1
|
Widdifield CM, Zakeri F. Can simple 'molecular' corrections outperform projector augmented-wave density functional theory in the prediction of 35 Cl electric field gradient tensor parameters for chlorine-containing crystalline systems? MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:156-168. [PMID: 37950622 DOI: 10.1002/mrc.5408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/13/2023]
Abstract
Many-body expansion (MBE) fragment approaches have been applied to accurately compute nuclear magnetic resonance (NMR) parameters in crystalline systems. Recent examples demonstrate that electric field gradient (EFG) tensor parameters can be accurately calculated for 14 N and 17 O. A key additional development is the simple molecular correction (SMC) approach, which uses two one-body fragment (i.e., isolated molecule) calculations to adjust NMR parameter values established using 'benchmark' projector augmented-wave (PAW) density functional theory (DFT) values. Here, we apply a SMC using the hybrid PBE0 exchange-correlation (XC) functional to see if this can improve the accuracy of calculated 35 Cl EFG tensor parameters. We selected eight organic and two inorganic crystal structures and considered 15 chlorine sites. We find that this SMC improves the accuracy of computed values for both the 35 Cl quadrupolar coupling constant (CQ ) and the asymmetry parameter ( η Q ) by approximately 30% compared with benchmark PAW DFT values. We also assessed a SMC that offers local improvements not only in terms of the quality of the XC functional but simultaneously in the quality of the description of relativistic effects via the inclusion of spin-orbit effects. As the inorganic systems considered contain heavy atoms bonded to the chlorine atoms, we find further improvements in the accuracy of calculated 35 Cl EFG tensor parameters when both a hybrid functional and spin-orbit effects are included in the SMC. On the contrary, for chlorine-containing organics, the inclusion of spin-orbit relativistic effects using a SMC does not improve the accuracy of computed 35 Cl EFG tensor parameters.
Collapse
Affiliation(s)
- Cory M Widdifield
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| | - Fatemeh Zakeri
- Department of Chemistry and Biochemistry, University of Regina, Regina, Saskatchewan, Canada
| |
Collapse
|
2
|
Kaur M, Shahid S, Karpukhina N, Anderson P, Wong FSL. Characterization of chemical reactions of silver diammine fluoride and hydroxyapatite under remineralization conditions. FRONTIERS IN ORAL HEALTH 2024; 5:1332298. [PMID: 38496333 PMCID: PMC10940413 DOI: 10.3389/froh.2024.1332298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024] Open
Abstract
Introduction Silver Diammine Fluoride (SDF) is a clinically used topical agent to arrest dental caries. However, the kinetics of its chemical interactions with hydroxyapatite (HA), the principal inorganic component of dental enamel, are not known. The aim was to characterize the step-wise chemical interactions between SDF and HA powder during the clinically important process of remineralization. Methods Two grams of HA powder were immersed in 10 ml acetic acid pH = 4.0 for 2 h to mimic carious demineralization. The powder was then washed and dried for 24 h and mixed with 1.5 ml SDF (Riva Star) for 1 min. The treated powder was then air-dried for 3 min, and 0.2 g was removed and stored in individual tubes each containing 10 ml remineralizing solution. Powder was taken from each tube at various times of exposure to remineralization solution (0 min, 10 min, 2 h, 4 h, 8 h, 24 h, and 10 days), and characterized using Magic Angle Spinning-Nuclear Magnetic Resonance (MAS-NMR) spectroscopy. Results and discussion 19F MAS-NMR spectra showed that calcium fluoride (CaF2) started to form almost immediately after HA was in contact with SDF. After 24 h, the peak shifted to -104.5 ppm suggesting that fluoride substituted hydroxyapatite (FSHA) was formed with time at the expense of CaF2. The 31P MAS-NMR spectra showed a single peak at 2.7 ppm at all time points showing that the only phosphate species present was crystalline apatite. The 35Cl MAS-NMR spectra showed formation of silver chloride (AgCl) at 24 h. It was observed that after the scan, the whitish HA powder changed to black color. In conclusion, this time sequence study showed that under remineralization conditions, SDF initially reacted with HA to form CaF2 which is then transformed to FSHA over time. In the presence of chloride, AgCl is formed which is subsequently photo-reduced to black metallic silver.
Collapse
Affiliation(s)
| | | | | | | | - F. S. L. Wong
- Dental Physical Sciences Unit, Centre for Oral Bioengineering, Institute of Dentistry, Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
3
|
Bauder L, Wu G. Solid-state 35/37 Cl NMR detection of chlorine atoms directly bound to paramagnetic cobalt(II) ions in powder samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:145-155. [PMID: 37950603 DOI: 10.1002/mrc.5407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/12/2023]
Abstract
We report high-quality solid-state 35/37 Cl NMR spectra for chlorine atoms directly bonded to paramagnetic cobalt(II) ions (high spin S = 3/2) in powered samples of CoCl2 , CoCl2 ·2H2 O, CoCl2 ·6H2 O, and CoCl2 (terpy) (terpy = 2,2':6',2″-terpyridine). Because solid-state 35/37 Cl NMR spectra for paramagnetic cobalt(II) compounds often cover an extremely wide spectral range, they were recorded in this work in the form of variable-offset cumulative spectra. Solid-state 35/37 Cl NMR measurements were performed at three magnetic fields (11.7, 14.1, and 16.5 T) and analysis of data yielded information about 35/37 Cl quadrupole coupling and hyperfine coupling tensors in these paramagnetic cobalt(II) compounds. Experimental 35/37 Cl NMR tensors were found to be in reasonable agreement with quantum chemical calculations based on a periodic DFT method implemented in BAND.
Collapse
Affiliation(s)
- Lukas Bauder
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Gang Wu
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Lamahewage SNS, Atterberry BA, Dorn RW, Gi E, Kimball MR, Blümel J, Vela J, Rossini AJ. Accelerated acquisition of wideline solid-state NMR spectra of spin 3/2 nuclei by frequency-stepped indirect detection experiments. Phys Chem Chem Phys 2024; 26:5081-5096. [PMID: 38259035 DOI: 10.1039/d3cp05055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
73% of all NMR-active nuclei are quadrupolar nuclei with a nuclear spin I > 1/2. The broadening of the solid-state NMR signals by the quadrupolar interaction often leads to poor sensitivity and low resolution. In this work we present experimental and theoretical investigations of magic angle spinning (MAS) 1H{X} double-echo resonance-echo saturation-pulse double-resonance (DE-RESPDOR) and Y{X} J-resolved solid-state NMR experiments for the indirect detection of spin 3/2 quadrupolar nuclei (X = spin 3/2 nuclei, Y = spin 1/2 nuclei). In these experiments, the spectrum of the quadrupolar nucleus is reconstructed by plotting the observed dephasing of the detected spin as a function of the transmitter offset of the indirectly detected spin. Numerical simulations were used to investigate the achievable levels of dephasing and to predict the lineshapes of indirectly detected NMR spectra of the quadrupolar nucleus. We demonstrate 1H, 31P and 207Pb detection of 35Cl, 81Br, and 63Cu (I = 3/2) nuclei in trans-Cl2Pt(NH3)2 (transplatin), (CH3NH3)PbCl3 (methylammonium lead chloride, MAPbCl3), (CH3NH3)PbBr3 (methylammonium lead bromide, MAPbBr3) and CH3C(CH2PPh2)3CuI (1,1,1-tris(diphenylphosphinomethyl)ethane copper(I) iodide, triphosCuI), respectively. In all of these experiments, we were able to detect megahertz wide central transition or satellite transition powder patterns. Significant time savings and gains in sensitivity were attained in several test cases. Additionally, the indirect detection experiments provide valuable structural information because they confirm the presence of dipolar or scalar couplings between the detected nucleus and the quadrupolar nucleus of interest. Finally, numerical simulations suggest these methods are also potentially applicable to abundant spin 5/2 and spin 7/2 quadrupolar nuclei.
