Yokoyama A, Kada W, Sakai M, Miura K, Hanaizumi O. Evaluation of a therapeutic carbon beam using a G2000 glass scintillator.
Appl Radiat Isot 2023;
196:110753. [PMID:
36966616 DOI:
10.1016/j.apradiso.2023.110753]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/02/2023]
Abstract
A G2000 glass scintillator (G2000-SC) was used to determine the carbon profile and range of a 290-MeV/n carbon beam used in heavy-ion therapy because it was sensitive enough to detect single-ion hits at hundreds of mega electron Volts. An electron-multiplying charge-coupled device camera was used to detect the ion luminescence generated during the irradiation of G2000-SC with the beam. The resulting image showed that the position of the Bragg peak can be determined. The beam passes through the 112-mm-thick water phantom and stops 5.73 ± 0.03 mm from the incident side to the G2000-SC. Additionally, the location of the Bragg peak was simulated when irradiating G2000-SC with the beam using the Monte Carlo code particle and heavy ion transport system (PHITS). Simulation results show that the incident beam stops at 5.60 mm after entering G2000-SC. The beam stop location obtained from images and the PHITS code is defined at 80% distal fall-off from the Bragg peak position. Consequently, G2000-SC provided effective profile measurements of therapeutic carbon beams.
Collapse