative results. The Codes are available in https://github.com/DeepXuan/Dn-Dp.
Collapse
Affiliation(s)
- Xuan Liu
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoqin Xie
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Chenbin Liu
- Radiation Oncology Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Jun Cheng
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Songhui Diao
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shan Tan
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaokun Liang
- Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Hu Y, Zhou H, Cao N, Li C, Hu C. Synthetic CT generation based on CBCT using improved vision transformer CycleGAN. Sci Rep 2024; 14:11455. [PMID: 38769329 PMCID: PMC11106312 DOI: 10.1038/s41598-024-61492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Cone-beam computed tomography (CBCT) is a crucial component of adaptive radiation therapy; however, it frequently encounters challenges such as artifacts and noise, significantly constraining its clinical utility. While CycleGAN is a widely employed method for CT image synthesis, it has notable limitations regarding the inadequate capture of global features. To tackle these challenges, we introduce a refined unsupervised learning model called improved vision transformer CycleGAN (IViT-CycleGAN). Firstly, we integrate a U-net framework that builds upon ViT. Next, we augment the feed-forward neural network by incorporating deep convolutional networks. Lastly, we enhance the stability of the model training process by introducing gradient penalty and integrating an additional loss term into the generator loss. The experiment demonstrates from multiple perspectives that our model-generated synthesizing CT(sCT) has significant advantages compared to other unsupervised learning models, thereby validating the clinical applicability and robustness of our model. In future clinical practice, our model has the potential to assist clinical practitioners in formulating precise radiotherapy plans.
Collapse
Affiliation(s)
- Yuxin Hu
- School of Computer and Software, Hohai University, Nanjing, 211100, China
| | - Han Zhou
- School of Electronic Science and Engineering, Nanjing University, NanJing, 210046, China
- Department of Radiation Oncology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210013, China
| | - Ning Cao
- School of Computer and Software, Hohai University, Nanjing, 211100, China
| | - Can Li
- Engineering Research Center of TCM Intelligence Health Service, School of Artificial Intelligence and Information Technology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Can Hu
- School of Computer and Software, Hohai University, Nanjing, 211100, China.
| |
Collapse
|
3
|
Sadia RT, Chen J, Zhang J. CT image denoising methods for image quality improvement and radiation dose reduction. J Appl Clin Med Phys 2024; 25:e14270. [PMID: 38240466 PMCID: PMC10860577 DOI: 10.1002/acm2.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 02/13/2024] Open
Abstract
With the ever-increasing use of computed tomography (CT), concerns about its radiation dose have become a significant public issue. To address the need for radiation dose reduction, CT denoising methods have been widely investigated and applied in low-dose CT images. Numerous noise reduction algorithms have emerged, such as iterative reconstruction and most recently, deep learning (DL)-based approaches. Given the rapid advancements in Artificial Intelligence techniques, we recognize the need for a comprehensive review that emphasizes the most recently developed methods. Hence, we have performed a thorough analysis of existing literature to provide such a review. Beyond directly comparing the performance, we focus on pivotal aspects, including model training, validation, testing, generalizability, vulnerability, and evaluation methods. This review is expected to raise awareness of the various facets involved in CT image denoising and the specific challenges in developing DL-based models.
Collapse
Affiliation(s)
- Rabeya Tus Sadia
- Department of Computer ScienceUniversity of KentuckyLexingtonKentuckyUSA
| | - Jin Chen
- Department of Medicine‐NephrologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jie Zhang
- Department of RadiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
4
|
Wang J, Tang Y, Wu Z, Du Q, Yao L, Yang X, Li M, Zheng J. A self-supervised guided knowledge distillation framework for unpaired low-dose CT image denoising. Comput Med Imaging Graph 2023; 107:102237. [PMID: 37116340 DOI: 10.1016/j.compmedimag.2023.102237] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023]
Abstract
Low-dose computed tomography (LDCT) can significantly reduce the damage of X-ray to the human body, but the reduction of CT dose will produce images with severe noise and artifacts, which will affect the diagnosis of doctors. Recently, deep learning has attracted more and more attention from researchers. However, most of the denoising networks applied to deep learning-based LDCT imaging are supervised methods, which require paired data for network training. In a realistic imaging scenario, obtaining well-aligned image pairs is challenging due to the error in the table re-positioning and the patient's physiological movement during data acquisition. In contrast, the unpaired learning method can overcome the drawbacks of supervised learning, making it more feasible to collect unpaired training data in most real-world imaging applications. In this study, we develop a novel unpaired learning framework, Self-Supervised Guided Knowledge Distillation (SGKD), which enables the guidance of supervised learning using the results generated by self-supervised learning. The proposed SGKD scheme contains two stages of network training. First, we can achieve the LDCT image quality improvement by the designed self-supervised cycle network. Meanwhile, it can also produce two complementary training datasets from the unpaired LDCT and NDCT images. Second, a knowledge distillation strategy with the above two datasets is exploited to further improve the LDCT image denoising performance. To evaluate the effectiveness and feasibility of the proposed method, extensive experiments were performed on the simulated AAPM challenging and real-world clinical LDCT datasets. The qualitative and quantitative results show that the proposed SGKD achieves better performance in terms of noise suppression and detail preservation compared with some state-of-the-art network models.
Collapse
Affiliation(s)
- Jiping Wang
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yufei Tang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Zhongyi Wu
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Du
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Libing Yao
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Xiaodong Yang
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Ming Li
- Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| | - Jian Zheng
- Institute of Electronic Information Engineering, Changchun University of Science and Technology, Changchun 130022, China; Medical Imaging Department, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|