Collapse
Affiliation(s)
- Sujeewa N S Lamahewage
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Benjamin A Atterberry
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Rick W Dorn
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Eunbyeol Gi
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Maxwell R Kimball
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Janet Blümel
- Texas A&M University, Department of Chemistry, College Station, Texas, 77842, USA.
| | - Javier Vela
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| | - Aaron J Rossini
- US Department of Energy, Ames National Laboratory, Ames, Iowa, 50011, USA.
- Iowa State University, Department of Chemistry, Ames, IA, 50011, USA
| |
Collapse
|
5
|
Yamada K, Kaiho T. Field-stepwise-swept solid-state 127I NMR of 1,4-diiodobenzene. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 128:101905. [PMID: 38056375 DOI: 10.1016/j.ssnmr.2023.101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/28/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
Field-stepwise-swept solid-state 127I NMR experiments of 1,4-diiodobenzene, C6H4I2, applied to a Zeeman-perturbed NQR region, have been presented. A series of QCPMG measurements is performed at T = 90 K with resonant frequencies of 271 MHz in the range of magnetic fields from 2.5 T to zero with the interval of 12 mT. The spectral simulation, in which a numerical calculation involves the diagonalization of the combined Zeeman-quadrupolar Hamiltonian, provides quadrupole coupling constant (CQ) = 1863(5) MHz and the asymmetry parameter (ηQ) = 0.04(2). The 127I NQR spectrum is observed at T = 90 K, which is consistent in the above experimental results.
Collapse
Affiliation(s)
- Kazuhiko Yamada
- Interdisciplinary Science Unit, Multidisciplinary Sciences Cluster, Research and Education Faculty, Kochi University, Oko Campus, Nankoku, Kochi, 783-8505, Japan.
| | - Tatsuo Kaiho
- Godo Shigen Co. Ltd. , Chiba Iodine Resource Innovation Center, Chiba University, 1-33 Yayoi-Cho, Inage-Ku, Chiba, 263-8522, Japan
| |
Collapse
|
6
|
Szell PMJ, Rehman Z, Tatman BP, Hughes LP, Blade H, Brown SP. Exploring the Potential of Multinuclear Solid-State 1 H, 13 C, and 35 Cl Magnetic Resonance To Characterize Static and Dynamic Disorder in Pharmaceutical Hydrochlorides. Chemphyschem 2023; 24:e202200558. [PMID: 36195553 PMCID: PMC10099218 DOI: 10.1002/cphc.202200558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/30/2022] [Indexed: 02/04/2023]
Abstract
Crystallographic disorder, whether static or dynamic, can be detrimental to the physical and chemical stability, ease of crystallization and dissolution rate of an active pharmaceutical ingredient. Disorder can result in a loss of manufacturing control leading to batch-to-batch variability and can lengthen the process of structural characterization. The range of NMR active nuclei makes solid-state NMR a unique technique for gaining nucleus-specific information about crystallographic disorder. Here, we explore the use of high-field 35 Cl solid-state NMR at 23.5 T to characterize both static and dynamic crystallographic disorder: specifically, dynamic disorder occurring in duloxetine hydrochloride (1), static disorder in promethazine hydrochloride (2), and trifluoperazine dihydrochloride (3). In all structures, the presence of crystallographic disorder was confirmed by 13 C cross-polarization magic-angle spinning (CPMAS) NMR and supported by GIPAW-DFT calculations, and in the case of 3, 1 H solid-state NMR provided additional confirmation. Applying 35 Cl solid-state NMR to these compounds, we show that higher magnetic fields are beneficial for resolving the crystallographic disorder in 1 and 3, while broad spectral features were observed in 2 even at higher fields. Combining the data obtained from 1 H, 13 C, and 35 Cl NMR, we show that 3 exhibits a unique case of disorder involving the + N-H hydrogen positions of the piperazinium ring, driving the chloride anions to occupy three distinct sites.
Collapse
Affiliation(s)
| | - Zainab Rehman
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Ben P Tatman
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Leslie P Hughes
- Oral Product Development Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Helen Blade
- Oral Product Development Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield, SK10 2NA, UK
| | - Steven P Brown
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
7
|
Yamada K, Takahashi M, Tritrakarn T, Okamura T. Field-Stepwise-Swept Solid-State 35Cl NMR and NQR of Trichloroisocyanuric Acid. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.140250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Holmes ST, Vojvodin CS, Veinberg N, Iacobelli EM, Hirsh DA, Schurko RW. Hydrates of active pharmaceutical ingredients: A 35Cl and 2H solid-state NMR and DFT study. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2022; 122:101837. [PMID: 36434925 DOI: 10.1016/j.ssnmr.2022.101837] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/19/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
This study uses 35Cl and 2H solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations to characterize the molecular-level structures and dynamics of hydrates of active pharmaceutical ingredients (APIs). We use 35Cl SSNMR to measure the EFG tensors of the chloride ions to characterize hydrated forms of hydrochloride salts of APIs, along with two corresponding anhydrous forms. DFT calculations are used to refine the crystal structures of the APIs and determine relationships between the 35Cl EFG tensors and the spatial arrangements of proximate hydrogen bonds, which are particularly influenced by interactions with water molecules. We find that the relationship between 35Cl EFG tensors and local hydrogen bonding geometries is complex, but meaningful structure/property relationships can be garnered through use of DFT calculations. Specifically, for every case in which such a comparison could be made, we find that the hydrate has a smaller magnitude of CQ than the corresponding anhydrous form, indicating a chloride ion environment with a ground-state electron density of higher spherical symmetry in the former. Finally, variable-temperature 35Cl and 2H SSNMR experiments on a deuterium-exchanged sample of the API cimetidine hydrochloride monohydrate are used to monitor temperature-dependent influences on the spectra that may arise from motional influences on the 35Cl and 2H EFG tensors. From the 2H SSNMR spectra, we determine that the motions of water molecules are characterized by jump-like motions about their C2 rotational axes that occur on timescales that are unlikely to influence the 35Cl central-transition (+1/2 ↔︎ -1/2) powder patterns (this is confirmed by 35Cl SSNMR). Together, these methods show great promise for the future study of APIs in their bulk and dosage forms, especially variable hydrates in which crystallographic water content varies with external conditions such as humidity.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Cameron S Vojvodin
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Natan Veinberg
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Emilia M Iacobelli
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - David A Hirsh
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, USA
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL, 32306, USA; National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.
| |
Collapse
|
9
|
Guillou V, Schönberger T. On-the-Fly Analysis of Chloride and Bromide in Drug Samples using NMR Spectroscopy. J Pharm Biomed Anal 2022; 213:114690. [DOI: 10.1016/j.jpba.2022.114690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 11/28/2022]
|
10
|
Ruiz-Muelle AB, Lestón-Cabeo F, Fernández I. Accurate detection of perchlorate in epoxy resins via chlorine-35 quantitative quadrupolar NMR (qQNMR). Analyst 2022; 147:5075-5081. [DOI: 10.1039/d2an00759b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We present herein the application of a qQNMR method that uses a quadrupolar nucleus such as chlorine-35 for the quantification of perchlorate in epoxy resins.
Collapse
Affiliation(s)
- Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Felipe Lestón-Cabeo
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento, s/n, 04120, Almería, Spain
| |
Collapse
|
11
|
Vojvodin CS, Holmes ST, Watanabe LK, Rawson JM, Schurko R. Multi-Component Crystals Containing Urea: Mechanochemical Synthesis and Characterization by 35Cl Solid-State NMR Spectroscopy and DFT Calculations. CrystEngComm 2022. [DOI: 10.1039/d1ce01610e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanochemical synthesis provides new pathways for the rational design of multi-component crystals (MCCs) involving anionic or cationic components, which offer molecular-level architectures unavailable to MCCs comprised of strictly neutral components....
Collapse
|
12
|
Holmes ST, Hook JM, Schurko RW. Nutraceuticals in Bulk and Dosage Forms: Analysis by 35Cl and 14N Solid-State NMR and DFT Calculations. Mol Pharm 2021; 19:440-455. [PMID: 34792373 DOI: 10.1021/acs.molpharmaceut.1c00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study uses 35Cl and 14N solid-state NMR (SSNMR) spectroscopy and dispersion-corrected plane-wave density functional theory (DFT) calculations for the structural characterization of chloride salts of nutraceuticals in their bulk and dosage forms. For eight nutraceuticals, we measure the 35Cl EFG tensor parameters of the chloride ions and use plane-wave DFT calculations to elucidate relationships between NMR parameters and molecular-level structure, which provide rapid NMR crystallographic assessments of structural features. We employ both 35Cl direct excitation and 1H→35Cl cross-polarization methods to characterize a dosage form containing α-d-glucosamine HCl, observe possible impurity and/or adulterant phases, and quantify the weight percent of the active ingredient. To complement this, we also investigate 14N SSNMR spectroscopy and DFT calculations to characterize nitrogen atoms in the nutraceuticals. This includes a discussion of targeted acquisition experimental protocols (i.e., acquiring a select region of the overall pattern that features key discontinuities) that allow ultrawideline spectra to be acquired rapidly, even for unreceptive samples (i.e., those with long values of T1(14N), short values of T2eff(14N), or very broad patterns). It is hoped that these experimental and computational protocols will be useful for the characterization of various solid forms of nutraceuticals (i.e., salts, polymorphs, hydrates, solvates, cocrystals, amorphous solid dispersions, etc.), help detect impurity and counterfeit solid phases in dosage forms, and serve as a foundation for future NMR crystallographic studies of nutraceutical solid forms, including studies using ab initio crystal structure prediction algorithms.
Collapse
Affiliation(s)
- Sean T Holmes
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| | - James M Hook
- NMR Facility, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, New South Wales 2052, Australia.,School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Robert W Schurko
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, Florida 32306, United States.,National High Magnetic Field Laboratory, Tallahassee, Florida 32310, United States
| |
Collapse
|
13
|
Smith ME. Recent progress in solid-state nuclear magnetic resonance of half-integer spin low-γ quadrupolar nuclei applied to inorganic materials. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:864-907. [PMID: 33207003 DOI: 10.1002/mrc.5116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
An overview is presented of recent progress in the solid-state nuclear magnetic resonance (NMR) observation of low-γ nuclei, with a focus on applications to inorganic materials. The technological and methodological advances in the last 20 years, which have underpinned the increased accessibility of low-γ nuclei for study by solid-state NMR techniques, are summarised, including improvements in hardware, pulse sequences and associated computational methods (e.g., first principles calculations and spectral simulation). Some of the key initial observations from inorganic materials of these nuclei are highlighted along with some recent (most within the last 10 years) illustrations of their application to such materials. A summary of other recent reviews of the study of low-γ nuclei by solid-state NMR is provided so that a comprehensive understanding of what has been achieved to date is available.
Collapse
Affiliation(s)
- Mark E Smith
- Vice-Chancellor and President's Office and Department of Chemistry, University of Southampton, Southampton, UK
- Department of Chemistry, Lancaster University, Bailrigg, Lancaster, UK
- Department of Physics, University of Warwick, Coventry, UK
| |
Collapse
|
14
|
Daudet G, van Wijngaarden J. Analysis of the Complex Quadrupole Hyperfine Patterns for Two Chlorine Nuclei in the Rotational Spectrum of 2,5-Dichlorothiophene. J Phys Chem A 2021; 125:6089-6095. [PMID: 34254807 DOI: 10.1021/acs.jpca.1c03464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rotational spectrum of 2,5-dichlorothiophene (DCT) was measured for the first time using Fourier transform microwave spectroscopy from 5.5-19 GHz. Dense hyperfine splitting patterns due to the two quadrupolar chlorine nuclei (I = 3/2) were resolved and assigned for the 35Cl-35Cl, 37Cl-35Cl, and 37Cl-37Cl isotopologues and for the two 13C and one 34S analogues with two 35Cl atoms, allowing derivation of their respective nuclear quadrupole coupling tensors. The rotational constants obtained from fitting the spectra of the six isotopic species allowed derivation of the experimental geometry of DCT for comparison with the equilibrium structure computed at the MP2/aug-cc-pVTZ level. This revealed that the electron-withdrawing effect of chlorine causes small distortions in the ring geometry relative to thiophene, including a 1.1° increase in the two S-C-C angles and a 0.012 Å increase in the two S-C bond lengths.
Collapse
Affiliation(s)
- Gabrielle Daudet
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | | |
Collapse
|
15
|
Borges R, Colby SM, Das S, Edison AS, Fiehn O, Kind T, Lee J, Merrill AT, Merz KM, Metz TO, Nunez JR, Tantillo DJ, Wang LP, Wang S, Renslow RS. Quantum Chemistry Calculations for Metabolomics. Chem Rev 2021; 121:5633-5670. [PMID: 33979149 PMCID: PMC8161423 DOI: 10.1021/acs.chemrev.0c00901] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 02/07/2023]
Abstract
A primary goal of metabolomics studies is to fully characterize the small-molecule composition of complex biological and environmental samples. However, despite advances in analytical technologies over the past two decades, the majority of small molecules in complex samples are not readily identifiable due to the immense structural and chemical diversity present within the metabolome. Current gold-standard identification methods rely on reference libraries built using authentic chemical materials ("standards"), which are not available for most molecules. Computational quantum chemistry methods, which can be used to calculate chemical properties that are then measured by analytical platforms, offer an alternative route for building reference libraries, i.e., in silico libraries for "standards-free" identification. In this review, we cover the major roadblocks currently facing metabolomics and discuss applications where quantum chemistry calculations offer a solution. Several successful examples for nuclear magnetic resonance spectroscopy, ion mobility spectrometry, infrared spectroscopy, and mass spectrometry methods are reviewed. Finally, we consider current best practices, sources of error, and provide an outlook for quantum chemistry calculations in metabolomics studies. We expect this review will inspire researchers in the field of small-molecule identification to accelerate adoption of in silico methods for generation of reference libraries and to add quantum chemistry calculations as another tool at their disposal to characterize complex samples.
Collapse
Affiliation(s)
- Ricardo
M. Borges
- Walter
Mors Institute of Research on Natural Products, Federal University of Rio de Janeiro, Rio de Janeiro 21941-901, Brazil
| | - Sean M. Colby
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Susanta Das
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Arthur S. Edison
- Departments
of Genetics and Biochemistry and Molecular Biology, Complex Carbohydrate
Research Center and Institute of Bioinformatics, University of Georgia, Athens, Georgia 30602, United States
| | - Oliver Fiehn
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Tobias Kind
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
| | - Jesi Lee
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Amy T. Merrill
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Kenneth M. Merz
- Department
of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Thomas O. Metz
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Jamie R. Nunez
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Lee-Ping Wang
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Shunyang Wang
- West
Coast Metabolomics Center for Compound Identification, UC Davis Genome
Center, University of California, Davis, California 95616, United States
- Department
of Chemistry, University of California, Davis, California 95616, United States
| | - Ryan S. Renslow
- Biological
Science Division, Pacific Northwest National
Laboratory, Richland, Washington 99352, United States
| |
Collapse
|
16
|
Lucier BEG, Terskikh VV, Guo J, Bourque JL, McOnie SL, Ripmeester JA, Huang Y, Baines KM. Chlorine-35 Solid-State Nuclear Magnetic Resonance Spectroscopy as an Indirect Probe of the Oxidation Number of Tin in Tin Chlorides. Inorg Chem 2020; 59:13651-13670. [PMID: 32883071 DOI: 10.1021/acs.inorgchem.0c02025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrawideline 35Cl solid-state nuclear magnetic resonance (SSNMR) spectra of a series of 12 tin chlorides were recorded. The magnitude of the 35Cl quadrupolar coupling constant (CQ) was shown to consistently indicate the chemical state (oxidation number) of the bound Sn center. The chemical state of the Sn center was independently verified by tin Mössbauer spectroscopy. CQ(35Cl) values of >30 MHz correspond to Sn(IV), while CQ(35Cl) readings of <30 MHz indicate that Sn(II) is present. Tin-119 SSNMR experiments would seem to be the most direct and effective route to interrogating tin in these systems, yet we show that ambiguous results can emerge from this method, which may lead to an incorrect interpretation of the Sn oxidation number. The accumulated 35Cl NMR data are used as a guide to assign the Sn oxidation number in the mixed-valent metal complex Ph3PPdImSnCl2. The synthesis and crystal structure of the related Ph3PPtImSnCl2 are reported, and 195Pt and 35Cl SSNMR experiments were also used to investigate its Pt-Sn bonding. Plane-wave DFT calculations of 35Cl, 119Sn, and 195Pt NMR parameters are used to model and interpret experimental data, supported by computed 119Sn and 195Pt chemical shift tensor orientations. Given the ubiquity of directly bound Cl centers in organometallic and inorganic systems, there is tremendous potential for widespread usage of 35Cl SSNMR parameters to provide a reliable indication of the chemical state in metal chlorides.
Collapse
Affiliation(s)
- Bryan E G Lucier
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Victor V Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Jiacheng Guo
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Jeremy L Bourque
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Sarah L McOnie
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - John A Ripmeester
- National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Kim M Baines
- Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.,Centre for Advanced Materials and Biomaterials Research (CAMBR), The University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
17
|
von der Heiden D, Vanderkooy A, Erdélyi M. Halogen bonding in solution: NMR spectroscopic approaches. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213147] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Remsing RC, Klein ML. Lone Pair Rotational Dynamics in Solids. PHYSICAL REVIEW LETTERS 2020; 124:066001. [PMID: 32109086 DOI: 10.1103/physrevlett.124.066001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
Traditional classifications of crystalline phases focus on nuclear degrees of freedom. Through the examination of both electronic and nuclear structure, we introduce the concept of an electronic plastic crystal. Such a material is classified by crystalline nuclear structure, while localized electronic degrees of freedom-here lone pairs-exhibit orientational motion at finite temperatures. This orientational motion is an emergent phenomenon arising from the coupling between electronic structure and polarization fluctuations generated by collective motions, such as phonons. Using ab initio molecular dynamics simulations, we predict the existence of electronic plastic crystal motion in halogen crystals and halide perovskites, and suggest that such motion may be found in a broad range of solids with lone pair electrons. Such fluctuations in the charge density should be observable, in principle, via synchrotron scattering.
Collapse
Affiliation(s)
- Richard C Remsing
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Michael L Klein
- Institute for Computational Molecular Science and Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA
| |
Collapse
|
19
|
Sharma PR, Pandey S, Soni VK, Choudhary G, Sharma RK. Macroscopic recognition of iodide by polymer appended calix[4]amidocrown resin. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1676425] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Pragati R Sharma
- Department of Chemistry, Indian Institute of Technology, Jodhpur, India
| | - Shubham Pandey
- Department of Chemistry, Indian Institute of Technology, Jodhpur, India
| | - Vineet K Soni
- Department of Chemistry, Indian Institute of Technology, Jodhpur, India
| | - Ganpat Choudhary
- Department of Chemistry, Indian Institute of Technology, Jodhpur, India
| | - Rakesh K Sharma
- Department of Chemistry, Indian Institute of Technology, Jodhpur, India
| |
Collapse
|
20
|
Hirsh DA, Su Y, Nie H, Xu W, Stueber D, Variankaval N, Schurko RW. Quantifying Disproportionation in Pharmaceutical Formulations with 35Cl Solid-State NMR. Mol Pharm 2018; 15:4038-4048. [DOI: 10.1021/acs.molpharmaceut.8b00470] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- David A. Hirsh
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Yongchao Su
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Haichen Nie
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Wei Xu
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Dirk Stueber
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Narayan Variankaval
- Merck Research Laboratories, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Robert W. Schurko
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
21
|
Pandey MK, Hashi K, Ohki S, Nishijima G, Matsumoto S, Noguchi T, Deguchi K, Goto A, Shimizu T, Maeda H, Takahashi M, Yanagisawa Y, Yamazaki T, Iguchi S, Tanaka R, Nemoto T, Miyamoto T, Suematsu H, Saito K, Miki T, Nishiyama Y. 24 T High-Resolution and -Sensitivity Solid-State NMR Measurements of Low-Gamma Half-Integer Quadrupolar Nuclei 35Cl and 37Cl. ANAL SCI 2018; 32:1339-1345. [PMID: 27941265 DOI: 10.2116/analsci.32.1339] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Solid-state NMR observations of low-gamma half-integer quadrupolar nuclei, 35Cl and 37Cl, were demonstrated using a 24 T hybrid magnet (1H resonance frequency of 1.02 GHz) comprised of the high-temperature (HTS) and low-temperature (LTS) superconductors, and compared with results using a 14.1 T standard NMR magnet. While at 24 T the linewidth is 1.7 times narrower than that at 14.1 T, the gain in the sensitivity is 7.0 times because of enhanced polarization, reduced linewidth, and the use of larger rotor. A simple theoretical model was used to rationalize the sensitivity enhancements. The ratio of 35Cl and 37Cl quadrupolar couplings agrees well with the ratio of quadrupolar moments, and no isotope-dependent chemical shift has been observed. In addition, the 3QMAS spectrum of 35Cl is shown to demonstrate the high sensitivity rendered by the 24 T spectrometer.
Collapse
|
22
|
Hirsh DA, Rossini AJ, Emsley L, Schurko RW. 35Cl dynamic nuclear polarization solid-state NMR of active pharmaceutical ingredients. Phys Chem Chem Phys 2016; 18:25893-25904. [DOI: 10.1039/c6cp04353d] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this work, we show how to obtain efficient dynamic nuclear polarization (DNP) enhanced 35Cl solid-state NMR (SSNMR) spectra at 9.4 T and demonstrate how they can be used to characterize the molecular-level structure of hydrochloride salts of active pharmaceutical ingredients (APIs) in both bulk and low wt% API dosage forms.
Collapse
Affiliation(s)
- David A. Hirsh
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Aaron J. Rossini
- Department of Chemistry
- Iowa State University
- Ames
- USA
- US DOE Ames Laboratory
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques
- Ecole Polytechnique Fédérale de Lausanne (EPFL)
- Lausanne
- Switzerland
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| |
Collapse
|
23
|
Fries PH, Belorizky E. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules. J Chem Phys 2015; 143:044202. [PMID: 26233122 DOI: 10.1063/1.4926827] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R1 of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R1 vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S-I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole (14)N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of (27)Al (S = 5/2) nuclei is also explained.
Collapse
Affiliation(s)
- Pascal H Fries
- Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble, France
| | - Elie Belorizky
- Université Grenoble Alpes, LIPHY, F-38000 Grenoble, France
| |
Collapse
|
24
|
Kagawa N, Suzuki M, Kogure N, Toume K. Characterization of organic iodides with iodine-127 nuclear magnetic resonance spectroscopy. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.09.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Endo T, Imanari M, Hidaka Y, Seki H, Nishikawa K, Sen S. Structure and dynamics of room temperature ionic liquids with bromide anion: results from 81Br NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2015; 53:369-378. [PMID: 25783567 DOI: 10.1002/mrc.4208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 06/04/2023]
Abstract
We report the results of a comprehensive (81)Br NMR spectroscopic study of the structure and dynamics of two room temperature ionic liquids (RTILs), 1-butyl-3-methylimidazolium bromide ([C(4)mim]Br) and 1-butyl-2,3-dimethylimidazolium bromide ([C(4)C(1)mim]Br), in both liquid and crystalline states. NMR parameters in the gas phase are also simulated for stable ion pairs using quantum chemical calculations. The combination of (81)Br spin-lattice and spin-spin relaxation measurements in the motionally narrowed region of the stable liquid state provides information on the correlation time of the translational motion of the cation. (81) Br quadrupolar coupling constants (C(Q)) of the two RTILs were estimated to be 6.22 and 6.52 MHz in the crystalline state which were reduced by nearly 50% in the liquid state, although in the gas phase, the values are higher and span the range of 7-53 MHz depending on ion pair structure. The C(Q) can be correlated with the distance between the cation-anion pairs in all the three states. The (81)Br C(Q) values of the bromide anion in the liquid state indicate the presence of some structural order in these RTILs, the degree of which decreases with increasing temperature. On the other hand, the ionicity of these RTILs is estimated from the combined knowledge of the isotropic chemical shift and the appropriate mean energy of the excited state. [C(4)C(1)mim]Br has higher ionicity than [C(4)mim]Br in the gas phase, while the situation is reverse for the liquid and the crystalline states.
Collapse
Affiliation(s)
- Takatsugu Endo
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa, 920-1192, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Severino VGP, de Freitas SDL, Braga PAC, Forim MR, das G F da Silva MF, Fernandes JB, Vieira PC, Venâncio T. New limonoids from Hortia oreadica and unexpected coumarin from H. superba using chromatography over cleaning Sephadex with sodium hypochlorite. Molecules 2014; 19:12031-47. [PMID: 25120055 PMCID: PMC6271672 DOI: 10.3390/molecules190812031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Revised: 07/01/2014] [Accepted: 07/16/2014] [Indexed: 11/21/2022] Open
Abstract
Previous investigations of H. oreadica reported the presence of a wide spectrum of complex limonoids and dihydrocinnamic acids. Our interest in the Rutaceae motivated a reinvestigation of H. oreadica, H. brasiliana and H. superba searching for other secondary metabolites present in substantial amounts for taxonomic analysis. In a continuation of the investigation of the H. oreadica, three new limonoids have now been isolated 9α-hydroxyhortiolide A, 11β-hydroxyhortiolide C and 1(S*)-acetoxy-7(R*)-hydroxy-7-deoxoinchangin. All the isolated compounds from the Hortia species reinforce its position in the Rutaceae. With regard to limonoids the genus produces highly specialized compounds, whose structural variations do not occur in any other member of the Rutaceae, thus, it is evident from limonoid data that Hortia takes an isolated position within the family. In addition, H. superba afforded the unexpected coumarin 5-chloro-8-methoxy-psoralen, which may not be a genuine natural product. Solid-state cross-polarisation/magic-angle-spinning 13C nuclear magnetic resonance, X-Ray fluorescence and Field-emission gun scanning electron microscopy experiments show that the Sephadex LH-20 was modified after treatment with NaOCl, suggesting that when xanthotoxin (8-methoxy-psoralen) was extracted from cleaning of the gel column, chlorination of the aromatic system occurred.
Collapse
Affiliation(s)
- Vanessa G P Severino
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil
| | - Sâmya D L de Freitas
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil
| | - Patrícia A C Braga
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil
| | - Moacir Rossi Forim
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil
| | - M Fátima das G F da Silva
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil.
| | - João B Fernandes
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil
| | - Paulo C Vieira
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil
| | - Tiago Venâncio
- Departamento de Química, Universidade Federal de São Carlos, CP 676, São Carlos 13565-905, SP, Brazil
| |
Collapse
|
27
|
Vanadium complexes with side chain functionalized N-salicylidene hydrazides: Hydrogen-bonding relays as structural directive for supramolecular interactions. Inorganica Chim Acta 2014. [DOI: 10.1016/j.ica.2014.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Hanson MA, Terskikh VV, Baines KM, Huang Y. Chlorine-35 Solid-State NMR Spectroscopy as an Indirect Probe of Germanium Oxidation State and Coordination Environment in Germanium Chlorides. Inorg Chem 2014; 53:7377-88. [DOI: 10.1021/ic500728w] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Margaret A. Hanson
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Victor V. Terskikh
- Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Kim M. Baines
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| | - Yining Huang
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada N6A 5B7
| |
Collapse
|
29
|
Hildebrand M, Hamaed H, Namespetra AM, Donohue JM, Fu R, Hung I, Gan Z, Schurko RW. 35Cl solid-state NMR of HCl salts of active pharmaceutical ingredients: structural prediction, spectral fingerprinting and polymorph recognition. CrystEngComm 2014. [DOI: 10.1039/c4ce00544a] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of HCl salts of active pharmaceutical ingredients (APIs) have been characterized via35Cl solid-state NMR (SSNMR) spectroscopy and first-principles plane-wave DFT calculations of 35Cl NMR interaction tensors.
Collapse
Affiliation(s)
- Marcel Hildebrand
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - Hiyam Hamaed
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - Andrew M. Namespetra
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - John M. Donohue
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| | - Riqiang Fu
- National High Magnetic Field Laboratory
- Tallahassee, USA
| | - Ivan Hung
- National High Magnetic Field Laboratory
- Tallahassee, USA
| | - Zhehong Gan
- National High Magnetic Field Laboratory
- Tallahassee, USA
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor, Canada N9B 3P4
| |
Collapse
|
30
|
Abstract
Although solid-state NMR (SSNMR) provides rich information about molecular structure and dynamics, the small spin population differences between pairs of spin states that give rise to NMR transitions make it an inherently insensitive spectroscopic technique in terms of signal acquisition. Scientists have continuously addressed this issue via improvements in NMR hardware and probes, increases in the strength of the magnetic field, and the development of innovative pulse sequences and acquisition methodologies. As a result, researchers can now study NMR-active nuclides previously thought to be unobservable or too unreceptive for routine examination via SSNMR. Several factors can make it extremely challenging to detect signal or acquire spectra using SSNMR: (i) low gyromagnetic ratios (i.e., low Larmor frequencies), (ii) low natural abundances or dilution of the nuclide of interest (e.g., metal nuclides in proteins or in organometallic catalysts supported on silica), (iii) inconvenient relaxation characteristics (e.g., very long longitudinal or very short transverse relaxation times), and/or (iv) extremely broad powder patterns arising from large anisotropic NMR interactions. Our research group has been particularly interested in efficient acquisition of broad NMR powder patterns for a variety of spin-1/2 and quadrupolar (spin > 1/2) nuclides. Traditionally, researchers have used the term "wideline" NMR to refer to experiments yielding broad (1)H and (2)H SSNMR spectra ranging from tens of kHz to ∼250 kHz in breadth. With modern FT NMR hardware, uniform excitation in these spectral ranges is relatively easy, allowing for the acquisition of high quality spectra. However, spectra that range in breadth from ca. 250 kHz to tens of MHz cannot be uniformly excited with conventional, high-power rectangular pulses. Rather, researchers must apply special methodologies to acquire such spectra, which have inherently low S/N because the signal intensity is spread across such large spectral breadths. We have suggested the term ultra-wideline NMR (UWNMR) spectroscopy to describe this set of methodologies. This Account describes recent developments in pulse sequences and strategies for the efficient acquisition of UWNMR spectra. After an introduction to anisotropically broadened NMR patterns, we give a brief history of methods used to acquire UWNMR spectra. We then discuss new acquisition methodologies, including the acquisition of CPMG echo trains and the application of pulses capable of broadband excitation and refocusing. Finally, we present several applications of UWNMR methods that use these broadband pulses.
Collapse
Affiliation(s)
- Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON, Canada N9B 3P4
| |
Collapse
|
31
|
Tzou DLM, Ni LK, Chen MM, Chiou MC, Chen LC, Hsu ST, Ku KL, Cheng CC. Fingerprints of Phalaenopsis Tissues in Growth and Spike Induction Periods-A Solid-state 13C NMR Approach. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Badu S, Truflandier L, Autschbach J. Quadrupolar NMR Spin Relaxation Calculated Using Ab Initio Molecular Dynamics: Group 1 and Group 17 Ions in Aqueous Solution. J Chem Theory Comput 2013; 9:4074-86. [PMID: 26592401 DOI: 10.1021/ct400419s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electric field gradient (EFG) fluctuations for the monoatomic ions (7)Li(+), (23)Na(+), (35)Cl(-), (81)Br(-), and (127)I(-) in aqueous solution are studied using Car-Parrinello ab initio molecular dynamics (aiMD) simulations based on density functional theory. EFG calculations are typically performed with 1024 ion-solvent configurations from the aiMD simulation, using the Zeroth Order Regular Approximation (ZORA) relativistic Hamiltonian. Autocorrelation functions for the spherical EFG tensor elements are computed, transformed into the corresponding spectral densities (under the extreme narrowing condition), and subsequently converted into NMR quadrupolar relaxation rates for the ions. The relaxation rates are compared with experimental data. The order of magnitude is correctly predicted by the simulations. The computational protocol is tested in detail for (81)Br(-).
Collapse
Affiliation(s)
- Shyam Badu
- Department of Chemistry, University at Buffalo-State University of New York , Buffalo, New York 14260-3000, United States
| | - Lionel Truflandier
- Institut des Sciences Moléculaires, Université Bordeaux I , 351 Cours de la Libration, 33405 Talence, France
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo-State University of New York , Buffalo, New York 14260-3000, United States
| |
Collapse
|
33
|
Johnston KE, O'Keefe CA, Gauvin RM, Trébosc J, Delevoye L, Amoureux JP, Popoff N, Taoufik M, Oudatchin K, Schurko RW. A Study of Transition-Metal Organometallic Complexes Combining35Cl Solid-State NMR Spectroscopy and35Cl NQR Spectroscopy and First-Principles DFT Calculations. Chemistry 2013; 19:12396-414. [DOI: 10.1002/chem.201301268] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Indexed: 11/10/2022]
|
34
|
Widdifield CM, Cavallo G, Facey GA, Pilati T, Lin J, Metrangolo P, Resnati G, Bryce DL. Multinuclear Solid-State Magnetic Resonance as a Sensitive Probe of Structural Changes upon the Occurrence of Halogen Bonding in Co-crystals. Chemistry 2013; 19:11949-62. [DOI: 10.1002/chem.201300809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/10/2013] [Indexed: 01/20/2023]
|
35
|
Autschbach J, Peng D, Reiher M. Two-Component Relativistic Calculations of Electric-Field Gradients Using Exact Decoupling Methods: Spin–orbit and Picture-Change Effects. J Chem Theory Comput 2012; 8:4239-48. [DOI: 10.1021/ct300623j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jochen Autschbach
- Department of Chemistry, University
at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States
| | - Daoling Peng
- ETH Zürich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse
10, CH-8093 Zürich, Switzerland
| | - Markus Reiher
- ETH Zürich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Strasse
10, CH-8093 Zürich, Switzerland
| |
Collapse
|
36
|
Widdifield CM, Bryce DL. A multinuclear solid-state magnetic resonance and GIPAW DFT study of anhydrous calcium chloride and its hydrates. CAN J CHEM 2011. [DOI: 10.1139/v11-009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The group 2 metal halides and corresponding metal halide hydrates serve as useful model systems for understanding the relationship between the electric field gradient (EFG) and chemical shift (CS) tensors at the halogen nuclei and the local molecular and electronic structure. Here, we present a 35/37Cl and 43Ca solid-state nuclear magnetic resonance (SSNMR) study of CaCl2. The 35Cl nuclear quadrupole coupling constant, 8.82(8) MHz, and the isotropic chlorine CS, 105(8) ppm (with respect to dilute NaCl(aq)), are different from the values reported previously for this compound, as well as those reported for CaCl2·2H2O. Chlorine-35 SSNMR spectra are also presented for CaCl2·6H2O, and when taken in concert, the SSNMR observations for CaCl2, CaCl2·2H2O, and CaCl2·6H2O clearly demonstrate the sensitivity of the chlorine EFG and CS tensors to the local symmetry and to changes in the hydration state. For example, the value of δiso decreases with increasing hydration. Gauge-including projector-augmented wave (GIPAW) density functional theory (DFT) calculations are used to substantiate the experimental SSNMR findings, to rule out the presence of other hydrates in our samples, to refine the hydrogen positions in CaCl2·2H2O, and to explore the isostructural relationship between CaCl2 and CaBr2. Finally, the 43Ca CS tensor span is measured to be 31(5) ppm for anhydrous CaCl2, which represents only the fifth CS tensor span measurement for calcium.
Collapse
Affiliation(s)
- Cory M. Widdifield
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| | - David L. Bryce
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
37
|
|
38
|
Aquino F, Govind N, Autschbach J. Electric Field Gradients Calculated from Two-Component Hybrid Density Functional Theory Including Spin−Orbit Coupling. J Chem Theory Comput 2010; 6:2669-86. [DOI: 10.1021/ct1002847] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fredy Aquino
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, P.O. Box 999, Mail Stop K8-91 Richland, Washington 99352
| | - Niranjan Govind
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, P.O. Box 999, Mail Stop K8-91 Richland, Washington 99352
| | - Jochen Autschbach
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260-3000, and William R. Wiley Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, 902 Battelle Blvd, P.O. Box 999, Mail Stop K8-91 Richland, Washington 99352
| |
Collapse
|
39
|
Widdifield CM, Bryce DL. Solid-State 79/81Br NMR and Gauge-Including Projector-Augmented Wave Study of Structure, Symmetry, and Hydration State in Alkaline Earth Metal Bromides. J Phys Chem A 2010; 114:2102-16. [DOI: 10.1021/jp909106j] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Cory M. Widdifield
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada
| | - David L. Bryce
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Pvt., Ottawa, Ontario, Canada
| |
Collapse
|
40
|
Gordon PG, Brouwer DH, Ripmeester JA. Probing the Local Structure of Pure Ionic Liquid Salts with Solid- and Liquid-State NMR. Chemphyschem 2010; 11:260-8. [DOI: 10.1002/cphc.200900624] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Alonso B, Massiot D, Florian P, Paradies HH, Gaveau P, Mineva T. 14N and 81Br Quadrupolar Nuclei as Sensitive NMR Probes of n-Alkyltrimethylammonium Bromide Crystal Structures. An Experimental and Theoretical Study. J Phys Chem B 2009; 113:11906-20. [DOI: 10.1021/jp9027904] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Bruno Alonso
- Institut Charles Gerhardt de Montpellier, Matériaux Avancés pour la Catalyse et la Santé, ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1, 8 rue de l’Ecole Normale, 34296 Montpellier cedex 5, France, CEMHTI, CNRS UPR3079 Université d’Orléans, 1D av. de la Recherche Scientifique, 45071 Orléans cedex 2, France, and The University of Salford, Joule Physics Laboratory, School of Computing, Science and Engineering, Materials Research Institute, Manchester, M 5 4WT, United Kingdom
| | - Dominique Massiot
- Institut Charles Gerhardt de Montpellier, Matériaux Avancés pour la Catalyse et la Santé, ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1, 8 rue de l’Ecole Normale, 34296 Montpellier cedex 5, France, CEMHTI, CNRS UPR3079 Université d’Orléans, 1D av. de la Recherche Scientifique, 45071 Orléans cedex 2, France, and The University of Salford, Joule Physics Laboratory, School of Computing, Science and Engineering, Materials Research Institute, Manchester, M 5 4WT, United Kingdom
| | - Pierre Florian
- Institut Charles Gerhardt de Montpellier, Matériaux Avancés pour la Catalyse et la Santé, ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1, 8 rue de l’Ecole Normale, 34296 Montpellier cedex 5, France, CEMHTI, CNRS UPR3079 Université d’Orléans, 1D av. de la Recherche Scientifique, 45071 Orléans cedex 2, France, and The University of Salford, Joule Physics Laboratory, School of Computing, Science and Engineering, Materials Research Institute, Manchester, M 5 4WT, United Kingdom
| | - Henrich H. Paradies
- Institut Charles Gerhardt de Montpellier, Matériaux Avancés pour la Catalyse et la Santé, ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1, 8 rue de l’Ecole Normale, 34296 Montpellier cedex 5, France, CEMHTI, CNRS UPR3079 Université d’Orléans, 1D av. de la Recherche Scientifique, 45071 Orléans cedex 2, France, and The University of Salford, Joule Physics Laboratory, School of Computing, Science and Engineering, Materials Research Institute, Manchester, M 5 4WT, United Kingdom
| | - Philippe Gaveau
- Institut Charles Gerhardt de Montpellier, Matériaux Avancés pour la Catalyse et la Santé, ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1, 8 rue de l’Ecole Normale, 34296 Montpellier cedex 5, France, CEMHTI, CNRS UPR3079 Université d’Orléans, 1D av. de la Recherche Scientifique, 45071 Orléans cedex 2, France, and The University of Salford, Joule Physics Laboratory, School of Computing, Science and Engineering, Materials Research Institute, Manchester, M 5 4WT, United Kingdom
| | - Tzonka Mineva
- Institut Charles Gerhardt de Montpellier, Matériaux Avancés pour la Catalyse et la Santé, ICGM-MACS, UMR 5253 CNRS-ENSCM-UM2-UM1, 8 rue de l’Ecole Normale, 34296 Montpellier cedex 5, France, CEMHTI, CNRS UPR3079 Université d’Orléans, 1D av. de la Recherche Scientifique, 45071 Orléans cedex 2, France, and The University of Salford, Joule Physics Laboratory, School of Computing, Science and Engineering, Materials Research Institute, Manchester, M 5 4WT, United Kingdom
| |
Collapse
|
42
|
Terskikh VV, Lang SJ, Gordon PG, Enright GD, Ripmeester JA. (13)C CP MAS NMR of halogenated (Cl, Br, I) pharmaceuticals at ultrahigh magnetic fields. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2009; 47:398-406. [PMID: 19172586 DOI: 10.1002/mrc.2399] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
This work reports significantly improved spectral resolution of (13)C CP MAS NMR spectra of chlorinated, brominated and iodinated solid organic compounds when such spectra are recorded at ultrahigh magnetic field strengths. The cause of this is the residual dipolar coupling between carbon atoms and quadrupolar halogen nuclides (chlorine-35/37, bromine-79/81 or iodine-127), an effect inversely proportional to the magnetic field strength which declines in importance markedly at 21.1 T as compared to lower fields. In favorable cases, the fine structure observed can be used for spectral assignment, e.g. for Cl-substituted aromatics where the substituted carbon as well as the ortho-carbons show distinct doublets. The experimental results presented are supported by theoretical modeling and calculations. The improved spectral resolution in the studied systems and similar halogenated materials will be of particular interest and importance for polymorph identification, drug discovery and quality control in the pharmaceutical industry.
Collapse
Affiliation(s)
- Victor V Terskikh
- Steacie Institute for Molecular Sciences, National Research Council Canada, Ottawa, Canada K1A 0R6
| | | | | | | | | |
Collapse
|
43
|
Rossini AJ, Mills RW, Briscoe GA, Norton EL, Geier SJ, Hung I, Zheng S, Autschbach J, Schurko RW. Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes. J Am Chem Soc 2009; 131:3317-30. [DOI: 10.1021/ja808390a] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Aaron J. Rossini
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Ryan W. Mills
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Graham A. Briscoe
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Erin L. Norton
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Stephen J. Geier
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Ivan Hung
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Shaohui Zheng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Jochen Autschbach
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4, and Department of Chemistry, The State University of New York, Buffalo, New York 14260-3000
| |
Collapse
|
44
|
Chapman RP, Bryce DL. Application of multinuclear magnetic resonance and gauge-including projector-augmented-wave calculations to the study of solid group 13 chlorides. Phys Chem Chem Phys 2009; 11:6987-98. [DOI: 10.1039/b906627f] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
45
|
Hamaed H, Pawlowski JM, Cooper BF, Fu R, Eichhorn SH, Schurko RW. Application of Solid-State 35Cl NMR to the Structural Characterization of Hydrochloride Pharmaceuticals and their Polymorphs. J Am Chem Soc 2008; 130:11056-65. [DOI: 10.1021/ja802486q] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Hiyam Hamaed
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4 and National High Magnetic Field Laboratory, Tallahassee, Florida 32310-3706
| | - Jenna M. Pawlowski
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4 and National High Magnetic Field Laboratory, Tallahassee, Florida 32310-3706
| | - Benjamin F.T. Cooper
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4 and National High Magnetic Field Laboratory, Tallahassee, Florida 32310-3706
| | - Riqiang Fu
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4 and National High Magnetic Field Laboratory, Tallahassee, Florida 32310-3706
| | - S. Holger Eichhorn
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4 and National High Magnetic Field Laboratory, Tallahassee, Florida 32310-3706
| | - Robert W. Schurko
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada N9B 3P4 and National High Magnetic Field Laboratory, Tallahassee, Florida 32310-3706
| |
Collapse
|
46
|
Affiliation(s)
- Cecil Dybowski*
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | - Shi Bai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| |
Collapse
|
47
|
Nica S, Buchholz A, Rudolph M, Schweitzer A, Wächtler M, Breitzke H, Buntkowsky G, Plass W. Mixed-Ligand Oxidovanadium(V) Complexes withN′-Salicylidenehydrazides: Synthesis, Structure, and51V Solid-State MAS NMR Investigation. Eur J Inorg Chem 2008. [DOI: 10.1002/ejic.200800063] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Casabianca LB, de Dios AC. Ab initiocalculations of NMR chemical shifts. J Chem Phys 2008; 128:052201. [DOI: 10.1063/1.2816784] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
49
|
Weingarth M, Raouafi N, Jouvelet B, Duma L, Bodenhausen G, Boujlel K, Schöllhorn B, Tekely P. Revealing molecular self-assembly and geometry of non-covalent halogen bonding by solid-state NMR spectroscopy. Chem Commun (Camb) 2008:5981-3. [DOI: 10.1039/b813237b] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Bryce DL, Bultz EB. Alkaline Earth Chloride Hydrates: Chlorine Quadrupolar and Chemical Shift Tensors by Solid-State NMR Spectroscopy and Plane Wave Pseudopotential Calculations. Chemistry 2007; 13:4786-96. [PMID: 17385204 DOI: 10.1002/chem.200700056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A series of alkaline earth chloride hydrates has been studied by solid-state (35/37)Cl NMR spectroscopy in order to characterize the chlorine electric field gradient (EFG) and chemical shift (CS) tensors and to relate these observables to the structure around the chloride ions. Chlorine-35/37 NMR spectra of solid powdered samples of pseudopolymorphs (hydrates) of magnesium chloride (MgCl(2).6H(2)O), calcium chloride (CaCl(2).2H(2)O), strontium chloride (SrCl(2), SrCl(2).2H(2)O, and SrCl(2).6H(2)O), and barium chloride (BaCl(2).2H(2)O) have been acquired under stationary and magic-angle spinning conditions in magnetic fields of 11.75 and 21.1 T. Powder X-ray diffraction was used as an additional tool to confirm the purity and identity of the samples. Chlorine-35 quadrupolar coupling constants (C(Q)) range from essentially zero in cubic anhydrous SrCl(2) to 4.26+/-0.03 MHz in calcium chloride dihydrate. CS tensor spans, Omega, are between 40 and 72 ppm, for example, Omega= 45+/-20 ppm for SrCl(2).6H(2)O. Plane wave-pseudopotential density functional theory, as implemented in the CASTEP program, was employed to model the extended solid lattices of these materials for the calculation of their chlorine EFG and nuclear magnetic shielding tensors, and allowed for the assignment of the two-site chlorine NMR spectra of barium chloride dihydrate. This work builds upon our current understanding of the relationship between chlorine NMR interaction tensors and the local molecular and electronic structure, and highlights the particular sensitivity of quadrupolar nucleus solid-state NMR spectroscopy to the differences between various pseudopolymorphic structures in the case of strontium chloride.
Collapse
Affiliation(s)
- David L Bryce
- Department of Chemistry and Centre for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | | |
Collapse
|